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CONGRUENCE FORMULAS OBTAINED BY COUNTING
IRREDUCIBLES

MicHAEL L. FREDMAN

This paper shows how a class of congruence formulas
can be generated by generalizing the process of counting
irreducibles in polynomial rings. Among the specific appli-
cations of the methods in this paper are a solution to the
necklace problem, as well as an enumeration of the solutions
to certain Diophantine equations.

Let F denote the finite field with ¢ elements and let F'[x]
denote the polynomial ring over F. Let +(n) denote the number
of monic irreducible polynomials of degree n in F'[x]. It is known that

(1) %‘. u(n/d)q* = ny(n) when n=1,

where ¢t denotes the Mobius function. Since v is integer valued it
follows that

(2) 2, p(nfd)q* = 0mod n ,

whenever ¢ is the power of a prime. This paper shows that the
process of counting irreducible in polynomials rings generalizes, and
that this generalization leads to a generalized congruence formula.

Let G be any commutative multiplicative semigroup with cancel-
lation, with an identity element, 1, and with no other unit elements.
Suppose that all elements in G can be factored into irreducibles and
that the factorization is unique. The positive integers and the
monic polynomials in the above discussion provide examples of such
a structure. Now assume that G has a valuation function v with
the following properties:

(a) w is integer valued.

(b) wv(@) =0 and w(s) > 0 if s = 1.

(e) w(st) = v(s) + v(b).

(d) D(k) = eq o= 1 is finite. In other words v
assumes a particular value no more than a finite number of times.
The monic polynomials are an example of this kind of structure
where v(Q(x)) = the degree of . Throughout this paper we reserve
the use of the letter p to denote irreducibles. Now let

(€) V(1) = Xrcavm=n L.
In the case of the monic polynomials, D(n) = ¢" and + is given by
equation (1). In this paper we show that + is uniquely determined
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by D without regard to the specific structure G to which the func-
tions pertain as described by (d) and (e¢). A particular formula for ar-
riving at + given D is derived, and it is shown that given any integer
valued function D, the formula leads to an integer valued function ¥
which has the form ny(n) = 3, t(n/d)E(d) where E is determined
by D and is integer valued. Therefore, a congruence property
similar to (2) is established. It is shown that the existence of a
structure G which gives rise to D by formula (d) does not affect the
validity of the derived congruence property. For example, if D
assumes negative values it is obvious that the derived congruence
cannot be given a structural interpretation as described by (a)-(e).
Convolution products play a fundamental role throughout the
arguments.

1. Definitions and lemmas. In this section we develop the
definitions and lemmas which are used in this paper. Let G be a
structure with a valuation function as described in the introduction.
A complex valued function over G is called an arithmetical funection.
We define the Dirichlet product in the usual way. Given arithmetical
functions f and g, we define A by h(t) = X,,..—. f(r)9(s). We write
h = f*g and call h the Dirichlet product of f and g¢g. Since @G
satisfies (a)-(e), it is clear that the sum in the definition is finite.
We note that * is commutative and associative. Now let J be the
funection such that J(1) = 0 and J(s) =1 when s = 1. We define the
function L as follows:

(3) L(s) = (J — J*2 + J¥3 — J*4 + «+<)(s)

where J" denotes the m-fold Dirichlet convolution of J. For fixed
s, we note that (a)-(d) and the definition of J imply that the series
on the right side of equation (3) reduces to a finite sum. The
following lemma expresses L explicitly.

LeMMA A. L") =1/n when p s irreducible and n = 1.
L(s) = 0 ¢f s is not a positive power of an irreductble.

We do not prove Lemma A but remark that it can be proven
by noting that equation (8) can be regarded as a formal logarithmic
series, and by expressing J by using a device analogous to an Euler
product. For a particular case of the lemma, see [4].

Next, we define a function over the positive integers as follows:

Em) =n 3 L) -

v(8)=n
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Now letting v be defined as in (e), and using (a)-(d) and Lemma A
we have that

(4) Bn) = n 3, L(s) = 3 dv(d) -

v(s)=n

Hence, E(n) is integer valued and
(5) ny(n) = % t(n/d)E@) .

Now we introduce the Cauchy product. Given two complex
valued functions over the nonnegative integers, f and ¢, we define
the Cauchy product, & = fog in the usual way: i(n) = 3. ;. f(©)9(9).
Now let D be any function over the nonnegative integers such that
D@©0) =1. Let D(n) = D(n) when n =1 and D(0) = 0. We define a
new function log D as follows:

(6) log D(n) = (D — D¥2 + D*/3 — «++)(n)

where D’ denotes the j-fold Cauchy product of D. Since D(0) = 0,
for fixed » it is clear that the right side of equation (6) reduces to
a finite sum.

Let I be the function defined by I(0) =1 and I(n) = 0 when
n > 0. With respect to the Cauchy product, I acts as an identity
element, foI = Iof = f. Now given a function C such that C(0) =0,
we define a new function exp C as follows:

(7) exp C(n) = (I + C/1! + C*/2! 4+ «++)(n) .

Again we note that for fixed =» this definition reduces to a finite
sum. The properties of the exp and log operators are summarized
in the following lemmas.

LEMMA B. Let D, and D, be two functions with D,(0)= D,0)=1,
and C, and C, be functions with C,(0) = C,0) = 0. Then

(@) log (D,°D,) = log D, + log D,.

(b) exp(C, + C,) = (exp C))o(exp C,).

(C) exp (IOg Dl) = Dn IOg (eXp Cl) = Cu

LEMMA C. Let d be a positive integer and N be an integer
(positive or megative), and assume fy is defined as follows:

Nd/n if d|n

Ju(n) = { 0 if dim.

Then exp fy ts tnteger valued.
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We leave that proof of Lemma B as an exercise. Lemma C can
be proven as follows. Define j(n) and j~'(n) as below:

1if d| lifn=0
1
itm) = 0 if d)(n Jm) =4{-1lif n=4d
' " 0if m=x0o0rd.
It is easy to verify that j—'oj = I and that logj—' = f.,. Since
log I(n)=0 for all n, it follows from (a) of Lemma B that logj = f..
From (b) of Lemma B it follows that
I if N=0
exp fy = 14" if N>0
GHMiIf N<O.

Since I, j and j~* are integer valued, it follows that exp f is integer
valued, completing the proof.

The following lemma provides another expression for the log
operator.

LEMMA D. Let f be a function such that f(0) =1 and let f
denote the unique function such that f~of = I. Then

nlog f(n) = H%” 1f (@) f(9).

Proof. Let f=f—1 It is easy to verify that f'(n) =
I—-Ff+fF*—f*+ .-)(n), where for fixed n, the series reduces to
a finite sum. Hence,

S if@)f7(9) = nf(n) — af*(w)/2 + nf*n)/38 — -+ = nlog f(n) .

i+i=n

2, Theorems., The first theorem expresses FE(n), defined in
equation (4), in terms of the function D defined in the introduction.

THEOREM 1. Let G be a structure of the type described in the
introduction and let D(n) = D ca, vin=n 1l and E®) =1 D, ca, or=n L(8).
Then

(8) E(n)/n = log D(n) .

Assuming Theorem 1, equation (5) implies that

(9) wh(n) = 3, pnjd)d log D(d) = 3 1(n/d) E@) .
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Proof of Theorem 1. From the definition of L given by equation
(3)y Zsea,v(s)=n L(S) = Zigl (_1)i+1/’£ ZseG, v(8)=n Ji(s)° But Zv(s)=n Ji(s) =
Sityeti=s,ow=n J () =+ = J(t;) = (using the definition of J and properties
() and (c) of G) Xloit s svity=n, vitp>0, 156 1L = (using (d))

>, D(m) .-+ Dim;) = Di(n) .

Mmytreetmy=n
mE>0, 1sk<i

Hence by equation (6), E(n)/n = 3cq,vs=x L(s) = log D(n), and this
proves the theorem.

Theorem 1 provides a purely arithmetical link between the func-
tions D and . Hence, the relationship between D and + is in-
dependent of the particular structure to which they pertain. Now
E(n) is integer valued as shown by equation (4), and equation (9)
implies that

(10) 3. ¢tn/d) E(d) = 0mod n .

This suggests the following problem. What integer valued func-
tions D have the property that the function E defined by equation
(8) is integer valued and satisfies the congruence formula in (10)?
The following theorem gives the complete answer.

THEOREM 2. Let D be an integer wvalued function with D(1)=0
and let E(n) = nlog D(n). Then E(n) is integer valued and
S t(n/d)E(d) = 0 mod n.

Before proving Theorem 2 we return to our structural model of
the problem which suggests a method of proof. If seG and
v(s) = m, let us say that s has degree n. Then D(n) is the number
of elements in G of degree =, and v¥(n) is the number of those
which are irreducible. Now it is obvious that all elements of degree
1 are irreducible, and so D() = (1). When = > 1, +(n) is the
difference between D(n) and the number of elements of degree =
which are reducible. But the reducible elements can be factored
into irreducibles, each factor having lower degree than n. Now
given v, equations (4), (8), and Lemma B imply that if we let
E(m) = 3 4nd¥(d) and let E'(m) = E(m)/m, then D(m) = exp E'(m).
Now for n > 1, let ¥,(m) = ¥(m) when m < n and ¥,(m) = 0 when
m=mn. Let E,(m)=>,.d¥,(d), let E)(m)= E,(m)/m, and let
D,(m) = exp E,(m). If we consider the subset of G generated by
the irreducibles of degree < %, it follows that the number of
elements of degree m in this subset in D,(m). Hence, ¥(n) =
D(n) — D,(n). We prove Theorem 2 by letting +(n) be defined by
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equation (9), showing that +(n) = D(n) — D,(n) when = > 1, and
then showing that D,(r) is integer valued.

Proof of Theorem 2. Let 4 be given by equation (9). We
prove by induction on % that +(n) is integer valued. Equation (9)
then implies that E is integer valued.

From equation (6) we see that log D(1) = D(1), and from equa-
tion (9) it follows that (1) = D(1). Now for n > 1, define E,(m),
E)(m) and D,(m) as in the above discussion. Clearly E,(m) = E(m)
when m < n and E(n) — E,(n) = n¥(n). Hence, by equation (7)
D(n) — D,(n) = ¥(n). We complete the proof by showing that D,(m)
is integer valued for all m. When n = 2, E)(m) = ¥(1)/m. Since
(1) is an integer, Lemma C implies that D,(m) is integer valued.
Thus ¥(2) is an integer. Now for » > 2 assume that ¥(k) is integer
valued when & = n — 1 and that D,(m) is integer valued. By Lemma
B and the definition of D,, D, = D,cexp (E, — E}!). But

kvy(k)/m when k|m

E; — E| =
(m) m) 0 when kym since k =n — 1.

Hence, by Lemma C, exp (£, — E|) is integer valued and since D,
is integer valued, it follows that D, is integer valued. Therefore,
¥(n) is an integer. The theorem now follows by the principle of
induction.

By repeated application of Lemmas B and C in much the same
manner used to prove that D, is integer valued, we can prove the
following corollary.

COROI;LARY. Assume E(n) is integer valued and satisfies (10).
Let E'(n) = E(n)/n. Then exp E' is integer valued.

It is appropriate at this point to show that if v(n) is nonnega-
tive for all » then a structural interpretation of the type defined
in the introduction can be constructed. The nonnegative condition
on ¥ is obviously necessary for the existence of such a structure.

Now given r(n) = 0, we define a function v on a subset of the
rational primes as follows. Let #(p) =1 when p is any one of the
first ¥(1) primes. Let v(p) =2 when p is any one of the next (2)
primes. We continue in this manner defining v on a subset of the
primes (possibly the entire set of primes). We denote this subset
by Q. Next, we define v over the subset of positive integers
multiplicatively generated by @. v(1) = 0 and

(PP e D) = a,v(p) + o0 + a,v(D,)



CONGRUENCE FORMULAS OBTAINED BY COUNTING IRREDUCIBLES 619

if each p;e Q. It is clear that this subset of the positive integers
along with the function v is the desired structure.

By making somewhat more general the structural axioms stated
in the introduction, we can create a structural model for the cases
where v assumes negative values. We state without proof the
following theorem.

THEOREM 3. Let G be a commutative multiplicative semi-group
with cancellation, with an tdentity element 1, with no other wunit
elements, and which has unique factorization. Let v be a valuation
Junction over G such that

(a) v s integer valued.

(b) »(1) =0 and v(s) > 0 when s = 1.

(e) w(st) = v(s) + v(t).

) Slieq vior=n 1 ts finite for all n.

Assume there exists a function N over G such that

(e) 1) =1.

(f) If p is irreducible, Mp) =1 or AN(p) = —1.

(g) If p is irreducible and MNp) =1, then Np") =1 for all
n>1. If Mp) = —1, then Mp™) =0 for all n > 1.

(h) If p, ---, p, are all distinct irreducibles, then M(p{ «+« pir) =
MDH) -+ e Mpir).  Let D(n)=3scq, vim=n M3) and ¥(n)=3peq, vim=n MD).
Then myr(n) = 3. p(n/d)d log D(d).

Now given ¥ we define as before a function v on a subset @ of
the rational primes, but instead of defining wv(p) =n for +¥(n)
primes, we define v(p) = n for |¥(n)| primes. Then using (b) and
(c) we induce v on the subset G of positive integers multiplicatively
generated by the primes in Q. Next, if ¥(n) <0 and v(p) = =,
define N\(p) = —1, and if Y(m) >0 and v(p) = m, define \(p) = 1.
Then using (e), (f), (g) and (h), we induce A on the remaining
numbers in G. It is easy to verify that G, » and M satisfy the
structural properties of Theorem 3 with ¥(n) = 3,,=n MD).

It is convenient to recast Theorem 2 and its corollary in the
language of power series. First, we observe that the ring of com-
plex valued functions over the nonnegative integers with the opera-
tions of addition and the Cauchy product is isomorphic to the ring
of power series with complex coefficients under the mapping

fin) — Fl&) = X fma" .

Next we observe that the operator, df(n) = nf(n) corresponds to
2(0/0x)F'(x) under the above isomorphism. ((0/0x) is the formal
derivative).
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THEOREM 4. Let 2 (@) =1+ 3,2 D(n)a™ where D(n) is integer
valued. Let & (x) = x(0/0x) =2 (x)] Z(x) = Dusy E(n)x". Then E(n) is
integer valued and >4, p(n/d)E(d) = 0 mod n. Conversely, assume
E is integer valued and satisfies the above congruence property.
Let &(x) = s E(n)x™. Then there exists a series

(@) =1+ >, D)z,

where D(n) is integer valued, such that & (x) = x(0/0x) = (v)/ =D ().

Proof. Lemma D implies that » log D(n) — x(0/0x) = (x)/ = (x).
The theorem now follows from Theorem 2 and its corollary.

Next, we consider some consequences of the above theorems.

THEOREM 5. Assume E(n) is an integer valued function and
satisfies (10). For any integer k, let E.n) = k*E(n). Then E,
satisfies (10).

Proof. Using the notation in Theorem 4, let = (x) be the power
series such that 2(0/0x) =z (x)/ =z (x) = & (x). Let 2,(x) = = (kx). The
theorem follows when we observe that x(0/0x) = .(v)/ Z(x) = & (k).

THEOREM 6. Assume k(n) and E(n) are integer valued functions
and that E(n) satisfies (10). Let F(n) = X, k(7)) E(n/j)j. Then
F' satisfies (10).

Proof. Using the notation in Theorems 4 and 5, let =2, (x) =
2.2 (k(5)x?). We complete the proof by observing that

x%.,@l(x)/gl(x) = %jg(k(]’)xi) ___g: Fln)a™ .

Now we show an example of the use of these theorems. Let
k(j) = 77 and E(j) =1 for all j. FE satisfies (10), and therefore, by
Theorem 6, F(n) = 0,.,(n) = X4, d"* satisfies (10). Finally, by
Theorem 5, Fi(n) = k"0,.,(n) satisfies (10).

3. Extensions. The power series interpretation of Theorem 2
suggests the possibility of similar theorems for power series in
several indeterminates. The structural interpretation in Theorem 3
would be modified to allow for vector valued valuation functions and
the Cauchy product would be modified to apply to functions of
several variables. For example, let G be the set of normalized
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polynomials with two indeterminates over a finite field and let
Q(x, y)eG. Then define »(Q(x, y)) = (m, n) where m = the degree
of @ in x and n = the degree of @ in y. We state without proof
the following generalization of Theorem 4.

THEOREM 7. Let

g(xl, cee, xN) =1 + Z D(n” N 'nN)x;"l cee x;N

nyteccFny>0

where D 1s integer valued. Let

g/‘(xl, ces, xN) = (mli 4 oeee 4 xNi_)g(mU oo, xN)/g(xl, cen, xN)
0x, oxy
= >, By cooymy)aitces oy
nyteeenpy>0

Then E is integer valued and

ﬂ(d)E(nl/d! ** n]v/d) % Omod n, 4 e 4 Ny «

diged(ny,--+,n )

Conversely, assume E is integer wvalued and satisfies the above con-
gruence property. Let.

g(xu oo, Q;N) — Z E(n“ oo, nN)xlnl cee RN,
n1+---+nN>0

Then there exists a series

g(xu”’ny):1+ Zl D(nu"'ynz\f)x?l"'xﬁ]\ry

nytect+ny>0

where D 1s integer valued, such that

g(xn Sty xN) = <wxi oo + xN_a—>g(mn ctty xN)/g(xU Ty xN) .
ox, 0%

As an example of this theorem, when D is a finite polynomial
or the reciprocal of a finite polynomial, E is an N dimensional array
which satisfies linear recurrence properties. Specifically, if we let
gz, 0,) =1 — x, —x, we obtain the congruence formula

m—+ n
d
> ud) =0modm + n
i m
d

where <f£> denotes the binomial coefficient.

4. Some applications. We conclude this paper with some
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applications of these theorems to particular semigroups. As a
consequence of the first application, we obtain some formulas regard-
ing the number of solutions to certain Diophantine equations.

Let V and W be vector spaces over the rationals with bases
Vy ooy Uy and w,, -+, w, respectively. Let M be a linear map from
V into W with the following properties: M: v, — 37, a;;w; 1<1<m
where all a;; are nonnegative integers and M(v;) = 0 for all s.

Let G={3\~,bv;]b; are nonnegative integers}. With the opera-
tion of addition, G becomes a semigroup. Using multiplicative
terminology, G has unique factorization, and the irreducibles in G are
Vy, ++e, UV, The map M serves as a vector valued valuation function
over G. We can now apply our theorems (generalized where appro-
priate) to G.

Given w e W, we define D(®) =3, c, 9= L @30Ad ¥ (®) =, c6, wim=o 1.
Since we know the irreducibles in G, we can easily determine .
Now let g = >, ¢, Then M(g) = >3, OOn, cias)w;.  Hence, if
@ = Y7, d;w; then D(w) = the number of solutions (¢, +--,¢,) to
the system

Z_:,lciaij:dj 1£j—§n7

where the ¢; are nonnegative integers. Using our theorems, we
can express D in terms of v. Let E'(w) = Xiu,,....qy ¥(@/d)/d and
let &'(z, ¢, 2,) = Dgy+eerayoo B(dw, + <+ + d,w,)z{1 + -« zin, Then
DRy vo0y2,) =1+ Sy D dw, + «+- + dﬂw”)z’fl cos gin
dyte-otdy,>0

= exXp (%’(zl, c ey zn)) .

As a consequence of the next application, we obtain an enume-
ration of irreducible polynomials over the field F' of order 2 that
equal their own reversals.

Let F'[x] denote the ring of binary polynomials and let p(z) € F'[x].
If p(x) is of degree m, we define the reversal 7(z) of p(x) with the
equation 7(x) = xz"p(1/x), and P(x)e Flx]. It is easy to verify that
p(®)g(x) = p(x)g(x). If the constant term of p(x) is nonzero, then
deg p(x) = deg p(x) and p(x) = p(x). We say that p(x) is self-rever-
sible if p(x) = p(x). If g(x) is a polynomial with a nonzero constant
term, then gq(x)g(x) is self-reversible. Finally, if p(x) and gq(x) are
self-reversible, then p(x)q(x) is self-reversible; if »(zx) | p(x), then
7(x) | p(x); and if g(x) | p(x), then p(x)/g(x) is self-reversible.

Now let G denote the subset of F'[x] consisting of all self-rever-
sible polynomials. From the above we see that G is a semigroup.
Now we show that factorization is unique within G. To distinguish
between irreducibles in F[x] and irreducibles in G (which may not
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be irreducible as polynomials in F[x]), we refer to irreducibles as
F-irreducibles or G-irreducibles accordingly. Let ¢(x) be G-irreducible
and suppose in F'{x] we have p(x)|qg(x) where p(x) is F-irreducible.
Then ()| q(x). If D(x) = p(z) then px)e G and p(z)|¢(x) in G.
Hence g¢(x) = p(x) since g¢(x) is G-irreducible. If p(x) # p(x), then
since p(x) is F-irreducible, p(x)p(x)|q(x) in F[x]. But »p@)p(x)e G
and therefore p(x)p(x)|q(x) in G. Hence, ¢(x) = p(x)p(x). Thus,
G-irreducibles are characterized as being either self-reversible F-
irreducible polynomials, or of the form p(x)p(x) where »(x) is an
F-irreducible and p(x) # p(x). From this it is easy to show that
factorization in G is unique, and we can apply our theorems to G.
First, it is easy to see that

n|
D)= 3 1= {2 2 n even
el 20012 p odd

and therefore, that = (z) = 1+ >... D(n)z" = (1 +2)/(1 — 2z?). Using

our previous notation, it follows that E(n) = 1 n od
2040 — 1 n even .

Now
Y = S 1= (Un) X md)End) .

p(z)eG
deg p=n
p G-irreducible

Let ¥,(1n) = 3,0 e rlel, dog p=n, p Feirreducivie Lo~ W€ know that
¥i(n) = (1/n) 3, p@)2~* . It follows that
an

1 when n =1, 2
11) J(n) = {0 when n > 1 and n odd
Y (n/2) when » is even and >2.

Using this information, we can derive a formula for c(n) = the
number of irreducible self-reversible polynomials in F'[z]. Clearly
7(n) < v¥(n). Hence, 7(1) =1 and 7(n) = 0 when n is odd and > 1.
Now using our characterization of G-irreducibles, we have that
P¥(2n) = (1/2)(v,(n) — t(n)) + ©(2n) when n > 1. (The argument fails
when 7 =1 gince z is irreducible but has a zero constant term).
Now by (11), ¥(2n) = ¥(n), and therefore,

7(2n) = (1/2)(v(n) + t(n)) when n > 1
7(2n + 1) =0 when n =1
=72 =1.

Using these formulas, z can be determined recursively for all =.
The problem of enumerating self-reversible irreducibles is sometimes
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referred to as the necklace problem. In a similar manner we can
solve the problem of enumerating irreducibles p(x) such that p(x) =
p(x + 1). This time we have

7(n) = 0 n odd
T(n) = 1/2)(¥,(n/2) + T(n/2)) n even .
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