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ON THE IDEAL STRUCTURE OF SOME
ALGEBRAS OF ANALYTIC FUNCTIONS

JOHN E. GILBERT

Using the Beurling-Lax description of invariant subspaces
of H2(R), we describe the ideal structure of two large classes
of convolution algebras whose Fourier-Laplace Transforms are
entire functions. A closed ideal will be characterized by its
cospectrum or by its cospectrum together with a nonnegative
number related to the "rate of decrease at infinity"; in the
latter case, the closed ideals having the same cospectrum form
a totally ordered family {/$}, ξ e [0, oo), with Iξ Ξg Iη whenever
ξ < η. New examples of algebras to which the results apply
are given.

The familiar notation for the spaces considered by Schwartz ([9])
is adopted and each space is equipped with its usual topology. Let
3ίΓ be the subspace of if (iϋ) of functions φ for which

| |0 | | *= sup exv(k\x\)\Dpφ(x)\

is finite for each k = 0, 1, •••; the topology on JίΓ will be the one
induced by the semi-norms ||( )ll*> fe = 0, 1, •••. Under this topology
J%Γ is a convolution algebra with separately continuous multiplication.
A detailed discussion of 3ίΓ along with associated spaces is given in
[4], [12] and [13] (note that Zielezny uses 3^ instead of 5iT). We
recall some of the results in the form most convenient for applica-
tions here.

Denote by ^ / ( J ^ ) the convolution operators on J/^ i.e., the
distributions Se^'(R) for which the convolution operator φ-*S*φ
is well-defined and continuous from 3ίΓ into 3$Γ. έ?ί(3ίί) is given
the topology it inherits as a subspace of ^(J^~, _%^), the continuous
linear mappings from 5ίΓ into 3Γ, when <Sfh(3ίΓ, 3ίΓ), has the topology
of uniform convergence on bounded subsets of 3tΓ. Alternatively, if
3ίΓ' is the strong dual of 5ίί, ^'(JϊίΓ) can be defined as the space
<^C'(^Γ"', 3tΓ') of convolution operators on 5tΓ' in the sense of Schw-
artz ([10], expose 10) and given the topology acquired as a subspace
of J^?(^r', JίT'). These two definitions of ^ / ( J T ) are, however,
entirely equivalent (cf. [13, Ths. 2(d'), 4]).

THEOREM 1. The space ̂ J(Si^) is a convolution algebra for which
( i ) (S, T) —> S* T is a separately continuous mapping from

x ^ ' ( J T ) into έr.'iJΠf

625
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(ii) (S, φ)-+ S*φ is a separately continuous mapping from

Proof. ( i ) See [12, p. 319] for instance, or, more directly, use
the definition of the ^fb{^T\ JΓ') topology,

(ii) The continuity of φ—>S*φ follows immediately from the de-
finition of S while the continuity of S—>S*φ follows from the defini-
tion of the £fb(ST, JT) topology on ^/(ST) .

The Fourier-Laplace Transform Φ(z) of φ e 3ίΓ defined by

Φ(z) = φ(z) = Γ φ(x)e-*'dx ,
J-oo

z — u + iv ,

can be extended to 0*1 (J%Γ) via the Parseval formula in the usual
way since ^/( JT") c SίT'. For both J T and <?0'{J%~) the correspond-
ing spaces if, ^ ( i f ) of Fourier-Laplace Transforms φ, S respectively,
are algebras of entire functions under point wise multiplication; more
precisely, if Sa denotes the strip {z: \Rl(z)\ ̂  a) in the complex plane:

THEOREM 2. An entire function Φ
( i ) belongs to K if and only if for each positive integer n

S U P ( 1 + | 2 | ) | Φ ( 2 ) | < O O ,
zeSn

(ii) belongs to έ?M(K) if and only if there corresponds to each
positive integer n an integer I for which

sup(l + |«|)-'|Φ(2)|<oo .
zeSn

Proof. See [4], [13].
These spaces if, ^(K) are given the topology carried over from
^c'(Js?~) respectively by the Fourier-Laplace Transform. Just as

<?ϊ{3ίΓ) is the algebra of convolution operators on 3ίΓ, so ^M{K) is
the algebra of multiplication operators on K. This is in complete
analogy with the spaces ^ / , έ?κ introduced by Schwartz ([9]π, p. 99)
where the space corresponding to 3ίΓ is then the space S^ of inde-
finitely differentiate functions of rapid decay at infinity (see [12] for
elaboration).

Finally, ^ (respectively tf'X^ίΓ)^ denotes the subspace of func-
tions in 3ίΓ (respectively distributions in ^.'(^Γ*)) with support in
R+ - [0, oo),

2* Throughout the paper J ^ will denote a topological convolu-
tion subalgebra of &!{3ίΓ) in which the convolution operation is
assumed to be separately continuous. We shall further assume that
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contains an approximate identity of functions {φk} in 3ίΓ or ^
in the sense that S * φk converges to S in Szf for each S e Stf. Now
associated with each closed ideal I in s*f is the cospectrum cosp (I)
of I consisting of the zeros counted according to multiplicity common
to the Fourier-Laplace Transform of elements in J. If, in addition,
J ^ c ^ / ( J ^ ) + so that S e J / has support in [0, co), as will denote
the largest nonnegative number such that S has support in [as, <*>),
i.e., the convex support of S lies in [as, oo) but not in [c, <χ>) for any
c > as. It is known that as can be characterized as the largest number
for which

(1) I exp (asz)S(z) \ = 0(1 + | z \n) , Rl{z) > u0

for some integer n and every u0 > 0 (cf. [2, p. 52]). Thus as is a
measure of the rapidity of decay of S at infinity. This definition
makes equally good sense for any SeS^'iR) with support in [0, oo).

From the Beurling-Lax theorem describing the invariant subspaces
of H\R) (see [6, p. 165]; [5, p. 107]), we shall deduce the following
results ( c will always imply continuous embedding):

THEOREM A. Let

with
be a topologίcal convolution subalgebra of

(2) JfcJ/c

Then each closed ideal in J& is characterized by its cospectrum.

THEOREM B.

with
Let

Then each closed ideal I in
together with the number

be a topologίcal convolution subalgebra of

is characterized by its cospectrum

( 3 ) α7 = inf {as:SeI} .

* For each a e R denote by Lp

a(R), 1 ^ p < co, the usual (equivalence
classes of) functions for which

is finite and by Lp

ω the intersection [}a^Lp

a(R) provided with the
topology defined by ||( )llp,α> aeR+. Then Lp

ω(R) is a convolution
subalgebra of ^c'0ίΓ) satisfying (2) with an approximate identity
from J^7 even from 3f (use Theorem 2, for instance). Thus Theorem
A applies. Further examples can be obtained by this construction by
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imposing smoothness conditions, say differentiability or suitable Lips-
chitz conditions, on the functions. In the opposite direction, denote
by Wr

a

p{R) the (Sobolev type) space of functions / in Lp

a(R) with
generalized derivatives Djf in L*(R), j = 1, « ,r, and W7{R) the
intersection f|«^o Wap(R), both spaces being given the usual topology.
Theorem A applies here also to Wr

ω

p{R), r = 1, 2, •••, 1 ^ p < °o.
Theorem B applies, for instance, to analogously defined algebras with
R replaced by R+, extending any function or distribution defined on
R+ to all of R by zero.

3* This section contains preliminary results the first of which
reduces the proof of Theorems A, B to the special case when sf ~
L*ω(R), L2

ω(R+) respectively.

THEOREM 3. Let Szf be a convolution algebra with an approxim-
ate identity {<f>k} from J2ίί and satisfying

(4) J ^ c J / c ^C'(J3T)+ .

Then there is a one-to-one correspondence between the closed ideals of
Szf and the closed ideals of ^>

C'(J%'~)+. More precisely, every closed
ideal I c J / is the intersection with Ssf of a unique closed ideal J
in ^C '(J^")+ such that

(5 ) I = JO S$f, cosp (/) = cosp (J), aΣ = aj

conversely, every such intersection J (Ί Szf is a closed ideal in
satisfying (5).

REMARK. An entirely analogous result holds when Sxf contains
an approximate identity from <3ίΓ and satisfies (2).

Proof of Theorem 3. The final assertion is almost obvious in view
of (4). On the other hand, if / is a closed ideal in jy, certainly
there exists at least one closed ideal J in ^ c ' ( ^ ~ ) + satisfying (5); for
let J be the closure of I in ^c

f{^Γ)+. Then, clearly, / c / Π J/,
cosp (J) = cosp (J) and α7 = α,. Now, when {fn} is a net in / con-
verging in ^ / ( ^ Π + to geJΠJ^, by Theorem l(ii) the net {fn*φk}
converges for each k to g*φk in Ĵ rJ and hence in Szf. But then
g*φkel and so g itself belongs to J, i.e., J D J Π Ssf.

To check the uniqueness, suppose Jλ, J2 are closed ideals in <^/(^Γ~)+

for which Jι Π Szf — I = J2 Π S>f. Now I contains g* ^ + for each
g e Ji, J2 so / contains dense subsets of both Jι and J2 since ^ / ( < ^ ) +

has an approximate identity from ^%£. Hence, with the notation of
the previous paragraph, Jx — J — J2.



ON THE IDEAL STRUCTURE OF SOME ALGEBRAS 629

Assuming Theorem B we obtain very easily the characterization
mentioned in the introduction of the closed ideals in Sf having the
same cospectrum.

COROLLARY. Under the hypotheses of Theorem 3 the closed ideals
in Szf having the same cospectrum form a totally ordered family
{Iξ}, ζe [0, co), with Iζ Ξ2 Iη whenever ζ < η.

Proof. It is enough to prove the result for Jϊf = ^c'(<βΓ)+ (cf.
(5)). Let I be any closed ideal in 0>

e

f{SίΓ)+. If α7 Φ 0, say α7 = λ,
the set Io of λ-left translates

(obvious modifications if S is not a function) is a closed ideal in
^C'(SΓ)+ with cosp (Jo) = cosp (I) and alQ = 0. When α7 = 0 merely
set Io = I. Now define Iξ, ζ e [0, co) by

Iξ = {Ss: Selo, Sξ(x) = S(x - ξ)} ,

the f-right translates of elements in Io. This family {/J, ξ e [0, oo),
of closed ideals in ^e'(SίΓ)+ certainly satisfies cosp (If) = J, aIξ = ζ as
is easy to see; hence it is totally ordered by reverse inclusion. Of
course, the original ideal / is Iλ in the family. By Theorem B any
closed ideal having the same cospectrum as I belongs to {/J.

For the strip Sa, H*(Sa) denotes the space of functions analytic
in the interior of Sa for which

||iΓ|| = sup/ί \F(u + iv)\2dvV12

\u\<a I J R J

is finite, H2{Sa) then denotes the space

^ ) F , Fe H*(S

It is well known that L\{R) is isomorphic to H\Sa) under the Fourier-
Laplace Transform (cf. [11, p. 130]). On the other hand, H2(Sa)
consists of those functions IΛintegrable on the boundary dSa of Sa

with respect to the measure (cosh {πvj2a))~ιdv whose Poisson integrals
are analytic in the interior of Sa. This can be checked by consider-
ing for instance the mapping ζ —> z = (Aafπ) tan~^ζ of the closed unit
disc onto Sa. When H2(Sa) is given the norm

||G|| = jί \G(±a + iv)\>(cosh^L
\

it is easy to see the mapping z-^w — exp (iπzβa) of Sa onto the
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right hand half-plane Rl(w) ^ 0 induces an isomorphism between
H\R) (cf. [5, p. 107])1 and H\Sa). Since H\R) is isomorphic with
the usual H2 space for the unit disc ([5, p. 105]) the significance of
H2(Sa) is not surprising.

The spaces H°°(Sa), H°°(R) of functions bounded and analytic in
the strip Sa and the right half-plane respectively are isometrically
isomorphic under the mapping z —> exp (iπz/2a). Thus, each Fe £f°°(Sα)
admits a factorization in the form

( 6 ) F(z) = λ exp (-p_eiπzl2a - p+e-^^F^Foiz)

with |λ | = 1, |0_ and p+ in R+, FΣ an "inner" function and Fo an
"outer" function by transferring the usual factorization for H°°(R) to
H~(Sa) (cf. [5, p. 133]). Each "inner" function can be further de-
composed again by transferring the analogous decomposition for the
half-plane case; at the risk of confusion the same terminology is used
as in the half-plane case—Blaschke product, •••.

We shall denote by H+(Sa) the closed subspace of H2(Sa) corres-
ponding under the Fourier-Laplace Transform to the closed subspace
L2

a{R+) of L2

a(R). A doubly-invariant subspace / of H2(Sa) will mean
one invariant under multiplication by eβ% aeR, a simply invariant
subspace of H+(Sa) one invariant under multiplication by e~α% aeR+.

THEOREM 4. (a) Each closed doubly-invariant subspace I of
H2(Sa) is of the form I — FH2(Sa) for some inner function FeH°°(Sa).

(b) If I is a closed simply-invariant subspace of H+(Sa) then

(7) I=e^GH2

+(Sa)

for some p e R+ and G a function bounded and analytic in Rl(z) >
— a having measurable boundary values of modules 1 α.e. on Rl(z) —
— a.

A simple lemma is needed in the proof of Theorem 4.

LEMMA 1. A closed doubly-invariant subspace I of H2{Sa) is
invariant under multiplication by every Ψe H°°(Sa).

Proof. The subspace J of L2

a(R) corresponding to I is invariant
under translation both to the left and to the right. Now, by Plan-
cherel's theorem, the mapping F-+ΨF for FeH2(Sa) gives rise to
a mapping f-+fψ of L\{R) commuting with translation. To prove
the lemma therefore, it is enough to show that whenever φ e LLJJR)
and 0*/* = 0 for all feJ, then φ*(fψ)* = 0 the convolution φ*g* be-

1 H\R) = {(1 + w)f:fβHKR), HKR) the Hardy space for the right half-plane}.
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ing defined by

Φ*g*(χ) = I Φ(χ + y)g(y)dy .
JR

But, if heLι

a(R)nLl(R),

(Φ*f$*h* = Φ*{fΨ*h)* = (Φ*f*)*h$ = 0

as an easy calculation shows. Such functions h are dense in Ua(R)
so φ*f$ = 0.

Proof of Theorem 4. (a) Since | cos (πzβa) |2 = i cosh (πvβa) on
dSa the set I = (cos (πz/4a))I is a closed subspace of H2(Sa) invariant
under multiplication by every Ψ e H°°{Sa). Thus the subspace of H\R)
corresponding to I under the isomorphism of H2(Sa) and &2{R) is of
the form Fjί\R) for some inner function F1 e H°°(R) applying the
Beurling-Lax result (cf. [5, p. 107]). Consequently, for some inner
function FeH°°(Sa),

(cos ψ-)l= F(cos^-)H2(Sa) .
V 4a/ \ 4aJ

Since cos (πz/4a) is zero-free throughout Sa the result follows.
(b) Under the mapping F-+Fa, Fa(z) = F(z - a), Rl(z)^0,

Hl(Sa) is isomorphic with H2(R). In addition, the image of any closed
simply invariant subspace I of H+(Sa) is an invariant subspace of H2(R)
in the terminology of Hoffman ([5, p. 106]). The expression (7) now
follows from the result of Lax ([6]; [5, p. 107]).

As mentioned earlier, if F is the Fourier-Laplace Transform of
a distribution in S^\R) with support in [0, oo), the mapping F—>aF

with aF the largest number for which (1) holds, is well-defined. This
applies in particular to functions in H2(R) or H°°(R).

THEOREM 5. If F — Xe~pzF2F0 is the usual factorization of a
function FeH\R) or H°°(R), then p = aF.

THEOREM 6. When FeH~(Sa) is factorized in the form (6) the
numbers p+, p_ satisfy

cosπu_

c o s £»
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for almost all u, | u | < a. In particular, if F belongs also to H°°(Sβ)
for some β > a, then p+ = p^ = 0.

A proof of Theorem 5 appears, for instance, in [8, Lemma 4].
Actually, the Ahlfors-Heins theorem [1, Th. A] gives an even stronger
result since

( 9 )

for almost all θ, —π/2 < θ < ττ/2.2 To prove Theorem 6 it is enough
to establish the first of the limits since the second follows after a
transformation z—+z. But, when Sa is mapped onto Rl(w) ^ 0 via
the mapping z—*w — exv(iπz/2a), the limit (8) is precisely the an-
alogue for the strip Sa of (9). Finally, when p_, pL are corresponding
numbers in the factorization of F as a function in H°°(Sa), H°°(Sβ)
respectively, we deduce

(10) lim logl*ΐtt + fr)l = - p L cos 2 ~ ,

V 2/3/

for almost all u9 \u\ < βf in addition to (8). Choosing any u, \u\ <
a, on which (8) and (10) hold simultaneously we can soon check that
/0_ must be zero if β > a. Similarly p+ = 0.

4* The proofs of Theorems A and B can now be given.

Proof of A. In view of the remark following Theorem 3, Theorem
A need be proved only in the case J^f = L2

ω(R).
Let / b e a closed ideal in L2

ω(R)f Ia the closure of I in L2

a{R).
Then I = f\a>0 Ia. For certainly I c Π^o /*; on the other hand, the
topology on UJJR) being the topology defined by the semi-norms
||( )llα» i e » the protective limit topology, each feΓ\a*oIa is a limit
point of / in L2

ω(R) hence Π«^o L = I- The set Ja of Fourier Laplace
Transforms of functions in Ia is a closed doubly-invariant subspace of
H2(Sa). Thus J α = FH\Sa) where JP is an inner function in H°°{Sa)
depending on a of course. In the factorization of F

(11) F = exp (-pjέ**12* - p+e~iπzl2a)BS ,

with J5 a Blaschke product, S a singular function, the Blaschke pro-
duct is formed with the elements of cosp(I) lying in Sa\dSa. On the

2 In the application of (9) we have in mind the singular function in F is identic-
ally 1. A proof of (9) in this case avoiding the Ahlfors-Heins theorem is given in [7]
(for the upper half-plane) on page 243.
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other hand, if a is chosen so that dSa does not intersect cosp (I), the
singular function in (11) is identically 1; for if zoedSaf there exists
fe I with / continuous on dSa and nonzero at zQ in which case zQ does
not belong to the support of the singular measure defining S (cf. [5,
p. 70]). Furthermore, as each /, / e J, belongs to H°°(Sβ) for every
β > α, the constants p+, p^ in the factorization of /, and hence in
(11), are both zero. Thus, with this choice of a, the inner function
reduces to the Blaschke product formed by the elements of cosp (I)
in Sa.

Now choose a monotonic unbounded sequence of α's for which
cosp (I) Π dSa is empty. Such a choice is always possible since any
such sequence is enough to describe UJJR) both algebraically and
topologically. If / is any function in Uω(R) for which f{z) = 0 whenever
z e cosp (I) (with appropriate multiplicities), it is clear that / belongs to
every Ja because the corresponding inner function (11), merely a
Blaschke product, divides / . Consequently, fe Π^o Ia = I showing
that I is determined by cosp(/).

Proof of B. In this case it is enough to consider L*(R+). For a
closed ideal I in ISω(R+), let Ia be its closure in L2

a(R+). By the same
argument as in the proof of A we have / = f|^o Ia The correspond-
ing set Ja of Fourier-Laplace Transforms is a simply invariant subspace
of Hl(Sa) so is given by

(12) Ja = e-"GHl(Sa)

for some p e R+ and "inner" function G. By much the same argu-
ment as in the proof of Theorem A, if a belongs to a suitably chosen
sequence, G consists only of the Blaschke product for a half-plane
formed with the elements of cosp (I) in the half-plane Rl(z) > — a.
Also, by Theorem 5, the number p in (12) is given by

p = inf {aF: FeJa}

since e~pzG is the greatest common divisor of the inner functions in
the factorization of elements in Ja. But then, with the notation of
(3), p = α7. For certainly p ^ aτ since Ia ZD I; on the other hand, the
limit in L2

a(R+) of any sequence with convex support in [α7, oo) again
has convex support in [α7, oo)—hence p = aI. Thus any feL2

ω(R+)
which is zero a.e. outside [α7, oo) and whose Fourier-Laplace Trans-
form / is zero on cosp (I) (with appropriate multiplicities), belongs
to each Ia, hence to / = f|^o Ia* Thus / is determined by cosp (I)
together with the number α7.



634 JOHN E. GILBERT

REFERENCES

1. L. Ahlfors and M. Heins, Questions of regularity connected with the Phragmen-
Lindelδf principle, Ann. of Math. (2) 50 (1949), 341-346.
2. E. Beltrami and M. Wohlers, Distributions and the Boundary Values of Analytic
Functions, Academic Press, New York, 1966.
3. R. P. Boas, Entire Functions, Academic Press, New York, 1954.
4. M. Hasumi, Note on the n-dimensional tempered ultra-distributions, Tόhoku Math.
J. 13 (1961), 94-104.
5. K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs,
N. J., 1962.
6. P. Lax, Translation invariant subspaces, Acta Math. 101 (1959), 163-178.
7. B. Ja. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc. Trans,
of Math. Monographs, vol. 5, Providence, R. I., 1964.
8. B. Nyman, On the one-dimensional translation group and semi-group in certain
function spaces, Thesis, Uppsala, 1950.
9. L. Schwartz, Theorie des Distributions, vols. I, II, Hermann, Paris, 1957, 1959.
10. , Seminaire Schwartz, Paris, 1953-1954.
11. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Oxford Univ.
Press, Oxford, 1948.
12. Z. Zielezny, Hypoelliptic and entire elliptic convolution equations in subspaces of
the space of distributions (I), Studia Math. 28 (1967), 317-332.
13. , On the space of convolution operators in J^fl', Studia Math. 31 (1968),
111-124.

Received September 30, 1969, and in revised form April 25, 1970.




