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AN ELEMENTARY PROOF OF THE UNIQUENESS
OF THE FIXED POINT INDEX

RoBERT F. BrROWN

In 1953, Barrett O’Neill stated axioms for a ‘“‘fixed point
index’’ and obtained existence and uniqueness theorems for
the index on finite polyhedra., The proof of uniqueness con-
sisted of showing that any function which satisfied the axioms
must agree with the index he had already defined. This paper
presents a proof of the uniqueness of the fixed point index
on finite polyhedra which depends only on the axioms and
therefore is ‘‘elementary’’ in the sense that it is independent
of the existence of an index, The proof is ‘“‘elementary’’ also
in that all the techniques used are taken from geometric
topology or calculus so that, in particular, no algebraic to-
pology is required. An elementary proof of the uniqueness
of the fixed point index on compact metric absolute neighbor-
hood retracts is an immediate consequence of the material in
this paper.

1. The axioms. Let & be a collection of topological spaces.
Denote by &’ the collection of all triples (X, f, U) where X is in
&, f: X— X is a map, and U is an open subset of X such that there
are no fixed points of f on the boundary of U.

A fized point index on & is a function i: @’ — Z (the integers)
such that

I. (Localization). If (X,f, U)e &’ and g: X — X is a map such
that g(x) =f(») for all ¢ in the closure of U, then (X, f, U)=4(X, g, U).

II. (Homotopy). Given a map H: X x I — X, define h;: X— X,
for teI=1[0,1], by filz) = H(x, t). If (X, h, U)eZ”’ for all tel,
then (X, hy, U) = (X, hy, U).

III. (Additivity). If (X,f,U)e®’ and U, .-., U, is a set of
mutually disjoint open subsets of U such that f(x) =2 for all
ve[U — U= U], then «(X, £, U) = X5 UX, S, U)).

IV. (Weak Normalization). If (X, f, U)e ©’ where f is the
constant map such that f(X) = x,e U, then ¢(X, f, U) = 1.

V. (Commutativity). If X and X’ are in & and f: X— X',
g: X’ — X are maps such that (X, gf, U)e &’ then (X, gf, U) =
WX’ fg, g7(U)).

The axiom list above is a modified version of the one used by
Browder in [1]. It differs somewhat from O’Neill’s original list [5].

2. Proof of uniqueness. Given a space X and a function
f: X— R* (euclidean n-dimensional space), we will always denote by
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the corresponding capital letter F: X-— R" the function such that
F(x) = 2 — flx) for all xe X. Let O be the origin in R".

LEmMMA 1. If U is an open subset of R™ containing O and f:
U—R* is a linear function whose only fixzed point 1s O, then
oF(0)/o(x,, +++, x,) (the Jaccbian of F at O) is not zzro.

Proof. Suppose that 0F(0)/0(x,, +++,2,) = 0. Since s is linear
on U and f(O) = O, there exists a linear transformation g¢g: R*— R"
such that g(x) = f(z) for all xc U. We observe that G: R*— R" is
also a linear transformation so, letting dG denote the differential of
G, we have dG(x) = G for all xe R*. Since G is identical with F' in
a neighborhood of O, the determinant of G is

0G(0) _ 0F(0)

= =0
a(xn ct . xn) a(xu M) xn)

det (G) =

and G is a singular linear transformation. Therefore, there exists
a vector subspace S of R", of dimension at least one, such that
G(S) = 0. Thus, for xe SN U, we have

0=Gk) =2 —9gk) =2 — flx)

which means that the points of SN U are fixed points of f, in con-
tradiction to the hypothesis that O is the only fixed point.

For r #+ 0 a real number, define o(r) =1 if » > 0 and o(r) = —1
if » <O0. :

If 1 X— X is a map, « is a fixed point of f, and there exists
an open set V in X containing # such that the closure of V contains
no other fixed point of f, then define the index of f at « by (X, f, x) =
(X, f, V). The additivity axiom implies that the definition is inde-
pendent of the choice of V.

THEOREM 2. Let Oc Uc XCR" where U 1is open in R* and X
1s a finite polyhedron. If f: X— X is of class C*' on U, f(O) = 0,
and OF(0)/0(x,, «--, x,) # 0, then (X, f, O) = 6(0F(0)/0(x,, *++, 2,)) for
any index 1 on finite polyhedra.

The proof of this theorem, using only the axioms, is given in
the next section.

Let K be a finite simplicial complex and let | K| denote its geo-
metric realization. A pair T = (K, 7), where 7 = | K| — X is a homeo-
morphism, is a triangulation of the polyhedron X. A simplicial map
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9: (X, T)— (X, T,) is a map induced by a simplicial function from
K, to K, A maximal simplex of T = (K, 7) is a subset 7|s| of X
where |s| is an open simplex of |K| which is not a face of any other
simplex.

THEOREM 3 (Hopf [3]). Let X be a finite polyhedron and f: X— X
a map. Given € > 0 there exist triangulations T, and T, of X and
a simplicial approximation g:(X, T, — (X, T,) to f, whose distance
from f is less than e, such that all fixed points of g are in maximal
simplices of T,. ‘

We are now able to prove the uniqueness of the fixed point index
on finite polyhedra.

Let & be the collection of all finite polyhedra and suppose that
1: €’ — Z is a fixed point index. Given (X, f, U)e &', we will show
how to compute (X, f, U) directly from the axioms and that will
imply that the index, if it exists, is unique.

Since the boundary of U is compact and contains no fixed point
of f, there exists ¢ > 0 such that, for all « in the boundary of U,
the distance from « to f(x) is greater than e¢. Applying Theorem 3,
we obtain a simplicial approximation g¢: (X, T,) — (X, T,) to f. Recall
that consequently there is a homotopy A, X— X, tc I, along line
segments in X such that i, = f and A, = g. Since the distance from
S to g is less than &, the distance from f to each &, is less than ¢
so (X, h,, U)e &’ and, by the homotopy axiom, (X, f, U) = i(X, g, U).

If a single maximal simplex of 7T, contained two fixed points of
g, then since g is linear on each closed simplex of T,, g would be the
identity map on the line segment (in the closure of the maximal
simplex) which is determined by the two points. But the segment
would intersect the boundary of the simplex, which is a union of
nonmaximal simplices. Thus there would be a nonmaximal simplex
of T, containing a fixed point of g, contrary to Theorem 3. Each
maximal simplex of T,, therefore, contains at most one fixed point
of g and ¢ has only a finite number of fixed points. Let x, +--, x,
be the fixed points of g in U, then, by the additivity axiom, «(X, g, U) =
S X, g, ;).

Therefore, we need only consider the following situation. We
have an open subset 7,/s| of X homeomorphic to R* for some n =1
(because 7,|s| is a maximal simplex of T,) and a map g: X— X which
is linear on 7, s| and which has a single fixed point « in 7,|s|. Let
V be a closed n-cell in 7,|s| such that z e V and g(V)cz,|s|. Choose
a closed n-cell Y in 7,s| containing VUg(V). There are retractions
0 Y— V and 0 X— Y. Leta=g0,:Y— Y and g = apo;: X— X.
The localization axiom tells us that
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"X, g,2) =X, 9, V) =X, 5 V).

Furthermore, for j: Y— X the inclusion map, the commutativity
axiom implies

WX, 8, V) =1iX, japs, V)
= @(Y! a(oﬁj! j—l( V))
=u(Y,a, V).

Observe that a(x) = g(x) for all xe V, so « is linear on 4.
There is a linear homeomorphism # taking 7,/s| onto an open
subset of R" such that h(x) = 0. Let a = hah™: L(Y) — h(Y) then,

by the commutativity axiom again,
(Y, a, V) = i(h(Y), a, L(V)) = 1(h(Y), a, O) .

Since a is linear on A(V), (0A(0)/(@(x,, +++, %,)) + 0 by Lemma 1 and
80, by Theorem 2,

X, g, x)='£(h(Y),a,,O)=g< IA(0) )

a(xn Ct %y xn)

Therefore, we will have completed our elementary proof of the
uniqueness of the fixed point index on finite polyhedra once we prove
Theorem 2 directly from the axioms in the next section.

We have not only proved uniqueness but also, in the process,
constructed a candidate for a fixed point index. Given (X, f, U)e &,
we have the map ¢ as above with fixed points z, ---,2, in U and
we could define

WX, f, U) = Z 0( 0A;(0) >

J=1 8(:01, cccy xn(j))

where A; is defined like the map A above and n(j) is the dimension
of the maximal simplex of 7, containing z;. However, we would
still be required to verify that this function ¢ really satisfies the
axioms. Since an elegant proof of the existence of a fixed point index
on finite polyhedra is given in the first two sections of [2], such a
verification would appear to be of little interest.

We note that our uniqueness proof together with the proof of
Lemma 0 of [1] constitutes an elementary proof of the uniqueness
of the fixed point index on the collection of all compact metric absolute
neighborhood retracts.

3. Proof of Theorem 2. The result we are setting out to
prove is not new (see [4, p. 214]). What is new, however, is a proof
which depends only on the axioms for a fixed point index. The first
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step is a proof of Theorem 2 in the case n = 1.

LEmMmA 4. If Oe€(a,b)CRY, f:]a, b] —[a,b] is differentiable at
0, f10) = 0 and dF(0)/dx > 0, then there exists € > 0 and a homotopy
ke [a, ] — [a, B], t € I, such that h, = f, h, maps [a, b] to 0 and h,(c) =¢,
hy(—¢) #= —¢ for all tel.

Proof. Since dF(0)/dx > 0 then df(0)/dx < 1 so there exists ¢ > 0
such that 0 < |2| < ¢ implies (f(z) — f(0))/x < 1. Therefore, fix) < x
if 0<z=¢eand fiw) >z if —e<2<0. Define h(x) = (1 — t)f(x)
for « ¢ [a, b].

LEMMA 5. Let 0¢(a, b)C R, f:[a, b] — [a, D] be a map differenti-
able at 0, f(0) = 0 and dF(0)/dx + 0. If ©:&" — Z 1is any index on
finite polyhedra, then i([a, d], f, 0) = o(dF(0)/dx).

Proof. If dF(0)/dx > 0, then using Lemma 4 and the homotopy
axiom,

i([a, b], f, 0) = i([a, b], £, (—¢, €))
= i([a, b], hy (—¢&, &)

where %, is the constant map at 0 so i([a, ], k, (—&,€)) = 1 by the
weak normalization axiom. If dF(0)/dx < 0 then there exists ¢ >0
such that f(—e) < —e¢ and fie) > e. Define a map g: [a, b] — [a, b] as
follows. If xe[—¢,€], let g(x) = fiw). Choose ce (¢, f(¢)), define
9(f(€)) = ¢ and extend g linearly over [¢, fi¢)]. Finally, extend g over
[a, b]. By the additivity axiom

Ii([ay b]y g, (—E,f(e))) = 7:([6(,, b]y g, (-'57 6)) + i([ar b]y g, (5rf(e)) .

Since g(¢) > ¢ and g(f(¢)) < f(¢), an argument like the one in Lemma
4 and the first part of this proof shows that <([a, b], g, (¢, fi¢))) = 1.
Next observe that ¢g(—¢) < —e and g(f(e)) < fle) so, choosing
ec (9(—¢), —e), the homotopy h,(x) = (1 — t)g(x) + te for x ¢ [a, b] has
the properties h, = g, h, is the constant map at ¢, and h,(—¢) = —s¢,
h(f(€)) # f(e) for all teI. Therefore, by the homotopy axiom,

i([a, b], g, (=&, f€))) = i(la, b], by (6, fi€)))

However, k, has no fixed points on [—¢, f(¢)] so, by the additivity
axiom, i([a, b], h,, (—¢, f(¢))) = 0. Consequently, i([a, b], g, (—¢, ¢)) = —1
and, by the localization axiom, i([a, b], f, (—¢, €)) = —1.

LEMmMA 6. If, for j=1,2,0¢(a; b;)CRY, f;: [a; b;] — [a;, b;] s
differentiable at 0, f;(0) = 0 and dF;(0)/dz < 0, then there exists € > 0
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and a homotopy h,: [a;, b] X [ay, b,] — [a,, b)] X [a,, b,] such that hy(x, y) =
(i X f)(@, ¥) = (fikx), fo(y)), b, is the constant map at O, and h,(p) +# p
Jor all tel and all p on the boundary of V =[—¢, €] X [—¢, €].

Proof. The hypothesis dF;(0)/dx < 0 implies that there exists
¢ > 0 such that f;(x) > « for 0 < < ¢ and f;(x) <  when —¢ < 2 < 0.
Let B, denote the closed ball in R?® of radius ¢ centered at O and let
S, be the boundary of B.. Define r: V— B, to be the retraction such
that if p¢ B, then r(p) is the point where the ray from O through
p intersects S.. Define s: B,— V to be radial projection. If pe B.
then » = ae” for some ae|0, ¢] and 6 [0, 27). For a real number
t, define p,: B.— B. to be the rotation po,(«e”) = ae’’**®, Finally,
define h,: V—[a, b,] X [a., b,] as follows

_((f X fsor(®)  0=¢s1f2

hel®) = 2(L — t)hye(p) 1z2=st=<1

and extend %, to h,: [a,, b] X [a, b)] — [a,, b,] X [a,, b,] so that A, = f, X f,
and A, is constant.

LEMMA 7. Let X, Y, and X X Y be spaces in a collection &
and let 1. &' — Z be an index. If f: X— X is a map with an 1solated
JSixed point at x, and k: Y — Y is the constant map such that k(YY) = vy,
then (X X Y, f X k, (€, ¥o)) = ©(X, f, @)

Proof. Define m: X x Y— X by #(x,y) =2 and j: X—> X x Y
by j(x) = (», ¥,). Let U be an open subset of X containing 2, whose
closure contains no other fixed point of f. By the commutativity axiom,

WX XY, fxk (®,v) =1(XXY,fxk UxY)
=X x Y,jn(fx k), UxY)
=X, n(f X k)j, 57(U X Y))
=X, f, U) =X, f, ) .

Next 'we prove Theorem 2 for a special kind of map.

LEMMA 8. Forj =1, ---,m,let 0 (a;, b;,) C R, f;: [a;, b;] — [a;, b;]
be maps differentiable at 0, f;(0) = 0, and dF;(0)/de + 0. Let W=
Il [as b1 R and f=fi X +-+ X f,, then

dF(0) )
a(xlv ct Yy x’n)

umﬁmzd

where 1: €' — Z is any index on finite polyhedra.
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Proof. Certainly,

0F(0) _ aF(0) . . dF,(0)
Oy <+ *y 2y) dx de

By the commutativity axiom, 7(W, f, O) is independent of the ordering
of the f;’s, so assume dF;(0)/dx is negative for j =1, ..., m and
positive for j = m + 1, <+, n (where it may be that m = 0 or m = #).
Then we see that ¢(0F(0)/0(x,, +++, x,) = (—=1)™. Write m = 2r + o
where 06 = 0 or 0 = 1. Applying Lemma 4 n — m times and Lemma
6 r times, we obtain ¢ >0 and a homotopy h,: W— W, tel, such
that %, = f, h, is the constant map taking W to Oe R" if 6 =0, h, =
fi X k where k& maps [} [a;, b;] to Oec R if § =1, and h,(p) # »
p on the boundary of [—¢, €] X ++« X [—¢,¢]CR" Thus, if m is
even,

W(W, f,0) = i(W, hy, 0) = 1
by the weak normalization axiom and, if m is odd,

W, 1, 0) = oW, f, X k, 0)

= 7:([au b1]y fu O)
=1

by Lemmas 5 and 7. In either case, i(W, f, 0) = (—1)™ which com-
pletes the proof.

LEMMA 9. Suppose 0e(a;, b;)CR" for j=1,+++,n and let W =
i [a;, b;]. Let f: W— W be a map such that fiO) = O, f is of class
C' on a meighborhood of O and 0F(0)/0(x,, +++, x,) #* 0. There exists
a homotopy h,, W— W and an open subset V of W containing O
such that by = f, hy = g, X +++ X g, where g;: [a;, b;]— [a;, b;], h,(0) = O,
J(@t): I — R' defined by J(t) = 0H,(0)/0(x,, +++, %,) 1S & cORtINUOUS NON-
vanishing function and H, is one-to-one on V, for all tel.

Since this result is stated without proof in [4, p. 215] one must
assume that it is a well-known fact. However, for the convenience
of the reader, a proof is given in the appendix below.

We can now prove Theorem 2. Choose 0¢ (a;, b;)CR* so that
W = I13-.[a;, b;] is contained in the open set U. Let Y = f~(W)n W,
then there is an open subset of R" containing O in Y. Extend f|7Y,
the restriction of fto Y, to a map k: W— W. By Lemma 9, there
is a homotopy h,: W— W such that h, =k, h, = g, X -++ X ¢, Where
9;: [a;, b;] — [a;, b,], h,(0) = O and H, is one-to-one on a neighborhood
V of O, for all tel. Therefore O is the only fixed point of each
map k, on V and, by the homotopy axiom, (W, k, O) = «(W, h,, O).
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Applying Lemma 8, #(W, h, O) = 0(0H,(0)/o(x,, -+, x,)). Lemma 9
also states that J(t) = 0H,(0)/0(x,, - -+, 2,) is a continuous nonvanishing
function of ¢t so ¢(@H,(0)/d(x,, *-+, x,)) = d(@H,(0)/d(x,, +++, x,)). But
h, = k and k agrees with f near O, therefore g(0H,(0)/0(x,, -+, 2,)) =
o(@F(0)/o(x,, +++, ®,)). On the other hand, if we extend % to a map
k: X— X, then the commutativity axiom implies that (X, &, 0) =
(W, k, 0). Applying the localization axiom, i(X, f, 0) = i(X, k, O).
We have proved that (X, f, 0) = c(0F(0)/0(x,, « -+, x,)).

Appendix. Proof of Lemma 9. Write
Sy o0y 2,) = i@y vo vy @n)y ooy ful@y ooy )]

where f;: W— [a;, b;]. Let S(n) denote the symmetric group on =
symbols. For @ e S(n) define h{: W— W by

R (X, + o0, x,) = (fitx?™), oo, fu(Ex2™))
where

ta?) = (txv ] twtp(i)—u Loiirs tx(o(i)ﬂ: ey txn) eWw.
Let Fy, = —af;(0)/om, if § = k and let F;; = 1 — 3f;(0)/ow; then

0H? ,(0)
a(xu ey xn)

where m(@) is 1 if @ is an even permutation and —1 if @ is odd. It
is clear that %{ = f and that AY =g, X +-+ X g, wWhere

9i(®;) = f0, «++,0,%;,0, ++-,0)

and @(k) = j. Also J*(t) = 0H{(0)/o(x,, - -+, x,) is certainly a continuous
function of ¢.

However, there is a problem because there may exist ¢,e I such
that J¥(¢,) = 0. Observe first that the hypothesis 6F(0)/o(x,, «+-, ,) #0
implies that ¢, < 1. Next note that we have in fact defined »! dif-
ferent homotopies A¢, one for each element of S(n). The question is
whether there exist »! numbers ¢,, 0 < ¢, <1, such that J*(¢,) = 0.
We claim that there do not.

The system of equations J*(t,) = 0, » € S(n), can be written in
the following form. Order the elements of S(n) and let F=(F,, +--, F,)
where F; = F,, +++ F,,, and @ is the j-th element of S(n). Also
write ¢, = t; in this case. The system can be written 7% = O where

1 ¢ eeet,
T:T(tl,...,tn): t, 1 .-t

= 7t(¢)Fl¢(1) e Fn(p(n) + %;:a W(W)tnFnk(n e Fmﬁ(n)

bar Gayoee 1
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Since 0F(0)/d(x,, +++, ®,) # 0, it must be that F = O so there is a
solution to T = O if and only if det (T') = 0.
Observe that since all ¢; < 1 then

det T(L, ty +o t) = L L = 8) > 0.
If we write
det T(1, t,, «+-, t,) = det T(¢t,, + -, t,)) — B,
then
B, = ty(det T(1, ty, «++, ty)) + =++ + tu(det T(L, &y «+ ) tusy))
so B,, = 0. Now
det (T') = det T'(t,, «« -, t.) — t. B

so since 0 < t; <1 for j = 2, ---, n! then det(T) = 0 implies B,, =0
and

_ det T'(¢,, - -

. t l)
) Yn! 1
B'nl >

b

which establishes a contradiction and verifies the claim.

Thus there exists the required homotopy A, so that
0H,(0)/o(xy, +++, ,)70 for all ¢t € I. It remains to find a single neighbor-
hood V of O on which each H, is one-to-one. By hypothesis there
exists 6 > 0 such that if pe R~ and |p| < ¢ then fis of class C' at
p. Let B, = {pe R"||p| < 6} and define D: B; X .-+ X B, x I— R' by

0H,(p) ... 9H,(p)
0x, ox,

D(pu coey Doy t) = det

aHt(pn) PR aHt(p'n)
o, ox,

Note that DO X --- x O x I)CcR' — 0. Let C be the component of
D(R' — 0) containing O x ... x O x I, then there exists ¢ > 0 such
that |p;] <e for j =1, ..., n implies (p, -+, ., t)eC for all tel.
Let V = {peR"||p| < ¢ then the Inverse Function Theorem tells us
that each H, is one-to-one on V.
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