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AN ELEMENTARY PROOF OF THE UNIQUENESS
OF THE FIXED POINT INDEX

ROBERT F. BROWN

In 1953, Barrett O'Neill stated axioms for a "fixed point
index" and obtained existence and uniqueness theorems for
the index on finite polyhedra. The proof of uniqueness con-
sisted of showing that any function which satisfied the axioms
must agree with the index he had already defined. This paper
presents a proof of the uniqueness of the fixed point index
on finite polyhedra which depends only on the axioms and
therefore is "elementary" in the sense that it is independent
of the existence of an index. The proof is "elementary" also
in that all the techniques used are taken from geometric
topology or calculus so that, in particular, no algebraic to-
pology is required. An elementary proof of the uniqueness
of the fixed point index on compact metric absolute neighbor-
hood retracts is an immediate consequence of the material in
this paper.

1* The axioms* Let ^ be a collection of topological spaces.
Denote by ^ ' the collection of all triples (X, /, U) where X is in
^ / : X—• X is a map, and U is an open subset of Xsuch that there
are no fixed points of / on the boundary of U.

A fixed point index on & is a function ί: ^'—> Z (the integers)
such that

I. (Localization). If (X, /, U) e <^t and g: X—> X is a map such
that g(x)=f(x) for all x in the closure of U, then i(X,f, U) = i(X, g, U).

II. (Homotopy). Given a map H: X x I—> X, define ht: X—> X,
for t e I = [0,1], by ft(x) = H(x, t). If (X, ht, U) e if' for all t e J,
then i(X, K U) = i(X, K U).

III. (Additivity). If (X,f, U)e^r and Z7lf — , C7. is a set of

mutually disjoint open subsets of U such that f{x) Φ x for all

xe[U- UJ=i U;], then i{X,f, U) = Σ;=iί(X/> Us).
IV. {Weak Normalization). If (JSΓ,/, U) e <gf' where / is the

constant map such that f(X) = xoe U, then i(X,f, U) — 1.
V. (Commutativity). If X and X' are in <if and f:X->X',

g\Xf-^X are maps such that (X, gf, U)e^f then i(X, gf, U) =
i(X',fg,g-\U)).

The axiom list above is a modified version of the one used by
Browder in [1]. It differs somewhat from O'NeilΓs original list [5].

2* Proof of uniqueness. Given a space X and a function
f:X-+Rn (euclidean ^-dimensional space), we will always denote by
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the corresponding capital letter F: X—> Rn the function such that
F(x) — x — f(x) for all xeX. Let O be the origin in Rn.

LEMMA 1. If U is an open subset of Rn containing O and f:
U—*Rn is a linear function whose only fixed point is O, then
dF(O)/d(xlf , xn) (the Jacobian of F at O) is not zero.

Proof. Suppose that dF(O)/d(x19 •••,«„) = 0. Since } is linear
on U and f(O) = O, there exists a linear transformation g: Rn -+ Rn

such that g(x) = f(x) for all xeU. We observe that G: Rn —• Rn is
also a linear transformation so, letting dG denote the differential of
G, we have dG{x) = G for all x e Rn. Since G is identical with F in
a neighborhood of 0, the determinant of G is

det(G)= d G ^ = d F ^ =0
d(xl9 •••, xn) 3(α?!, •••,«»)

and G is a singular linear transformation. Therefore, there exists
a vector subspace S of i?u, of dimension at least one, such that
G(S) = O. Thus, for xe Sf] U, we have

0 = G(x) = a? - g(x) = x - /(a?)

which means that the points of Sf) U are fixed points of /, in con-
tradiction to the hypothesis that O is the only fixed point.

For r Φ 0 a real number, define σ(r) = 1 if r > 0 and σ(r) = — 1
if r < 0.

If /: X—> X is a map, α? is a fixed point of /, and there exists
an open set F i n I containing x such that the closure of V contains
no other fixed point of /, then define the index off at x by i(X, f x) =
i(X,f V). The additivity axiom implies that the definition is inde-
pendent of the choice of V.

THEOREM 2. Let Oe UaXc:Rn where U is open in Rn and X
is a finite polyhedron. Iff:X—>X is of class C1 on U,f(O) = 0,
and dF(P)/d(x19 , xn) Φ 0, then %{X, f O) = σ(dF(O)ld(x19 » , x%)) for
any index i on finite polyhedra.

The proof of this theorem, using only the axioms, is given in
the next section.

Let K be a finite simplicial complex and let \K\ denote its geo-
metric realization. A pair T =• (if, r), where τ = \K\ —> Xis a homeo-
morphism, is a triangulation of the polyhedron X. A simplicial map
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g: (X, Tλ) —> (X, T2) is a map induced by a simplicial function from
Kλ to if2. A maximal simplex of T = {K,τ) is a subset τ\s\ of X

where \s\ is an open simplex of \K\ which is not a face of any other
simplex.

THEOREM 3 (Hopf [3]). Let Xbe a finite polyhedron and f: X—>X
a map. Given ε > 0 there exist trίangulations T\ and T2 of X and
a simplicial approximation g: (X, 7\) —> (X, T2) to f whose distance
from f is less than ε, such that all fixed points of g are in maximal
simplices of Tλ.

We are now able to prove the uniqueness of the fixed point index
on finite polyhedra.

Let ^ be the collection of all finite polyhedra and suppose that
i :^ 7 '—>Z is a fixed point index. Given (X, /, U)e^\ we will show
how to compute ί(X,f, U) directly from the axioms and that will
imply that the index, if it exists, is unique.

Since the boundary of U is compact and contains no fixed point
of /, there exists ε > 0 such that, for all x in the boundary of Z7,
the distance from x to f(x) is greater than ε. Applying Theorem 3,
we obtain a simplicial approximation g: (X, 7\) -^ (X, T2) to /. Recall
that consequently there is a homotopy ht: X—> X, te J, along line
segments in X such that h0 = f and hγ = g. Since the distance from
/ to g is less than ε, the distance from / to each ht is less than ε
so (X, ht, U) e ^f and, by the homotopy axiom, i(X,f U) = i(X, g, U).

If a single maximal simplex of Tλ contained two fixed points of
g, then since g is linear on each closed simplex of TΊ, g would be the
identity map on the line segment (in the closure of the maximal
simplex) which is determined by the two points. But the segment
would intersect the boundary of the simplex, which is a union of
nonmaximal simplices. Thus there would be a nonmaximal simplex
of T1 containing a fixed point of g, contrary to Theorem 3. Each
maximal simplex of Tlf therefore, contains at most one fixed point
of g and g has only a finite number of fixed points. Let xl9 •••, xr

be the fixed points of g in U, then, by the additivity axiom, ί(X, g, U) =

Σ5=ii(-ar»^«i).
Therefore, we need only consider the following situation. We

have an open subset r j s | of X homeomorphic to Rn for some n >̂ 1
(because τ^s] is a maximal simplex of Tλ) and a map g: X—> X which
is linear on r x | s | and which has a single fixed point x in r j s l . Let
V be a closed %-cell in τλ\s\ such that xeV and g(V)czτί\s\. Choose
a closed n-cel\ Y in r A | s | containing V\Jg(V). There are retractions
pa: Γ-> V and ρβ: X-> Y. Let a = gρa: F-> Y and β = aρβ: X-+ X.
The localization axiom tells us that
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i(X, g, x) = i(X, g, V) = i(X, β, V) .

Furthermore, for j:Y—>X the inclusion map, the commutativity
axiom implies

i(X,β, V) = i(X,japβ, V)

= i(Y, a, V) .

Observe that a(x) = g(x) for all x e V, so α is linear on A
There is a linear homeomorphism h taking τjsl onto an open

subset of Rn such that h(x) = O. Let a = hah"1: h(Y) -> h(Y) then,
by the commutativity axiom again,

i(Y, a, V) = i(h(Y), a, h(V)) = i(h(Y), α, O) .

Since a is linear on h(V), (dA(O)/(d(x19 •••, xn)) Φ 0 by Lemma 1 and

so, by Theorem 2,

i(X, g, x) = i(h(Y), a, 0) = σ( _. dA{0) \ .
V d(x19 , xn) /

Therefore, we will have completed our elementary proof of the
uniqueness of the fixed point index on finite polyhedra once we prove
Theorem 2 directly from the axioms in the next section.

We have not only proved uniqueness but also, in the process,
constructed a candidate for a fixed point index. Given (X, f, U) e &",
we have the map g as above with fixed points xlf •••, xr in U and
we could define

d(Xlf •••, Xn(j))

where A3 is defined like the map A above and n{j) is the dimension
of the maximal simplex of Tι containing xd. However, we would
still be required to verify that this function i really satisfies the
axioms. Since an elegant proof of the existence of a fixed point index
on finite polyhedra is given in the first two sections of [2], such a
verification would appear to be of little interest.

We note that our uniqueness proof together with the proof of
Lemma 0 of [1] constitutes an elementary proof of the uniqueness
of the fixed point index on the collection of all compact metric absolute
neighborhood retracts.

3* Proof of Theorem 2* The result we are setting out to
prove is not new (see [4, p. 214]). What is new, however, is a proof
which depends only on the axioms for a fixed point index. The first
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step is a proof of Theorem 2 in the case n = 1.

LEMMA 4. If 0 e (α, b)czR\f: [α, 6] —> [α, 6] is differentίable at
0, y\0) = 0 αmZ dF(0)/dx > 0, £feew £/^re eα ΐsίs ε > 0 and a homotopy
ht: [α, δ] —* [α, δ], t e /, swcλ- ίλαί hQ = f, ht maps [α, b] to 0 cmd ht(e) Φ ε,
/&«( —ε) ^ - ε for all tel.

Proof. Since dF(0)/dx > 0 then df(0)/dx < 1 so there exists ε > 0
such that 0 < \x\ ^ ε implies (/(a?) - f(0))/x < 1. Therefore, /(α) < a;
if 0 < a; ^ ε and /(«) > a; if - ε ^ a; < 0. Define ht(x) = (1 - ί)/(&)
for a; G [α, 6].

LEMMA 5. Let 0 e (α, b)cR\ f: [α, 6] -^ [α, b] be a map differentί-
able at 0,/(0) = 0 and dF(0)/dx Φ 0. // i: &*' —> Z is any index on
finite polyhedra, then i([a, b],f, 0) = σ(dF(0)/dx).

Proof. If dF(0)/dx > 0, then using Lemma 4 and the homotopy
axiom,

i([α,δ],/,0) = i([α,δ],/,(-e,e))

= i([α, δ],/&!, (-ε, ε))

where ^ is the constant map at 0 so i([α, δ], h19 (—ε, ε)) = 1 by the
weak normalization axiom. If dF(0)/dx < 0 then there exists ε > 0
such that /( —ε) < — ε and /(ε) > ε. Define a map g: [α, b] —* [α, δ] as
follows. If xe[ — ε, ε], let flf(a ) =/(»). Choose ce(e,/(ε)), define
g(f(ε)) — c and extend g linearly over [ε,/(ε)]. Finally, extend g over
[α, δ]. By the additivity axiom

i([a, δ], g, (-ε,/(ε))) - i([a, δ], ̂ , (-ε, ε)) + i([α, δ], flr, (ε,/(ε)) .

Since g(ε) > ε and g(f(e)) </{s), an argument like the one in Lemma
4 and the first part of this proof shows that i([a, δ], #, (s,/(s))) = 1.
Next observe that g( — ε) < — ε and f/(/(e)) </(s) so, choosing
β e (flr(—ε), — ε), the homotopy ht(x) = (1 — ί)g(a ) + ίe for 03 6 [a, b] has
the properties h0 = g, hλ is the constant map at e, and ht( — e) φ — ε,
^ί(/(ε)) ^ /(ε) for all £ e I. Therefore, by the homotopy axiom,

i([α, δ], flr, (-ε,/(e))) = i([α, δ], ̂ , (-ε,/(ε))) .

However, ^ has no fixed points on [ — ε, f(ε)] so, by the additivity
axiom, i([a, b], h19 ( —ε,/(ε))) = 0. Consequently, i([α, δ], g, ( — ε, ε)) = — 1
and, by the localization axiom, i([α, δ],/, ( — ε, ε)) = —1.

LEMMA 6. If for j - 1, 2, 0 e (α, , b3)(zR\ f5: [ajf bj] — [%, δ, ] is
differentiate at 0, /y(0) = 0 α^d dF3 (0)/dx < 0, ίΛe^ ί/̂ erβ exists ε > 0
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and a homotopy ht: [au δ j x [α2, δ2] —> [α^ δ j x [α2, δ2] such that hQ(x, y) =

(/i x Λ)(^> 1/) = (/i(»)>/2(2/))> ̂ i ^ s *Aβ constant map at 0 , cmd Λt(p) ^ p

for all t e l and all p on the boundary of V — [ — ε, ε] x [ —ε, ε].

Proof. The hypothesis dFά($$)\dx < 0 implies that there exists
ε > 0 such that fά(x) > x for 0 < x ^ ε and /}(#) < x when — ε ^ a? < 0.
Let Bε denote the closed ball in R2 of radius ε centered at O and let
Sε be the boundary of Bε. Define r: V—>Bε to be the retraction such
that if p ί Bε then r(p) is the point where the ray from O through
p intersects Sε. Define s: Bε —> V to be radial projection. If peBε

then p = aeiθ for some ae [0, ε] and θ e [0, 2τr). For a real number
ί, define ρt:Bε-*Bε to be the rotation pt(aeiθ) = aei{θ+tκ). Finally,
define ht: V-+ [a19 δj x [α2, δ2] as follows

λP) ~ (2(1 - t)Λ1/2(ί>) 1/2 ^ ί ^ 1

and extend fe< to Λt: [α^ δj x [α2, δ2] —> [α:, δj x [α2, δ2] so that Λo = fxf2

and Λj. is constant.

LEMMA 7. Lei X, Y", αmZ X x Y" be spaces in a collection <£*
and let i: c£?t —> Z be an index. If f: X—* X ί s α map with an isolated
fixed point at x0 and k: Y —* Y is the constant map such that k(Y) = yQ,
then i(X x Y,fxk, (x0, y0)) = i(X, /, a;0).

Proof. Define π: X x F—• X by π(x, y) = x and j : X—> X x 3Γ
by jf(^) = (x, y0). Let [7 be an open subset of X containing x0 whose
closure contains no other fixed point of/. By the commutativity axiom,

i(X x YJxk, (x0, y0)) = i(Xx Y,fxk,Ux Y)

= ί(Xx Y,jπ(fx k), U x Y)

= i(X,π(fxk)j,j~1(Ux Y))

= i(X,f U) = i(X,f,xQ).

Next we prove Theorem 2 for a special kind of map.

LEMMA 8. For j = 1, , n, let 0 e (ajy b^czR1, ff. [ajy bj] —> [α ,̂ δ

be maps differentiate at 0, jf}(0) — 0, and dFj(0)/dx Φ 0. Let W

/ = /i x x Λ

no) \

where i: c^?f —+ Z is any index on finite polyhedra.
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Proof. Certainly,

3F(O) _ dF.φ)
3(a?!, , xn) dx dx

By the commutativity axiom, i(W,f, 0) is independent of the ordering
of the //s, so assume dFj(0)/dx is negative for j = 1, « , m and
positive for j = m + 1, , w (where it may be that m = 0 or m = %).
Then we see that σ(dF(O)/d(x19 , O ) = ( - l ) m . Write m = 2r + δ
where δ = 0 or 5 = 1. Applying Lemma 4 n — m times and Lemma
6 r times, we obtain ε > 0 and a homotopy ht: W —> W, t e I, such
that fc0 = /, hj_ is the constant map taking W to O e Rn if δ = 0, hλ =
fxk where k maps Πi=2 [α̂  , b0] to Oe Rn~ι if δ = 1, and ht(p) Φ p
p on the boundary of [ — ε, ε] x ••• x [ — ε, ε ] c i ϋ \ Thus, if m is
even,

i(W,f,O) = ί(W,h1,O) = 1

by the weak normalization axiom and, if m is odd,

i(W, f, O) = i(W, A xk,O)

= i([a>i, bi], A, 0)
-j

by Lemmas 5 and 7. In either case, i(W,f,O) = ( — l) m which com-
pletes the proof.

LEMMA 9. Suppose 0 e (aj} bj)aRi for j = 1, , n and let W =
Πi=i [aj> bj]. Let f: W —> W be a map such that f(O) = O,f is of class
CL on a neighborhood of O and dF{O)jd{x1, •••, xn) Φ 0. There exists
a homotopy ht: W —* W and an open subset V of W containing 0
such that h0 = /, hx = gtx x gn where gά\ [ajf bj]—>[adi bj], ht(O) — O,
J(t): J—> R1 defined by J(t) = dHt(O)/d(xlf , xn) is a continuous non-
vanishing function and Ht is one-to-one on V, for all tel.

Since this result is stated without proof in [4, p. 215] one must
assume that it is a well-known fact. However, for the convenience
of the reader, a proof is given in the appendix below.

We can now prove Theorem 2. Choose 0 e (ajy bj)aRι so that
W = Π?=i [<*;> h] is contained in the open set U. Let Y = f~ι(W) Π W,
then there is an open subset of Rn containing O in Y. Extend f\ Y,
the restriction of / to Y, to a map k: W-+ W. By Lemma 9, there
is a homotopy ht\ W—> W such that hQ = k, hΣ = gx x x gn where
9i la3> bj] —> [ajy bj], ht(O) = O and Ht is one-to-one on a neighborhood
F of 0, for all tel. Therefore O is the only fixed point of each
map ht on V and, by the homotopy axiom, i(W, k, O) = i(W, hx, O).
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A p p l y i n g L e m m a 8, i(W, hlf O) = σ{dH1{O)j3(x19 •••, xn)). L e m m a 9

also states that J(t) = dHt(O)/d(xl9 •••,#*) is a continuous nonvanishing
function of t so σ(d 11,(0)/d(xly •••,<)) = σ(dH0(O)/d(xly •••,<)). But
hQ = k and & agrees with / near O, therefore σ(dH0(O)/d(x19 , $»)) =
σ(dF(O)/d(x19 •••, a?n)). On the other hand, if we extend fe to a map
&: X—> X, then the commutativity axiom implies that i(X, k, O) —
i(W,k,O). Applying the localization axiom, i(X,f,O) = i(X,k,O).
We have proved that i(X,f, O) = σ(dF(O)/d(x19 , O ) .

Appendix* Proof of Lemma 9* Write

/(x,, , xn) = (/^α?!, , O , , /n(a l f , a?n))

where /,•: W—*[ajfbj]. Let S(^) denote the symmetric group on n
symbols. For φeS(n) define hφ

t:W~*W by

ht-tfa, ••-,&*) = (/i(ί^(1))f •• ,Λ(toς?(n)))

where

txφU) = (ία?!, , ίaj^ti)-!, ^ ( , ), ^ ( i ) + i , , txn) e W .

Let Fjk = -dfj(O)/dxk it j Φk and let i ^ = 1 - dfj(O)/dxj then

= π{φ)Fiφ{ι) ... Fnφ{%) +

where π(φ) is 1 if ^ is an even permutation and — 1 if ψ is odd. It
is clear that hi — f and that h\ = gx x x gn where

Ufa) =/*(0, ---,0, xjf 0, . . . ,0 )

and φ(k) = j. Also Jφ(t) = 3H?(O)/3(xί9 , xn) is certainly a continuous
function of t.

However, there is a problem because there may exist tφel such
that Jφ(tφ) = 0. Observe first that the hypothesis 3F(O)/3(x19 , xn) Φ 0
implies that ^ < 1. Next note that we have in fact defined nl dif-
ferent homotopies hψ

t9 one for each element of S(n). The question is
whether there exist nl numbers tφ9 0 ̂  tφ < 1, such that Jφ(^) = 0.
We claim that there do not.

The system of equations Jφ(tψ) = 0, φ e S(n)9 can be written in
the following form. Order the elements of S(n) and let % = (F19 , Fnl)
where F3 — Flφω Fnφ{n) and φ is the i-th element of S(ri). Also
write tφ = tj in this case. The system can be written T% = O where

"1 ίx ίi"

ί, 1 ί2
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Since dF(O)/d(xlf , xn) Φ 0, it must be that % Φ O SO there is a
solution to T% = 0 if and only if det(Γ) = 0.

Observe that since all ίy < 1 then

det Γ(l, ίt, , *„) = Π (1 - ti) > 0 .

If we write

det Γ(l, U, , ίβl) = det Γ(ί2, , ί,,) - B%1

then

5., = ί,(det T(l,«,,..., t.,)) + + ίnI(det Γ(l, ίM , «„_,))

so 5m, ^ 0. Now

det(Γ) = dβtΓ(ί1, - - - . U - ί A ,

so since 0 ^ iy < 1 for j = 2, ••-,%! then det (Γ) = 0 implies i?,,, 9̂  0
and

_ detT(ί2, > 1

which establishes a contradiction and verifies the claim.
Thus there exists the required homotopy ht so that

dHt(O)/d(xly , xu)Φθ for all £ e /. It remains to find a single neighbor-
hood V of O on which each Ht is one-to-one. By hypothesis there
exists d > 0 such that if peRn and | p | ^ δ then / is of class C1 at
p. LetBδ = {pGi2%||p| ^ δ} and define D: JB, x ••• x Bδ x J-> .K1 by

, Vm t) = det

Note that D(O x ••• x O x / j c f f - O . Let C be the component of
D~ι{Rι — 0) containing O x x O x J, then there exists ε > 0 such
that I py I < e for j = 1, , n implies (p19 , pn,t)eC for all ί e I.
Let V = {peRn\\p\ < e} then the Inverse Function Theorem tells us
that each Ht is one-to-one on V.
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