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THE LEBESGUE DECOMPOSITION, RADON-NIKODYM
DERIVATIVE, CONDITIONAL EXPECTATION, AND
MARTINGALE CONVERGENCE FOR
LATTICES OF SETS

RicHARD B. DARST

In the setting of additive set functions defined cn lattices
of sets, a Lebesgue decomposition and a Radon-Nikodym de-
rivative are constructed and characterized, In the appropriate
case (L), the Radon-Nikodym derivative is shown to be the
conditional expectation, Finally, a martingale convergence
theorem for Radon-Nikodym derivatives is obtained.

The origin of this paper was an interesting colloquium lecture
given by H. D. Brunk at the University of California, Riverside, in
December, 1968. Brunk’s lecture dealt with a Radon-Nikodym de-
rivative for c-additive set functions defined on a o-lattice of sets and
applications of this Radon-Nikodym derivative to probability. An
excellent interpretation of the role of o-lattices in probability theory
can be found in the papers of H. D. Brunk (c.f. [1], where additional
references can be found). The purpose of this paper is to extend the
underlying mathematical theory to encompass the case of additive set
functions defined on lattices of sets.

Perhaps we should remind the reader that both the closed subsets
of a metric space, M, and the open subsets of M comprise lattices of
subsets of M, so many familiar families of functions are instances of
the setting with which this paper deals. For example, the bounded
upper semi-continuous functions on the interval I = [0,1] are the
uniform limits of simple (see paragraph two of § 3) functions which
are measurable with respect to the lattice of closed subsets of I. If
M is a Borel subset of a separable complete metric space, then the
analytic subsets of M comprise an important sigma lattice of subsets
of M.

Let ¥ be an algebra of subsets of a nonempty set 2 (i.e., Qe
and if each of E and F is an element of 2, then each of F N F and
E°= Q — FE is an element of 20).

Let _# be a lattice of subsets of 9 (i.e., .#Z is a subset of %
such that _# contains each of the empty set # and 2 and, moreover,
E, Fe_ imply EUF, ENFe _Z).

Let & = {AnN B°; A, Be _#}, and denote by .o the set of finite
disjoint unions of elements of .

Let us examine .&” more closely. A finite intersection of ele-
ments of .97 is an element of .o, Moreover, if E; = A; N B where
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A; and B;e _#, then Ef = A; U (4;:N B;) e &; thus,
E° = (U;E) = NEfe 7,

and .7 is closed under complementation. Therefore, . is the al-
gebra of subsets of 2 that is generated by _#

Notice that if each of F and F is an element of 2 (or .%7), then
EU Fe¥U (or &); and if each of £ and F is an element of .#, then
ENFeZ.

Let each of N and ¢ be a nonnegative additive set function de-
fined on #.

It seems appropriate to consider briefly the implications of the
assumption that, say, A be additive on #. If each of A and B is
an element of _#, then

MA U B) = M4) + MA°N B),

(a) MAUB) + MAN B) = MA4) + MB), and
() M@)=0.
Results of B. J. Pettis [6] assert that a real valued function, A,
defined on a lattice, _~#, has an additive extension to the algebra,
.7, generated by .~ if, and only if, N satisfies (a) for all 4, Be .7
and (b). Moreover, the following elementary example illustrates the
fact that the conditions
@) MAUB)=MA) +\B), A, Be _#,ANB= g, and
(b) M@)=0
do not imply (a).
Example. 2 = {1, 2, 3},
A = {@r {1}’ {1: 2}! {1: 3}7 ‘Q}:
M@) = M{1}) = 0,
rM{1, 20 = M({1, 8}) =1, and
MR) = 3.
Recall that the norm, ||@||, of a bounded, real valued, additive
set function, @, defined on an algebra, say, .7 of subsets of 2
satisfies

ol = sup (12(5)| + [9(@ - B))
= sup P(F) — inf ¢(F)
Eew Feor
= sup {i |P(E)|; {E;}r, a partition of 2, F,e '} .

Moreover, = 0 = 9(A) < @(B), Ac B. A definition of the integral
of a simple function can be gleaned from (13).

The primary purposes of this paper are fourfold. In § 2, we will
decompose M into a part s which is singular with respect to ¢ and a
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part ¢ which is absolutely continuous with respect to x. Section 3
is devoted to constructing and characterizing the Radon-Nikodym
derivative ¥ = {f,} of A with respect to ¢#. In §4, it is shown that
if \ is the restriction to .# of an element of L,(2, %, ¢), then F is
the conditional expectation of A. Finally, in §5 we shall establish an
appropriate martingale convergence theorem.

2. The Lebesgue decomposition for lattices of sets. Let us
begin this section by reviewing a few points concerning Lebesgue-
Radon-Nikodym theorems.

When it is appropriate to apply a Lebesgue decomposition theorem
to an object w with respect to an object v, w is split, uniquely, into
an absolutely continuous part u, and a singular part #,. The parts u,
and u, exhibit antipodal behavior with respect to »; qualitatively, the
local behavior of %, depends on the local behavior of v while u, acts
separately from v. Then one seeks a Radon-Nikodym theorem which
applies to u,: one seeks to represent u, in terms of v. A Lebesgue-
Radon-Nikodym theorem asserts not only that « splits but also that
u, can be represented in an appropriate fashion.

In [4] S. Johansen gives a definition and construction of a Radon-
Nikodym derivative of a o-additive set function with respect to a
finite o-additive measure on a o-lattice.

Johansen’s results are based on the fact that the Hahn decom-
position remains valid in his setting. However, in the case of alge-
bras of sets it is possible to have a bounded and finitely additive set
function on a o-algebra for which no Hahn decomposition exists, and
it is possible to have a bounded og-additive set function on an algebra
of sets for which no Hahn decomposition exists. Nevertheless, in
dealing with additive set functions on algebras of sets, approxima-
tions to Hahn decompositions (e-decompositions) exist and can be used
to obtain a Lebesgue-Radon-Nikodym theorem (cf. [2]).

In this section we shall show that the e-decomposition approach
used in [2] carries over to lattices of sets and permits us to obtain
a Lebesgue decomposition. However, in §3, by a simplé example,
we illustrate the fact that it is impossible to establish a general
Radon-Nikodym theorem for lattices of sets. Our example shows that
even in the o-additive, o-algebra setting of Johansen’s paper the
Radon-Nikodym derivative may not represent the absolutely continu-
ous part of . Nevertheless, in §3 we shall refine the elementary
construction of this section and obtain a Radon-Nikodym derivative
for lattices of sets. In §4 we show that the Radon-Nikodym deriva-
tive of M\ represents the best L, approximation to A by _Z-measurable
functions.

Definition (e-decomposition). Suppose that v is a finitely additive
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set function on & which is bounded above. Let ¢ > 0. Let Ke
. Let Ae # such that v(AN K) > supze . v(EN K) —e. Then
for each Be 7, VKN ANB)=vKNA) —vKNANB)> —¢ and
VKNA°NB)=v(KN[AUB]) —v(KNA) <e. We shall call KN 4
an e-positive set for v in K, KN A° an e-negative set for v in K, and
(KN A, KN A°) an e-decomposition for v in K.

In order to obtain a Lebesgue decomposition of A with respect
to ¢ by splitting off the singular part of A, we introduce the follow-
ing simple construction.

For each positive integer =, let ¢, = (64)~"+" and let ([%], [#]9)
be an ¢,-decomposition for » — ny in Q.

Let s, be the restriction of N to [n] (i.e., s.(E)= NEN [n]),
Ee 7).

We shall establish two lemmas to show that {s,} is a Cauchy
sequence and, hence, {s,} converges to a nonnegative bounded additive
function s = A, on . The restrictions ¢, = » — s, then converge to
a nonnegative bounded additive function ¢ = \,; s and ¢ will be shown
to comprise that Lebesgue decomposition of A with respect to (.

LEMMA 1. Let m > n, let M denote [m] and let N denote [n].
Then M(M N N°)— 0.

Proof. From the construction and the definitions follow
N—mpp)(MNN°) > —e, and W—nu)(MNN°) <e,.
Hence
mpu(M N N°) — e, <MMNN®) <np(MN N°) +¢,,
which implies
tMn N < (e, +&)(m—mn)<e¢, +e,,
and, in turn,
MMN N <nle, +¢&,) +e¢e,=mne, +(n+ 1, .
Next, we will uée Lemma 1 and the following pertinent remarks

to show that AM(M°N N)— 0.
Because M is nonnegative and additive, it follows that

MG N H) < MH)

if G and He &,
If {K;} is a sequence of elements of _# and p is a positive inte-
ger, then
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K, = (K,NK:) UK, N K, N KL) U= u([ n x|nk)ur,,
p=1>1

where
Tp - n Ki .
1=P

Moreover,
K;uN K, = (K3 N[K,NK; L) U
(Ko N Ko N [K, N EKG]) Use s U (KGN TY)
and
N T, =K, NT)ynNnT,=T;,.,0T,.

LEMMA 2. MM°N N)— 0.

Proof. Suppose, on the contrary, that there exists ¢ > 0 and an
increasing sequence {n;} of positive integers such that 5n.e, < ¢ and
MK:; N Ky = &, where K; = [nr;]. Then

MT500 Ty = MEGn N Ky) — MEa N [K, N KRL]) — -
= ME; N Ky) = 3 MK, N KD)
> ME; N K) = 5 [wes., + (4 e ]
> MK N K, —€/2.
Moreover, for each positive integer p,

X(T1) = %)‘J(Ti N Tic-t—l) =+ )"(Tp+1)
= 2IMTnN Tey) -

TSP
Hence, choosing k large and 2k < p + 1, the following contradiction
is obtained, and Lemma 2 is thereby established.
MTy) = é_:‘c)\’(TZi—l N Ty)
> ;: (MK N K3) — €/2)

> ke/2
> sup M(E) .
Ee#

From MM N N°)— 0, MM°N N)— 0, and the monotonicity of A,
it follows that {s,} converges uniformly in % on & to a function s
on & such that

(1) s is a nonnegative additive function on &,
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(2) if 0 >0, then there exists Ee_# such that y(E) < 6 and
s(2 — E) = s(E°) = supy.~s(E°N F) <. Moreover, t, = \ — s, con-
verges uniformly to a function ¢ on . such that

(3) ¢t is a nonnegative additive set function on &~

(4) N=s+t

(5) if € > 0, then there exists 6 > 0 such that if Fe_»# and
H(E) < 0, then ¢(F) < e.

Proof of (5). Choose n such that supz.. |[(t — t.)(E)| < ¢/4 and
¢, < ¢/4. Then choose 0 = ¢/2n. If Ee _» and p(E) < 8, then

HE) < e/d + t,(E) =¢e/d+ MEN[n]) < e/d + np(EN [n]°)
+e,<é€2+nuE) <e.

Now that we have established the existence of a Lebesgue de-
composition, it remains to establish uniqueness.

Proof of uniqueness. Suppose that y and z are bounded, additive
functions on & such that

(i) M=y +2

(ii) if 0 > 0, then there exists Ee .~ such that #(E) < J and

SUPpe = ly(Ec N B)| < 3, and
(iii) if &> 0, then there exists 6 > 0 such that if Ec _# and

HME) < 0, then |2(E)| < e.

Look at s —y=2—1t. Let ¢ >0. Let ¢ be a positive number
less than ¢ such that if Fe_»# and p(E) < 20 then ¢(F) < ¢ and
|2(E)| < e. Let E and Fe_« such that u(F) < 0, s(E°) <9, u(F) <
0, and supz.- |Y(F°NB)|<0d. Let K=FEUF. Then pK) < 29,
s(K°) < 0, and

sup [y(K°N B)| = sup y(F° N E*N B) = sup|y(F N A)|<9.

Let Ae _#. Then

(6 —»A|I=]—9ANK)+ (z—t)(ANK)|
<s(ANK)+ |yANK)| + [2(ANK)| + (AN K)
< 4e .

Recall that if w is an additive function on &, then A, Be # imply
w(AN B°) = w(A) — w(AN B) and, hence,

sup |w(C)| = 2sup |0(C)] .
Cces Cent
Thus, sup..- |(s — ¥)(C)| < 8¢ which implies that s = y and ¢ = z.

3. The Radon-Nikodym derivative. In this section, we shall
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construct a Radon-Nikodym derivative of A with respect to ¢, In
order to describe what we shall construct, it is necessary to introduce
the following notation.

A (real valued) function f on 2 is said to be _#-measurable if
(f > r) = {x; flx) > r} e .# whenever r ¢ R, the set of real numbers.
If fis a _#-measurable function on 2 and the range of f is a finite
subset of R, then f is said to be a simple _#-measurable function.

Suppose that &7 is an algebra of subsets of 2, and that o is a non-
negative additive set function on &2 Let L,(2, . p), »p =1, denote
the space of functions f on 2 such that if ¢ > 0, then there exists an
Smeasurable function g and an .“%“measurable function % such that

(1) [lordo < o,

(ii) |f—gl=h, and

(i) S]h\”dp <.
The spaces L,(2, & o) are not, in general, complete unless & is a
o-algebra of subsets of 2 and p is countably additive on &% The
completions V,(2, . o) of L, (2, ., p) are spaces of additive set func-

tions on .2 These additive set functions can be identified with sequ-
ences {g,} of simple .““measurable functions such that

(i) |lg.i7dp < oo and

(i) (iga = gulrap—0,
and we shall often identify the elements of the V,-spaces that we
will encounter with appropriate Cauchy sequences of simple functions.
Primary sources of information about such L, and V, spaces are [3],
[4], and [7].

If # were an algebra of subsets of 2, then it would follow
from [2] that there would exist a sequence {f,} of simple _/Z‘measura-
ble functions such that

e~ Gl o,

The following example shows that even if _#Z is a o-lattice of sub-
sets of 2 and each of » and p is c-additive on &, then it may not
be possible to uniformly approximate ¢ by integrals of simple _Z-
measurable functions. ’

ExaMPLE. Let @ be the union of two one element sets a and b.
Let .# be comprised of ¢, a, and 2. Then _#Z° = {®, b, 2} and
F ={p,a,b,2}. Let N and p be defined on .& by Me) = p(®) = 0,
Ma) =2, Mb) =4, M2) = 6, pla) = p(b) =1, p(R) = 2. A function f
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on 2 is _#-measurable if, and only if, f(a) = f(b). Hence if f is a
_#-measurable function on 2, and F"is defined on & by

FE) = | sip,

then F(a) = F(b). Thus, \ cannot be uniformly approximated by in-
tegrating _/-measurable functions with respect to x. But, ) is
absolutely continuous with respect to p.

The Radon-Nikodym derivative of A with respect to ¢ will be a
L,-Cauchy sequence {f,} of simple _#-measurable functions with pro-
perties that will be discussed. The Radon-Nikodym derivative F =
{f.} of X\ is then absolutely continuous with respect to g, and it is
reasonable to ask whether F' is the Radon-Nikodym derivative of the
absolutely continuous part ¢ of A. The answer to this latter question
is yes (see (14) and the definition of t).

The construction of the sequence {f,} is fairly straightforward;
but, a direct proof that it is a Cauchy sequence appears to involve
a dreadful computation which we shall avoid by complicated but
conceptually reasonable means.

To simplify the notation, we often denote (z/y)¢t by x/yp when
each of ¢ and y is a real number. For example, ng = n2"/2".

CONSTRUCTION. Let n be a positive integer. We wish to refine
the construction that we used to establish a Lebesgue decomposition.
Recall that ¢, = (64)~*" and that N,.. = N = [n] is an ¢,-positive set
for W — np) = (W — n2"/2") in 2. For n2" > i =1, let N;e _# such
that N;N (Naersssi N2) 1s an g,-positive set for (v — ¢/2") in N,2nsivi Noe
Notice that we can assume that

® = Ny C NypnC s« CN;,C+--CcNCN,=Q2;

let us call such a sequence an ¢,-decomposition sequence for =.

It will greatly simplify the typography to introduce the follow-
ing notation.

(6) Let Li:N€+lmNi-

The following are immediate consequences of the construction.

(7) (= /2"e)(L; N BY) > —e,, Be #,
(8) —e, + i/2* (L 0 BY) < ML: N B, Be 7,
(9) ()\4—%/2%[1>(N200A)<8n, AG./Z/,

(10) MNFNA) <i2"u(NfNA) + &, , Ae 7.
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The following consequence of (9) will be applied several times in
the paper; since (A — ¢/2"t)(N¢, N[N, N A]) = (v — 3/2"u)(L; N A),

Let f, be the simple _#-measurable function defined by
(12) So=27" 3 Av, = 2. 1/2");,, where a, = n2".

Let F, be the nonnegative additive function defined by

FE) = | fap
S i/2ru(L; N E)

1SiSa,

— 2 S N, NE).

1svsa,

13)

Recall that (v — np)(IN N A°) > —e,, Ae _#, and that
N —mpu(MnN A) > —e,, Ae 7.

Hence np(NN M) < MNN M) + ¢,. Moreover, mpu(M) < MM) + &,
which implies that ny(M) < n/m(\(M) + ¢,). Thus,

np(N) = n((N N M*) + (N N M))
<MNN M) + e, +n/mM2) +1).

Hence, choosing m to be large and applying Lemma 2, we obtain
(14) np(N) —0 .

Recall that ¢,(E) = ME N N°) = Sgica, ML; N E); hence
(15) t(E) — F,(E)= OS% N =2y (L;NE) —nu(NNE) .

Then (7) implies

(16) t.(B°) — F.(B°) > —a,s, —n{NNE), Be 7.
Moreover, applying (11) to (15) yields

17) t.(A) — F(4) < a.c, +27u(N°NA4), Ae 7.

We wish to show that F, converges uniformly to a nonnegative
additive function F' on &#. We know from (14), (16), and (17) that
F, converges to ¢ uniformly on .2 N _#°. Hence if _#Z were an
algebra of subsets of 2, then it would follow that F,—¢ on .2 =
. In general, we know that F, need not converge to t. We shall
establish the uniform convergence of F, on .&# by showing that F,
is almost increasing on &#. (What we mean by the term “almost
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increasing” will become clear in due course.)

Let m >mn, and letp =M, ,,CcM=M, C---CMCM =2 be
an ¢,-decomposition sequence for m.

Since N; = Uisjsa, Lj, it follows from (8) that for Ae _#;

—a,6, + 9/2"N: N A) = —a,e, + 3, i/2°(L; N AY)

< a6+ i:z:j/zwwj n 49
< isé%’“(Lv’—”—“;) .
Hence,
(18) 12"u(N; N A°) < a,&, + MN; N 4, Ae 7.

If A° = M;, then (10) implies that MN; N M;) < e, + 7/2"p(N; N M;).
Thus,
(19) @/2" — g2 p(N; 0 M5) < a,8, + €p »

Let p = 2™, and let K; = M;,, j =1, -+, m2". Then (see (13))

F.(E) =273 p(M:NE) =27"[(e(M, N E) + -+ + (M, N E))

1Sy,
+ (UM N E) + =oo + (M, N E)) + ++-]
2K NE)+ WK, NE)+ <+ + t(K,m N E)]
(recall that K, D K,D --+).
In 19), let j = (¢ — 1)p. Then (¢/2" — j/2™)) = 2", and (19) be-
comes

(20) YN N KL < 2Ya,e, + €,) .
From (13) it follows that
F(E) =2 g:ny(Ni NnE)
=2 i;‘” [t(N;N K N E) + (N:; N K, N E)]
S22 NN K, NE)+2" 3, WK, NE).

1=ay iLa,
Hence using (20) and the paragraph between (19) and (20), we obtain

F.(E) <o, + F,(E), where

21
@) 0, = 27"a,2"a,€, + &,) = a,(a,& + €,) .

Moreover, an inspection of the argument which produced (21) shows

that (21) is valid if {E;} is a finite collection of pairwise disjoint

elements of &, E = U, E;, and F,(E) is defined to be 3; F,.(E)).
Inequality (21) says that F, is almost increasing. Since the F,’s
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are nonnegative and lim sup, F,(E) < lim, F,(2) = t(2), the F,’s are
uniformly bounded. Hence F(E) = lim, F,(F) exists for each finite
union K of pairwise disjoint elements of #.

We have extended the F,’s to the set .o of finite disjoint
unions of elements of % . Recall that .o is the algebra of subjects
of 2 which is generated by .#Z or &, and a nonnegative additive
function on &% has a unique additive extension to .o, Moreover,
we have shown that the extensions converge (almost increasingly)
pointwise on % to a nonnegative additive function F.

Because the F,’s are almost increasing to F on &% and . is
an algebra of subsets of 2, it is easy to see that the F,’s coverge
uniformly to F on .o But, & < .%, and the sequence {F,} con-
verges to F in L,-norm.

In summary, the sequence {f,} is a Cauchy sequence in L,(2, .27, t)
and the integrals F, of f, converge to F uniformly.

By the Radon-Nikodym derivative of X\ with respect to p, we
shall mean the object {f,} = F.

We shall conclude this section with a characterization of the
Radon-Nikodym {f,} that is analogous to that given by S. Johansen
([4, Th. 4]) in the case where .# is a o-lattice in 2 and each of A
and g is countably additive on #. From (10):

MN:N B) < t/2"u(Nf N B) + &, , Be #,
and (18):
MATN Ny > i/2"u(A° N N,;) — a.8, , Ae #,

we obtain the following proposition which will be shown to charac-
terize the Radon-Nikodym derivative.

Let M > 0 and ¢ > 0. Then there exists a posi-
(22) tive integer k such that if » >k, a,bec R, b < M,
and A, Be _«, then

(1) MasdlnA4) <bu(lf. =b]NA) +e¢ and
(i) MBN[fi>a]) > ap(B° N [f, > a]) — e

THEOREM (characterization of the Radon-Nikodym derivative).
Suppose that {g.} is a sequence of simple _Z-~measurable functions
such that {g,} ts an L,-Cauchy sequence (i.e., Sglgm — 0O, ld;e—»O). If
{9.} can play the role of {f.} in (22), then {g.} = {f.}.

Proof. Suppose that {g,} can play the role of {f,} in (22). Let
0> 0. Let ¢ be a positive number less than one; ¢ will be specified

later. Notice that for sufficiently large =, (22-(ii)) implies the in-
equality p([f, > a]) < (¢ + M®D))/a for f, and the analogous inequality
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for g,. Suppose that @ = (¢ + 1)6 and b = ¢0. Then for sufficiently
large =, ap((f, £0IN[g.>al) —e <b([fo=b]IN[g.>a]) +¢& or
(o =010 [g, > a]) < 2¢/9; symmetrically, p([g, < b] N [f.> a]) < 2¢/d.
Choose a positive integer m such that (1 + MQ))/md < /2. Then, using
consecutive terms of the sequence 0 < 6 < 26 < -+ < mod for b and a,
we obtain ([ f, — 9.] > 20) < (1 + MR))/md + 2m(2¢/6) which can be
made < ¢ by choosing ¢ to be sufficiently small. Hence the sequence
{f, — 9.} converges to zero in p-measure. However, the sequence
{f. — 9.} is an element of V (2, &7, ¢) and, hence, the integrals

[ = g

define a weakly convergent sequence of bounded and finitely additive
set functions on & It then follows from the proof of Theorem 2.1

in [2] that L] £, — g.ldgt— 0 and, hence, {£.} = {g.}.

4. Conditional expectation. Suppose that g is a nonnegative
additive set function on 9 and that we have been looking at its re-
strictions to _#, &, and 9%

We have already remarked that the completions V, of L, =
L,(2, %, 1) are spaces of additive set functions on ¥ and that the
Radon-Nikodym derivative F' = {f,} of » with respect to x is an ele-
ment of V,(2, .o, ¢) which extends to V.

Notice that since p#{Q) < o, V,C V..

Suppose that A is the restriction to & of an element H = {k,}

of V, (i.e., H(E) = liin SEhnd/J>. Then the following theorem pro-

vides a rather satisfying extension of results of H. D. Brunk and
others (cf. [1], [4], the references in [1] and [4], -++). Among other
things, our theorem characterizes F' as the best V, approximation to
H that can be obtained via a L-Cauchy sequence of simple _z-
measurable functions.

THEOREM.

(i) FeV,

(ii) SHKdy < SFK dp, K = {K,} _#measurable, Ke V.,

(iif) SHKd;z > SFK@, — (k) 2 *-measurable, K¢ V,,
Sde#,

(iv) SHF dp =
|

vy (&= Fyap < S(H — Kydp, K = {k,} A-measurable, K e
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Moreover, the conditions of the theorem characterize F' among the
L,-Cauchy sequences of simple _Z-measurable functions.

Proof of (i). In order to establish (i), it suffices to show that
| o = Futdp—0

because then there exists G e V,(2, o7, ¢) such that G = {f,} and

WF=GlL=|[F—F|.+||F.— Gl =||F
— Fll + (@) F, — Gl. .
We can assume, without loss of generality, that p(2) = 1. We shall

first show that {f,} is bounded in L,. To this end, let pc V, be de-
fined by

o(E) = lim S dp
n E

and let {u,} be the Radon-Nikodym derivative of p with respect to p
as constructed in § 3.
For the sequence {f,}, (22) can be refined to read

(1) MASANADH <G +2Mulfi=bnd) +e, Aded,

(ii) M[fa > alnN B > (@ — 27 ([ fa > a]l N B°) — .8, ,
Be 7.

(23)

Moreover, the inequalities in (23) also hold for {,} with respect to
0. These versions of (23) will be utilized in our proof that {f,} is
bounded in L,.

Let > >0, let A= (f2>a’, and let B°= (4, < b). From (23)
and Holder’s inequality we obtain for C= ANB° = (ff>a*>b = u,)
the following chain:

(@ — 2790(C) — a.eJ < MO ~ (| hadst)
= (| 1dn)mc) ~ p(C)p10)
<[ + 27(C) + &,]C) .
Rearranging the first and last terms of the chain leads to
[(@—27)" = (@ + 2O < [2a.6.(0 — 27") + &]C) + (a.8.)" .
But, A = @ if & = #*; and if o < #’, then
& —2a2"+4"—-b—-2">ad—b— 2n+ 1)2
and (a* — b)[p(C)]* < &, where
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&, < (Caem + )0(Q) + (@.8.) + @Cn + 127" [pu(Q)] .
Then, since (f2 > u, + 2) C Ussicnt (i >k +1 2k = u,),

tlLf2 > w, + 2]) < W*EN

and, hence,
Sfid# < Sund# 24 e < P,

where P is independent of n. Therefore, {f,} is bounded in L.

Perhaps we should digress briefly and comment on the last term,
(2n + 1)27"[(2)]}, of the inequality that determines &,. Firstly, 2n + 1
comes from || f,|le, 2™ comes from the mesh of f,, and ©(®Q) was
taken to be one so this component appears only for emphasis; and
secondly, the term =*(£,)'* appears in bounding the f,’s in L,. This
is the only argument in which the ratio of || f,|l. to the mesh of f,
has to be controlled: all the other arguments can be pushed through
by adjusting e,.

We know that {f,} converges in L, and we have just shown that
{f.} is bounded in L,. Hence {f,} converges weakly in V,(2, .o, ):
Suppose that Ge V,(2, .o, 1) and ¢ > 0. Then there exists a simple

S7-measurable function k = 3%;.,¢,)z; such that if K = Sk, then ||G —
K|, < ¢ and

(G Fa = F)I S 1(G = K, Fa— B[ + (K, B — )|
=6 - Kll-@P"™) + S| (7= s
< 2P + [Rllllfa = il

Denote the weak limit of {f,} in V.2, .o 1) by G.
We know that ||G|, < liminf,||f,|l.. Suppose for the moment

that || f.ll.— |Gl (i.e., ||G ||, = limsup, || f.|l). Then

(i.e., {f,} converges to G in V,(Q, o7, 1)) and, as we remarked before,
G = F. Hence in order to complete a proof of (i), it suffices to show
below that ||G ||, = lim sup, || f, ..

Because {f,} is almost increasing, using (20), we have

wlfa > fu+ 227D 5 X o> 0+ D20 >492" 2 fu))

= >, (N, 0 Kfyy)
< @,2Ma,8, + En) = N«

Hence,
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S fdp < S (f + 27 9)dp + np,
E E
< SEf;dy + 2-”SE Fudtt + 4"V E) + n*y, ,

and {f7 is almost increasing. Thus, [|F,||; is almost increasing.
Moreover, it follows from S. Leader’s work ([5]) that

G Fy =3 GLIFL) _ 5 oL,

i<a, #(Lz) iZa,
= lim 3} i/2"F,(L)(F, = G)
= lim 3} @/2*(F,(L;) — d,) (see (21))
-5 i/Z”S fudt — aya, + 1)2"+3,
isa, L;

> S dp — 0t .
Hence, ||F,[l} — 7’2", = || F,|l.||G[l. and, finally, lim || F,[|, = [|G|]..
Proof of (ii). Firstly, notice that
SHK dgr = lim SHkmdy = lim Skmdk
and that
§FK dp = lim Skady = lim (1131 Skm fndp> .
But, fixing m, k, = X<, biXs; b > 0, Bje . Hence
Skmdx ~ ShMB)
and
Skm fdp =3 b,.SBj fudpe = 316 3 2L B
Thus,
S fondh — S oo ot
= XJJ bjiéza,n (= v/2")(L; N By)
= ; bjisza“ [27"u(L; N B;) + ¢,] (see (11))
S 2B + ] — 0 88 n— oo,
which implies that
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Skmdx < lim Skm fudp .
Hence (ii) is established.

Because the proof of (iii) is analogous to that of (ii) we will
omit the details.

Proof of (iv). It follows from (ii) that
SHFd;z < SFde
so it will suffice to show that

SHde = lim S fdr = Tim S frdp = SF?dy .

But,
S fidn = 3 if2"ML)
and
[ fedre = 3 GGiIMLs -
Hence

[fan = {fiap = 5 Gl - Gzam@a)
> na,(—¢,) — 0 (see (7)).

Proof of (v).

o0 S(H — K)ydp = S(H — Fydp + S(F — K)dp
+ 2<S(H — F)(F — K)dﬂ) ;

and

S(H — F)F — K)dpt = SHde — SF%Z;(

- SHKdy + SFKd;z >0.

Moreover, (24) also shows that if K can play the role of F in
the theorem, then S(F — K)*= 0 and, hence, the conditions of the

theorem characterize the Radon-Nikodym derivative of H. An ex-
cellent interpretation of these results can be found in the papers of
H. D. Brunk.
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5. A martingale convergence theorem. In this section, we
shall establish which features of a martingale convergence theorem
carry over to the setting of additive set functions defined on lattices
of sets.

Suppose that {_#,} is an increasing sequence of lattices of subsets
of 2, and # = U..#,. Then the algebras, .57, of subsets of 2 that
are generated by these lattices increase to the algebra, .o/, generated
by .

Suppose that A and g are nonnegative, additive set functions
defined on .o~ Denote by ), and g, the restrictions of N and g to
7,. Denote by F = {f,} the Radon-Nikodym derivative of A with
respect to p, and denote by G, = {g;,.}7-, the Radon-Nikodym deriva-
tive of A\, with respect to p,.

Because the sequences {g;,.}., are Cauchy sequences in L,(2, .o, )
they are also Cauchy sequences in L, (2, &7, 1)

<i.e., S ng,m - gk,nld# = S |gk,m - gk,n,d#k> .
2 2

Hence the equation

H(E) = lim SEgmdy : Ee .7,

defines an additive extension of G, to .o Notice that {H,} is de-
termined by {_#}, N, and .

Now we have enough notation to state our martingale converg-
ence theorem sucecinetly.

THEOREM. Suppose that N 1s absolutely continuous with respect
to ¢t. Then the sequence {H,} converges to F in V, (2, o7, ).

Before establishing this theorem, let us give a simple example to
illustrate the fact that the requirement that » be absolutely continuous
with respect to ¢ is not superfluous.

ExaMPLE. Suppose that £ is the set of positive integers, and
57, is the algebra of subsets of 2 comprised of the subsets of the
first n positive integers and their complements in 2, n = 1. Let A
be the additive function on .& which assigns zero to a finite set and
one to the complement of a finite set, and let ¢ be defined on the
elements E of .o by p(E) = >,.cz27" Then ) is singular with re-
spect to p; but, for each positive integer =, A, is absolutely con-
tinuous with respect to p,. Suppose that _#Z, = .4, n = 1. Then

Gn = Sznx[n+l,n+2."~]d‘u ]
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and the sequence {H,} is not Cauchy.

The example shows that it is possible to have an increasing sequ-
ence {.%7,) of algebras such that \ is not absolutely continuous with
respect to ¢ even though all the )\,’s are absolutely continuous with
respect to the corresponding ,’s. However, A and g are determined
by the sequences {\,} and {¢,}. Moreover, given sequences {\,} and
{¢,} such that each \, is absolutely continuous with respect to .,
then ) is absolutely continuous with respect to g if, and only if, the
N.'s are uniformly absolutely continuous with respect to the p,’s (i.e.,
for each ¢ > 0 there is ¢ > 0 such that if EFe.o and p,(F) <a,
then \,(F) < ¢).

Proceeding to a proof of the theorem, suppose there is a positive
number, ¢, and a subsequence {H, } satisfying ||H, — F|| =3¢, n =
1,2, ---. Relabeling if necessary, we can suppose that k, = n. Since
F = {f;} and the f’s are simple .o-measurable functions, there exists
n; such that f; is .7 -measurable. The sequence {97} is increasing,
so we can take n;., > n; and look at the corresponding sequence {H,, }..
Relabeling again, we can thus suppose that f; is .%%-measurable and
||H; — F|| = 8. Because of the manner in which we defined the
sequences {f;} and {g;.};;, we can assume that ¢;; = f; for ¢ <j.
Referring back to the construction, we have (A — ng)(M°N N) > —¢,
which implies p#(M°N N) < ML) + &,)/n. Hence, from the converg-
ence of u(M°N N) to zero, follows the convergence of MM° N N) to
zero. Since the \,’s are uniformly absolutely continuous with respect
to the z,’s, the corresponding values N\, (Mg, N Ng,) converge to zero
uniformly in k. (The definitions of M, and N, are gleaned by putt-
ing _#, into the construction.) Checking the paragraph that produced
(14) and then checking (15)-(17) permits us to claim that

lim G,,.(2) = M(2) = M)

uniformly in k. Thus, from (21) and the remark that follows (21)
we can conclude that lim, G,, = G, uniformly in k. Since

F, = kad;c - Sgkkdy, lim F, = F,

)-o.

and

lim (]Hg,,,kdp —H,
k

we have lim, (|| H, — F'|)) = 0.

COROLLARY 1. Suppose that _#, is an 1increasing sequence of
lattices of subsets of 2. For each positive integer m, suppose that
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each of N, and p, is a monnegative additive function defined on .o,
such that N, %, = N, and f,,|.7, = t,. Finally, suppose that the
N8 are untformly absolutely continuous with respect to the t,’s. Then
the sequence {H,} converges in norm.

We have restricted our attention to nonnegative functions in this
paper because we wished to keep the setting simple enough to make
our presentation reasonably easy to follow.

The following corollary for an increasing sequence {.%7,} of algebras
of subsets of 2 will be established by using the construction given in

[2].

COROLLARY 2. Suppose that {97} is an increasing sequence of
algebras of subsets of 2, M and p are bounded, additive set fumctions
defined on &7 =, .7, with p nonnegative and N is absolutely con-
tinuous with respect to (. For each positive integer n, take _7#, =
%,. Then {H,} converges to A in norm.

Proof. Refer to the construction given in [2]. Adopt the nota-
tion of the martingale convergence theorem and repeat the relabelings
described in the proof of the martingale convergence theorem. Recall
that F = and G, = N, k = 1, because _#, = .. Hence

c<|H —F|s]|

H, — Sgk,nd#“ + "S(gk,n —~ fk)#“ + ” kad” - >”” '

But, the first and third terms of the right side of this latter inequ-
ality can be made smaller than ¢, and the following observations show
that the second term can also be made smaller than e.

[0en = sae| = [100n = fikdpe = (10 = il

=[{@en - sz
S G — Gill + [1Ge — Nl + [N — fids ]
= 1Gun = Gl + 0+ b = [5idn]

The version of Corollary 1 that is appropriate for algebras will
not be transeribed.
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