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FINITE PRIMES IN SIMPLE ALGEBRAS

HOYT D. WARNER

A "prime" in an arbitrary ring with identity, as defined
by D. K. Harrison, is shown to be a generalization of certain
objects occurring in the classical arithmetic of a central simple
i£-algebra 2 , i.e., the theory of maximal orders over Dedekind
domains with quotient field K. Specifically, if K is a global
field the "finite primes" of 2 (in Harrison's sense) which con-
tain a iΓ-basis for 2 are the generators of the Brandt
Groupoids of normal ^-lattices, R ranging over the nontrivial
valuation rings of K. The situation when J contains a finite
prime invariant under all i£-automorphisms is studied closely;
when K is the rational numbers or char (IT) Φ 0, and 2 has
prime power degree, such a prime exists if and only if J is
a division algebra.

The techniques developed here are applied to yield new
information concerning the generators and factorization in
the Brandt Groupoids over certain Dedekind domains.

Harrison showed in [7] that his definition of prime (see § 1)
yields the finite and real infinite prime divisors of number fielos, as
well as yielding the "primes" (i.e., prime ideals) of the rings of
integers of these fields. His conjecture ([7, p. 13, footnote]), that
a suitable modification of this definition existed which would yield
objects in the arithmetic of "noncommutative number fields", was
the starting point for this investigation; § 3 contains the results.

NOTATION. Throughout this paper all algebras will be assumed
finite dimensional and all fields considered will be assumed not locally
finite unless explicitly stated otherwise. (By locally finite we mean
each element is contained in a finite subfield.) Z, Q, and R will
denote the integers, rationals, and reals, respectively. For sets A
and B,

A\B = {x e A I x g B} .

I* Preliminaries. In this section we prepare for the body of
the paper by fixing notation and definitions we will need and proving
some preliminary general results. We refer the reader to [7] for
all unproved assertions about primes.

A preprime of a ring R with identity 1 is a nonempty subset
closed under addition and multiplication and not containing —1; a
prime is a maximal preprime. A prime P is called finite if 1 g P,
which is equivalent to aeP if and only if — aeP, i.e., P is an
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additive subgroup of R; otherwise P is called infinite. If P is finite,
AP = {aeR\aP £ P and Pa £ P} is a subring of R and AP/P = yfcP

is a locally finite field. If P is a finite prime of a field i*7, then AP

is a valuation ring of F with P its ideal of nonunits. When F is
a global field the finite primes of F are thus in one-to-one corre-
spondence with the finite prime divisors of F. We note also that
for F a number field, the infinite primes which generate F as a
ring (called real infinite primes in [7]) are in one-to-one corre-
spondence with the real infinite prime divisors (i.e., the real places)
of F [7, Proposition 3.5]. We will say a finite prime P of a field
F is discrete rank one if the valuation determined by AP is non-
trivial and discrete rank one. If R S S are rings, P and T are
primes of R, S, respectively, we shall say "T extends P" if and only
if Γ 3 P , which is equivalent to TΠ R = P. Note that if T extends
P then T is finite if and only if P is finite.

The following lemma generalizes [7, Proposition 2.1] to non-
central elements of a ring.

LEMMA 1.1. Let P be a finite prime of a ring R. Let a, b e R.
Then aPb £ P and ab e P imply a e P or b e P.

Proof. Suppose aPb £ P, αί> e P, but neither a nor 6 are in P.
For ΐ ^ 1, let W{(a) be the set of all finite sums of elements of R
of the form aQaaxa a^aa^ where aά e Z l + P for 0 ^ j ^ i; let
TF0(α) = P and note ffi^α) is an additive group for each i. Let
Ta= Σ~Wi(a); this is precisely the smallest additively and multi-
plicatively closed subset of R containing P and α, hence it must
contain — 1 since a£P implies Ta 3 P, and P is a maximal pre-
prime. Likewise — leTb (defined similarly). Write

01) - l = α+Λ(α) + . . . +Λ(α)

and

(Π) - 1 = β + gtf) + ••• +0»(δ)

where ^(α) e TΓt(α), î(δ) e W,ι(b), a, ft are in P, and where w and
m are chosen minimal (w ^ 1, m ^ 1 as — 1 £ P). An easy induction
argument shows that for i 2> i ^ 1, TΓ<(α) TΓj(6) £ TΓ^α) and for
1 ^ i ^ i, TΓi(α)TΓ.-ίδ) £ TF,_i(&), because αPδ g P a n d α δ e P implies
a(ZΛ + P)b^P. If now n^m, multiply (I) on the right by —gm{b)
(after transposing a to the left side) which yields, by the preceeding
remark, (1 + α)flf«(δ)eΣϊ=»^i(δ). Then multiply (II) on the left by
1 + a, transpose the — a to the right side and an expression like
(II) results, but with the right side now in Σ^W^ί)), contradicting
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the minimality of m. If n Ξ> m, the argument is similar.
The facts in the following corollary were first observed by

Manis and Harrison (unpublished).

COROLLARY 1.2. Let P be a finite prime of R.
(1) If p is the largest two sided ideal of R contained in P,

then p is a prime ideal.
(2) If a, be center of i?, ab e P implies ae P or b e P, and

ab e AP, a#AP imply be P.
(3) If Rί is a subring of the center of R and P1 = P Π R is a

prime of Rλ1 then AP Π Rx — APl.
(4) If K is a subfield of the center of R then Pf]K is a prime

of K, and APΓικ = AP Π K.

Proof. (1): If α bg)) , α and b two sided ideals then aPb £
aRb c f g P , so if α §£ p, i.e., a g£ P, the lemma implies b £ P, i.e.,
b S ί>. (2): αδ e -AP and a, be center implies aPb = abP g P s o a <£ AP

implies aa$P for some a e P, but aaPb g aPb £ P and (αα')δ e αP6 £
P then implies be P. (3): AP Π R, £ APl is clear. P, Q P ^ AP, so
suppose α G ̂ 4.Pl\Pi; then as APJPι is a locally finite field, an — 1 e P :

for some %; so αTO e 1 + Px £ 1 + P £ AP, and hence ae AP by (2).
(4): By (2), AP Π K is a valuation ring; since (AP Π K)/(Pf] K) is a
subring, hence a subfield, of the locally finite field ^4P/P, P Π K is
the maximal ideal of APf]K and is a prime of K by [7, Proposi-
tion 2.5].

The following corollary shows that in studying the primes of a
finite dimensional iΓ-algebra Σ, it is sufficient to study the case when
Σ is simple, as we shall do in this paper.

COROLLARY 1.3. Let Σ be a K-algebra, let C be the center of Σ.
If T is any finite prime of Σ, TΓ\C is a finite prime of C. Every
finite prime of Σ contains the radical rad Σ of Σ so there is a one-
to-one correspondence between the primes of Σ and those of the semi-
simple algebra Σ = Σ/raά Σ. The primes of a semi-simple algebra
TliΣijΣi simple, are precisely those subsets of the form TVILv ^i
where T,-, is a prime of Σi.

Proof. Note that if R is a ring, α a two sided ideal of R then
P ^ α is a preprime or prime of R if and only if P/a is a preprime
or prime of R/a. Next observe that if P is a prime of R and R =
ϊ>! + + bn, bί two sided ideals with bfij £ P for i Φ j then all
but one of the b{ is contained in P, by (1) of 1.2. Hence P/(Σij*ih)
is a prime of the ring R/Yjj^bj. The last two assertions now follow
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immediately, observing that as rad Σ is nilpotent, rad Σ £ T for any
finite prime T by (1) of 1.2. That Tf]C is a prime of C follows
from the preceeding remarks and (4) of 1.2.

In § 3 and § 4 below we shall be considering finite primes T of
a simple i£-algebra Σ which satisfy K*T=Σ, i.e., such that T
contains a if-basis for Σ. The following proposition suggests that,
by analogy with the commutative case, it is not unreasonable to
impose this condition on (finite) primes of a noncommutative algebra.

PROPOSITION 1.4. Let Σ be a K-algebra.
( 1 ) If Σ is commutative then KT = Σ for any finite prime

T of Σ.
( 2 ) Σ always contains finite primes T with KT = Σ.
( 3 ) Let C be the center of Σ, let L be any subfield of C such

that Σ is finite dimensional over L. For a finite prime T of Σ,
the following are equivalent:

(a) KT= Σ
(b) KC = Σ
(c) KL = Σ.

Proof. First note that Tf] K, a prime of K by 1.3, is Φ 0 (as
K is not locally finite) s o ί Γ 3 i Γ as T 2 ( T f l K)AT; thus KT = Σ
if and only if KAT = Σ. Proof of (1): If aeΣ then [Σ: K] < oo
implies an + axa

n-1 + + an = 0 for α< e K, not all zero. Tf)K= P
is a finite prime of K by 1.2, (4), and so AP = Aτ Π K is a valua-
tion ring of K by [7, Proposition 2.5] and there exists a Φ 0 in P
with α^i G P for 1 <; ΐ <; n. One checks that then aa is integral
over AP, so a fortiori over Aτ, hence 6m e AΓ as Aτ is integrally
closed by [7, Proposition 2.7]. Thus α e ί Γ AΓ, and (1) holds. (2): If
Σ is arbitrary, let P be a finite prime of K; P Φ {0} and AP is a
valuation ring of K. If 1 — xly x2, , xn is a iΓ-basis of Σ and
aj^. = ΣfcTίj fcίBfc, Ύijk G ίΓ for i, j ^ 2, we can choose a Φ 0 in P such
that <x7ίiA. G AP for all iyjjk (using AP a valuation ring of K); then
one checks S = P + Σ ? AP(ax3) is a preprime of I7 containing P and
a if-basis for Σm, any prime Γ containing S is as desired. (3): By
Corollary 1.3, T Γ) C is a (finite) prime of C, and hence by (1) above,
(since [C: K] ^ [Σ: K] < oo)lf.(Tn C) - C; [J: L] < oo implies L also
is not locally finite so also L-(Tf)C) = C. Hence K-T=C-T= L-T,
proving the assertion.

DEFINITION 1.5. Let I7 be a if-algebra (recall we assume Σ
finite dimensional, K not locally finite). A finite prime T of Σ will
be called spanning if K-T= Σ. Proposition 1.4 shows this defini-
tion does not depend on the choice of the (not locally finite) field K
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over which Σ is finite dimensional and is equivalent to requiring
C T = Σ for C the center of Σ.

We conclude this section by stating the main result of [10] and
deriving a corollary we will need.

PROPOSITION 1.6. ([10, Th. 3.2 and Corollary 2.2].) Let k be a
locally finite field, Σ — Hom^ (V, V) for V a finite dimensional
k-vector space. Every prime T of Σ is finite and has the form T =
L(W, U) = {/ e Σ I/(W) £ U} for uniquely determined k-subspaces
PF Ξ2 U of V with dimfc W/U = 1 and conversely every such L( W, U)
(i.e., with dimfc W/U — 1) is a prime of Σ.

COROLLARY 1.7. Situation as above, with d i m A F > l . Every
prime T has the form T = εLΣ + Σe2, where 1 = ελ + ε2 + e3, the εt

are orthogonal idempotents, and ε3 has rank 1 (so ε3 Φ 0).

Proof. T=L(W,U), άimkW/U=l so W = kx @ U for some
%; write F = ϊF' 0 W= J70 TF' 0 kx. Let elf ε2, ε3 be the idem-
potents associated with the decomposition (i.e., ε1 — projection on U
along W'@kx, etc.). Then ε,Σ = L(V, U) Q L(W, U) and Σs2 s
L(T7, 0) S L(TF, 17) s o Γ g ε ^ + Σε2. For the reverse inclusion, let
teT. Then as (1 - ε2)V = (ε, + ε s ) F = ί70/cx = PΓ and as ί PΓg
C7 S kernel of 1 - ε19 (1 - ε,)ί(l - ε2) = 0 so til - ε2) - εxί(l - ε2) = 0
so t = εL(t(l - ε2)) + tε2 e ε,Σ + Σε2.

2. Brandt groupoid generators over classical dedekind domains*
First we recall some facts and establish notation. Throughout this
section R will denote a Dedekind domain distinct from its quotient
field K, and Σ will denote a separable (see [4]) i£-algebra. We refer
the reader to [4], [5], and [6] for the following facts. An iϋ-lattice
M in Σ is a finite (i.e., finitely generated) i2-submodule of Σ with
K M—Σ. An J?-order in Σ is a subring which is an iϋ-lattice;
every iϋ-order is contained in a maximal one. If M is an iϋ-lattice,
Ot(M) = {x e ΣI xM S M) and Or(M) = {x e Σ \ Mx £ M) are ^-orders,
the left and right orders of M. M is called integral if M £ O^M)
and normal if Ot(M) is maximal; these definitions are really right-
left symmetric. If A is an 22-order then all nonzero prime (ring)
ideals of A are maximal ideals and are ^-lattices. If A is a maximal
order the set of all iϋ-lattices in Σ which are two sided Λ-modules
forms an abelian group free on the maximal ideals of A as generators,
with identity A and inverses Mr1 = {x eΣ | MxM £ M}; when Σ is
simple the set of all normal ^-lattices forms a groupoid, called the
Brandt Groupoid. Briefly, for M, N normal ^-lattices, the product
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M-N = {Σ W Λ \mieM,nie N) is allowed only when Or(M) = Ot(N);
the maximal orders are the units; N'1 — {xeΣ\NxNQN}; NN"1 =
Oi(N), N~ιN= Or(N); every normal iMattice M= NrN^ with Nlf

N2 integral, and every integral i?-lattice M has an essentially unique
decomposition M = Nt Nk (product in the groupoid) where the
iV, are indecomposable (i.e., not expresible as a groupoid product of
nonunit integral normal lattices); the indecomposable jβ-lattices are
exactly the maximal one-sided ideals in the maximal iϋ-orders in Σ,
and are called the generators of the Brandt Groupoid (over R in Σ).

The main result of this section is a characterization of the
generators of the Brandt Groupoid over R, when R satisfies the
additional condition that each maximal ideal P of R is a prime of
R, or equivalently R/P is a locally finite field for each maximal
ideal P. We shall call such Dedekind domains "classical", since this
condition is satisfied by all Dedekind domains whose quotient fields
are (possibly infinite) algebraic number fields, and is also satisfied by
the valuation rings of classical local fields; moreover, any Dedekind
domain which is finitely generated (as a ring) is classical by [5, p. 68,
Th. 3].

THEOREM 2.1. Let R be a classical Dedekind domain, Σ a simple
separable algebra over the quotient field K of R. The generators of
the Brandt Groupoid over R in Σ are the maximal finite R-module
preprimes of Σ. Moreover, each generator is a prime of any R-order
containing it.

Proof. Let I = IR be the set of generators of the Brandt
Groupoid over R in Σ, and let W = WR be the set of all preprimes
of Σ which are also finite ϋ?-submodules of Σ. We are to prove that
I is the set of maximal elements of W.

lί SeW then R + S is a subring which is a finite i?-module so
is contained in an i?-order A (Proposition 1.1 of [4]) so S Q A; thus
the elements of S are integral over R. A key step is the following:

LEMMA 2.2. Let SeW. Let P be any maximal ideal of R with
P a S Π i?. Let A be any R-order containing S. Then there exists
a positive integer n with PnA + Se W, i.e., PnA + S is a preprime.

Proof. 1$S so SπR is a proper ideal of R and P exists.
PnA + S $ W for all positive integers n means 1 e PnA + S for all
n (as PnA + S is a finite ϋ?-module closed under + and ). Let RP

be the localization of R at P, let MP = RP M for any i?-submodule
of Σ. Then 1 e Pp1 AP + SP for all n which implies, as RP is a
Noetherian local ring and AP is a finite i?P-module, that le SP
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(Proposition 6, of Chapt. 3, § 3, no. 3 of [5]). But then there exists
s e R\P such that s l = s e S i.e., s e S Π R S P, a contradiction.

Combining the initial remarks with the lemma above, any S e W
is contained in Ste W with S^K — I7. Now apply Zorn's lemma to
the inductive collection of preprimes T of Σ such that T S Sl9 T is
an jβ-submodule of 2* and T consists of elements of Σ integral over
R; let T be maximal such. Then R + T is a ring of elements
integral over R and iΓ(J? + T) a iΓ-Si = £ so R f Γ is an iZ-order
of Σ hence a finite i?-module, hence Te W, and clearly T is maximal
in W (since we noted any Se W consists of integral elements).
Thus any element S of W is contained in a maximal element T
of W.

Now suppose T is any maximal element of W. T Π R = P is a
maximal ideal (as T Π R ^ P, a maximal ideal of iϋ, implies T + P
is a preprime and a finite P-module so T = T + P) and P is a prime
of R as i? is classical. Next let A be any i?-order containing ϊ7, we
claim T is a prime of A. For suppose Γ g ^ a prime of A Then
2\ Π R is a preprime of R containing the prime P = T Π i? of i2, so
2\ Π iϊ = P, and hence by Corollary 1.2, (3) i? = AP = ATχ Π iί, i.e.,
2\ is an i?-module. But TΊ ̂  4 a finite i2-module so 2\ is a finite
P-module so 2\ e TΓ and Ti = T by maximality of T in W.

Now let /ί be any maximal iί-order containing T, a maximal
element of W. We contend T is either a left or a right ideal of
Λ, hence a maximal left or right ideal of A (as all proper ideals of
A are in W) and hence a generator of the Brandt Groupoid. By
Lemma 2.2, T contains a nonzero two-sided ideal of A so by Corollary
1.2, (1), the largest two-sided ideal p of A contained in T is a non-
zero prime ideal hence a maximal ideal of A. Hence (as T is a
prime of A)T = Γ/p is a prime of the simple JB = iϋ/P algebra /f =
A/p. But β is a locally finite field so any finite dimensional division
algebra over R is again a locally finite field (see [7]), so either A
is a locally finite field or A ~Ή.orak{V, V), k locally finite, 2 ^
dim/c V < co. In the first case T = {0} i.e., T = p and we are done
(this is always the case when Σ is commutative). In the second
case, by Corollary 1.7, T = etA + Ae2 with 1 = εt + ε2 + ε3 in A, ε̂
orthogonal idempotents in A, and ε3 ^ 0. Choose e{ e A, 1 <̂  ΐ ^ 3
with ex + p = ε1? ez -r p = ε.z, β3 = 1 — (βx + e2), so β3 + p — ε3 and 1 =
eL + e2 + e3. Then Γ = eLA + /ίβ2 + p. Our assertion about T will be
proven if we can show either eLep or e2ep (as then T = ex/ί + p, a
right ideal, or = Λe2 + p, a left ideal). So suppose both eL and e2

are not in p. Let S = T + βip"1^; using e^j e p if ί φ j (as ε̂ Sy = 0
if % φ j) one checks that S is closed under multiplication as well as
addition. If -leS, then 1 e S (as - S g S ) so as -e, - e2e T S S,
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e3 = 1 — e, - e2 e S. But then e3e3e3 e e3Se3 which one checks (using
again e^j e p if i Φ j) is contained in p, so ε3 = (ε3)

3 = (ezf + p = 0, a
contradiction. Hence — 1 g S, so S e TF (as S is clearly a finite
iϋ-module), and hence S = T as T is maximal in W. Then e1p~1β2 S
S = T ξΞ: Λ, but as Λfo + p)Λ = Λ since ^ ί ί> for i = 1, 2, e]p~ιe2 C Λ
implies p"1 = ΛLp"1^ — Λ^ + p)Λp~1Λ(e2 + t>)̂ l S -4, a contradiction.

To complete the proof of 2.1 it remains to show that any Tel,
i.e., any generator of the Brandt Groupoid, is maximal in W; but
if T were not maximal we would have T £ 2\ maximal in TΓ, but
then TΊe J and (by Satz. 16, p. 76 of [6])27=Λί27

1iV
r for M, N normal

integral T-lattices, M or N not a unit in the groupoid, contradicting
T indecomposable.

REMARKS. (1) If Σ is a separable field extension then IR is
the set of nonzero prime ideals of the integral closure R of R in
Σ, so the theorem characterizes them "intrinsically".

(2) The final assertion of the theorem shows that a maximal
i?-order A in Σ again is "classical" since the maximal one-sided ideals
of A are primes of A.

(3) The finite iϋ-module preprimes S with KS=Σ are precisely
the proper integral J?-lattices (M proper meaning MS^0t(M)), so
the theorem shows every proper integral ϋMattiee is contained in a
maximal one, which is in fact a normal lattice.

(4) It follows immediately from the proof above (or use [6])
that if T is a generator of the Brandt Groupoid over R in Σ, then
T is contained in exactly two maximal ϋ?-orders, namely Oι{T) and
Or(T).

3* Spanning primes of a simple algebra* In this section we
apply Theorem 2.1 in the special case when R is the valuation ring
AP of a discrete rank one prime P and Σ is central, to show that
the generators of the Brandt Groupoid of normal AP-lattices are
then precisely the spanning primes of Σ extending P. With this we
can characterize spanning primes over global fields. A close analysis
of the case when AP is complete and use of Rutherford's Theorem
(Proposition 1.6) yields some apparently new information about the
factorization of the unique maximal ideal of a maximal AP-order as
a product of generators.

THEOREM 3.1. Let Σ be a central simple K-algebra. Let P be
a discrete rank one finite prime of K. For T S Σ the following are
equivalent:

(1) T is a spanning prime of Σ extending P;
(2) T is a prime of Σ extending P and Tis a finite AP-module;
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(3) T is a generator of the Brandt Groupoid of normal AP-
ίattices in Σ.

Proof. We first assume that AP is a complete discrete rank one
valuation ring and prove 3.1, then deduce the general case. The
proof depends on the special case when Σ is a division algebra, in
which the situation is particularly simple.

PROPOSITION 3.2. Let D be a (not necessarily central) division
algebra over K. Let P be a finite prime of K with AP a complete
discrete rank one valuation ring. Then there is a unique prime T
of D extending P. Namely, T is the unique maximal one or two-
sided ideal of the unique maximal AP-order Δ in D. T is a spanning
prime of D and T is a finite AP-submodule of D.

Proof. Let T be any prime of D with T 3 P; such a T always
exists by Zorn's lemma, and T is a finite prime if P is. Then
TΓ) K = P and AP £ Aτ (by Corollary 1.2, (3)) so that T is an AP-
submodule of D. To show T = p, the unique maximal one or two-
sided ideal of Δ, it suffices to show T C A. For then T is a finite
Ap-module and so a maximal finite AP-module preprime, hence by
Theorem 2.1, T = p, as p is the only maximal one-sided ideal of a
maximal AP-order in D. Let te T. lϊteKthen teTf)K= P^AP^Δ.

If t e T\K let f(x) = Σ? a{x
l be the monic minimum polynomial for t

over K, so an — 1. Since Σ is a division algebra and t Φ 0, / is
irreducible. Let v be the (exponential) valuation determined by Ar.
Then v(a0) > min {v{a^) \ 1 ̂  i ^ n], for if not, we have v(a^ιa^ ^ 0,
l^i^ny so a^ιf(x) — a^anx

n + ••• + a^ιa^x + 1 has all its coefficients
in AP £ Aτy but then 0 = a^antn + + a^aj + 1 implies — 1 =
a^ιant

n + ••• + a^aje AT T £ Γ, a contradiction. HenseΓs Lemma
holds in K so ([11, Lemma 21, p. 52]), f(x) irreducible over K implies
min {v{ai) \1 ^ i ^ n — 1}^ min {v(a0), v(an)}. Now, min {̂ (α0), ^(αw)} =
v(αΛ) — i (l) = 0 by what we just showed, so v{aι) ^ 0 for all i and
f(x) e AP[x], proving t is integral over AP, and hence teΔ. Done.

Proof of 3.1 in the case that AP is complete, and Σ is not a
division algebra: applying Theorem 2.1, we see immediately that (2)
implies (3) since (2) implies T is a maximal element of the set of
finite Ap-module preprimes in Σ; moreover, as T is then a normal
iMattice, K-T= Σ, so also (2) implies (1).

To show (1) implies (2) we identify Σ with (D)n where D is a
division algebra finite dimensional (and central) over K, and n > 1.
Let T satisfy (1) and let {ε^ \ 1 ̂  ΐ, j ^ n] be the usual matrix units
(Si, has 1 in ϊ, i-th spot, 0 elsewhere). Let π be a prime element of
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AP, i.e., πAP = P. Then KT = Σ implies there exists a positive
integer k with nheioeT for all i,j. We assert that TS(π~2kT0)n

where To is the unique prime of D extending P (see 3.2); if so then
since TO K = P implies T is an AP-module (by (3) of Corollary 1.2)
and since TQ is a finite AP-module (by Proposition 3.2), T will be a
finite AP-module, proving (2) holds. Identify D with the set of
"scalar matrices", i.e., matrices of the form diag {α, α, * ,α} where
a e D. Since D is a subring of Σ, T Π D is a preprime of D, and
T Π D extends P, so TΠ D must be contained in To, the unique
prime of D extending P. To prove Γ g (π-2kT0)n it then suffices to
show π2kMi3- S TΓ\ D where Mi5 = {ae D\a is the i, i-th entry of
some matrix in T). Let aeMijΊ say α = α^ for t = (alm) e T. Then
diag {π2ka, , τr2fcα} - ΣΓ=i (πkeιi)t(πkejι) e T Γ Γ g ϊ 7 so τ τ 2 A ; α e T n ΰ a s
asserted.

Thus (1) is equivalent to (2). Finally if (3) holds, i.e., T is a
generator of the groupoid, let Tx be any prime of Σ containing T;
then KT, ^ KT = Σ so (1) holds for T19 hence (2) holds for T19 so
T,e WAP so T, = T as Γ is maximal in Tϊ^P by Theorem 2.1. Thus
(2) and (1) hold for T, concluding the proof of 3.1 when AP is
complete.

To deduce the general case we apply the following well known
lemma:

LEMMA 3.3. Let V be a finite dimensional K-vector space. Let
A be a discrete rank one valuation ring of K, with maximal ideal
P. Let A* denote the P-adic completion of A.

( 1 ) If M is any A-submodule of V, (M ®^ A*) Π V = M.
( 2 ) If N* is any A*-lattice in V®A A*, then N* Π V = N is

an A-lattice in V and Nξξ)AA* = N*.

Proof. See Chapter 7 of [5]. One easily checks that M need
not be a finitely generated A-module in (1).

Proof of Theorem 3.1. Suppose first that T satisfies (1) of
Theorem 3.1. Then T is an AP-submodule of Σ and KT = Σ. Hence
(letting ()% denote P-adic completion) T* = T(g)Ap is an AJ-submodule
of Σ$ = Σ(g)K?, Γ 3 P 4 ? = P* the maximal ideal of Af (a prime
of K£) and T* spans Σ%; moreover T* is a preprime of Σ% as
- l e T7* implies - 1 e T* Π Σ = T (by 3.3, (1)), a contradiction. Now,
letting Tx be any prime of Σ% with ϊ7! 3 Γ , T± is a spanning prime
extending P* and hence a finite AP-module. This proves T* is an
A?-lattice in Σ$, so Γ = Γ* Π I ' is an AP~lattice in Σ by 3.3, (2),
and (2) of Theorem 3.1 holds. (2) immediately implies (3) by Theorem
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2.1. Finally, if (3) holds, suppose T is not a prime, and let Tx be
any prime of Σ containing T. Then KTX z> KT = Σ (as T is an AP-
lattice) so T1 is a spanning prime and hence by what we just showed
Tx is a finite ^4P-module. But T is a maximal finite -AP-module
preprime by Theorem 2.1 so Γ = Tlf a contradiction. Thus 3.1 is
proven.

REMARK. If Σ is a division algebra, (l)-(3) of Theorem 3.1 are
equivalent to: T is a prime of Σ extending P and T consists of AP-
integral elements. For suppose this condition holds and let KT —
Σo g l As Σ is a division algebra, Σo is a division algebra with
center L 3 K. Let S = Tf] L, a prime of L by Corollary 1.2, (4).
KT = 2Ό implies ϊ7 is a spanning prime of 2Ό (by Proposition 1.4) so
(as As must again be a discrete rank one valuation ring) T is a
finite Ag-module by 3.1. As S g T all elements of S are AP-integral
so by [5, p. 151, Proposition 6], As is the integral closure of AP in
L. Therefore As and hence T is a finite AP-module. But then
K-T=Σ by 3.1 so (1) of 3.1 holds. Conversely if T satisfies (1)
hence (3) of 3.1 then T is contained in an AP-order of Σ so the
elements of T are AP-integral.

Theorem 3.1 essentially verifies Harrison's conjecture in [7, p.
13, footnote 3]. Explicitly:

THEOREM 3.4. Let K be a field such that all its (nontrivial)
valuations are discrete rank one, or equivalently such that all its
finite primes are discrete rank one; for example, any global field.
Let Σ be a central simple K-algebra. Then the spanning finite
primes of Σ are the generators of the Brandt Groupoids over the non-
trivial valuation rings of Σ. Specifically, if T is spanning then
T Π K — P is a finite prime of K and T is a generator of the
Brandt Groupoid of normal AP-lattices in Σ.

Proof. Immediate from Corollary 1.2 and Theorem 3.1.
Turning again to the situation of Theorem 3.1 we study the

complete case more closely, with the aid of Rutherford's Theorem
(Proposition 1.6), and obtain information on the groupoid generators,
i.e., spanning primes in Σ, which divide the maximal ideal of a
maximal order.

THEOREM 3.5. Let Σ be a central simple K-algebra. Let P be a
discrete rank one finite prime of K. Let Λ be a maximal AP-order
of Σ with unique maximal ideal p.

(1) The primes of Σ which contain p are precisely those
generators of the Brandt Groupoid of normal AP4attices which divide,
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i.e., contain p.
(2) The map T—> *(TΓ\ A)jp gives one-to-one correspondence between

the generators which divide p and the set of finite primes of the
finite dimensional simple kP = AP/P-algebra A = Λ/p, which set is
completely described by Rutherford's Theorem (Proposition 1.6).

(3) For each generator T which divides p there is an integer
r = r(T, p) ^ 1 such that T can only appear as the r-th term in any
factorization of p as a product (in the groupoid) of generators.

Proof. (1) is an immediate consequence of Theorem 3.1, as Γ3f)
implies KT2 Kp = Σ and Tf)K^pΓ)K=P. To prove (2) and (3)
it suffices to consider the case when AP is complete, for M—> M§§ AP

and M* —> M* Π Σ gives an isomorphism between the Brandt Groupoid
in Σ over AP and that in ΣP over A% (see § 11 of Chapter 6 of [6]).
If ΣP is a division algebra then p is already a prime, A is a locally
finite field and there is nothing to prove. Hence we assume AP is
complete and we identify Σ with Hom^ίV, V), D a central division
algebra over K, V a right D-vector space with 2 <£ dim^ V < ©o.
Let z/ be the unique maximal AP-order in D with unique maximal
ideal πΔ = z/ττ (where 7Γ is not necessarily in K); A is a (noncommuta-
tive) discrete rank one valuation ring of D (cf. [11, Chap. 2]).

For M and N right J-submodules of V let

L(M,N) - { α e ί | α i l ί g i V } .

Let Λ be the fixed maximal AP-order of Σ. Then A = L(E, E) =
Honij (£7, i?) for a free z/-submodule £ o f 7 with rank^ E=n = ά\mDV,
and the unique maximal ideal p oί A i.e., the radical of A, equals
L(E, Eπ). Let ΩE denote the set of all free, rank n, zί-submodules
F of V such that F S E but F £ Eπ.

CLAIM, (a) every maximal .R-order Λr equals L(F, F) for a unique
FeΩE; (b) every prime T of Σ with T^p has the form T= L(WT, Uτ)
for a unique pair of free, rank n, J-submodules of E, with Wτ 2 C/y, 2
Ϊ/TΓ and rank, (Wτ/ Uτ) = 1.

Proof, (a) follows since ED = V and L(F, ί7) - L(F', F') if and
only if F' = Fπk for some k. For (b), let O^T) = L(F, F) with
F G ^ . Then T^p' = L{F, Fπ), the radical of OZ(T), and T/ί>' is a
maximal left ideal of Ot(TW = Hom^ (F, F) where F = ^/.FTΓ is an
^-dimensional Δ — Δ/πΔ vector space. But then T/p' = Hom^ (F, U)
for a uniquely determined (n — l)-dimensional if-subspace of F. Letting
U 2 Fπ be the unique J-submodule of F with U/Fπ = ϋ, we see
that T^L{F, U); but L(F, Ϊ7) is a preprime (as F^U) so Γ =
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L(F, U). Letting Wτ = F, Uτ = U we have E 2 Wτ 2 Uτ and
rank,, Wτ/Uτ — 1; it remains to show Uτ S Eπ. Now as WτeΩE,
there exists α? e TFrYEfc. By Nakayama's Lemma, £7 has a free J-basis
x = x19 x2, , &w; then Eπ = X â π J. For each i let ^ e L(E, E) be
defined by Uxβ = δu ̂ τr (Kronecker <?). Then ί< e 1/(57, ̂ ) = }) 9 ϊ7 so
x{π = tiX e tiWτ Q Uτ for i = 1, , n proving Eπ gΞ £7r. Assertion
(b) is proven.

Now, if Γ 3 p and T=L(WT, Uτ) as in (b) above, let Wτ= Wτ/Eπ,
Uτ = tyEfr. Then (ΓΠ Λ)/p = {de Λ = Λ/p\aWτ ̂  Uτ) which, by
Rutherford's Theorem, is a prime of Λ=Hom.-Δ{E, E) (where E=/Eπ)
since Wτ g Ϊ7Γ are ΛΓ-subspaces with dimjWτ/Uτ = 1. Conversely, by
lifting back to Λ and then extending to a prime of I7, any prime of
A has the form (Tn A)/p for some prime T 2 t>. Thus Γ-> (ΓΠ^Vί)
is onto the primes of A; that the map is one-to-one follows from
the uniqueness part of Rutherford's Theorem and the uniqueness of
the representation of T as L(WT, Uτ).

Thus (2) is proven. To prove (3), let Γ3f ) and suppose T =
L( Wτ, Uτ) where Wτ, Uτ are chosen as in the claim above. We claim
r = rankj (Wτ/Eπ) has the property claimed in (3). First, note that
Or(T) = L(WT, Wτ) and Ot(T) = L{UT, Uτ). In any factorization p =
Tx Tn, Or(Ti) = O,(Γί+1) so WT.= UT.+1 and the factorization
corresponds to the chain Eπ = UTl £Ξ WTl = ί7y2 g £ TΓ^^ —
UTn g TFrϊi = j&, with rank, (WτJEπ) = i as rank, WTJWT.^ = 1.

COROLLARY 3.6. Suppose AP/P is a finite field (which is always
true for the classical fields). Then the maximal ideal p of a maximal
Ap-order A is divisible by only finitely many generators of the Brandt
Groupoίd over AP (although there are in general (see § 4) infinitely
many distinct maximal AP-orders in Σ.)

Proof. A/p is a finite ring.

4* The Non-split case; self conjugate primes* In this section
we study the special situation which arises when a discrete rank one
prime P of K does not have infinitely many extensions to spanning
primes of Σ, and give a characterization of division algebras of prime
power degree.

THEOREM 4.1. Let Σ be a central simple K-algebra, and P a
discrete rank one finite prime of K. Then the following four condi-
tions are equivalent:

(1) Σ contains only finitely many spanning primes extending P;
(2) there is a unique prime T of Σ extending P;
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(3) Σp is a division algebra (where Σp = ΣξQKp, the P-adic
completion);

( 4) there is a prime T of Σ extending P which is "self-conjugate"
in Σ, i.e., aTa~ι = T for all units aeΣ.

Moreover, the following two conditions are equivalent and are
implied by the first four; they are equivalent to the first four if K
is a global field:

(5) every prime T of Σ extending P is spanning;
(6) Σ is a division algebra and P has a unique extension to

each subfield L of Σ containing K.

Remarks. In condition (5), "is spanning" can be replaced by "is
a finite AP-module" or by "consists of AP-integral elements". (2), (3)
and either one of these alternate versions of (5) are equivalent when
Σ is merely simple and separable, e.g., when Σ is a separable field
extension of K.

We will say P is nonsplit in Σ if any of (l)-(4) above hold.

Proof. By § 3 there is a one-to-one correspondence between the
spanning primes of Σ extending P and the spanning primes of the
P-adic completion Σ% of Σ which extend P* (the prime of Kp).
Either there is exactly one maximal AP-order in Σp or there are
infinitely many, according as Σ% is a division algebra or is not. With
3.1, 3.2 and the remark at the end of § 2, this implies that Σ%
contains exactly one prime, or contains infinitely many spanning
primes according as it is a division algebra or not. Thus (1) is
equivalent to (3). Clearly (2) implies (1); (3) implies (2) for if Ti is
any prime of Σ extending P then by Lemma 3.3 (1), TιΆ% is a
preprime of Σ% which extends P*, so T^A* S T* the unique prime
in Σ$ extending P*, hence T* Π Σ a ϊ\ which implies (as T* Π Σ is
a preprime) Tx= T* Π Σ, the unique spanning prime of Σ extending
P. Thus (1), (2), and (3) are equivalent.

(2) clearly implies (4). Suppose (4) holds and let T be self con-
jugate. Suppose that (3) does not hold, i.e., that Σp is not a divi-
sion algebra. Then there are infinitely many maximal AP-orders in
Σ which are all conjugate under inner automorphisms of Σ (by
Proposition 3.5 of [4]) and hence (using remark at end of § 2 and
Th. 3.1) given any spanning prime it has infinitely many distinct
conjugates. Thus T cannot be spanning. But we show that it is:
for let ΣQ = K- T = {Σ oaU \ a, e K, U e T}, the iΓ-subalgebra generated
by T (as Γ Γ g T). We assert that K-T contains every unit of Σ.
If so, we are done, as one checks Σ has a basis consisting of units.
Let u be a unit in Σ and suppose u $ KT. Then u 0 Aτ (as T Π K =
P Φ 0 implies Aτ S KT) so uT = Tu g T and there exists t e T with
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ut$T; bu t u-\ut)eT and u~1TuT= T t^T so by Lemma 1.1,

w-1 e T £ KT. But KT is a iΓ-subalgebra of Σ so u~ιe KT implies
u e KT, a contradiction. This completes the proof of the equivalence
of conditions (1) to (4).

(5) is equivalent to (6): if (5) holds then Σ must be a division
algebra, for otherwise there exists ae Σ with a2 = 0 and then P + Ka
is a preprime of Σ containing P which is not a finite AP-module, so
cannot be contained in a spanning prime. (5) is equivalent to the
assertion that every preprime T of Σ containing P is a finite AP-
module, hence in particular every prime of a subfield L 2 K of Σ
which extends P must be a finite AP-module. But this implies, by
[5, p. 151, Proposition 6] that P has a unique extension to each
such L, and (6) holds. Now suppose (6) holds and suppose T is a
prime of Σ extending P. Each x e T is in the unique extension of P
to the subfield K(x) of Σ, and so x is integral over AP by the result
°f [5] just quoted. Hence Γ is spanning by the remark following
Theorem 3.3.

Clearly (2) implies (5) so any one of the first four conditions
implies the last two. We conclude by showing that if K is a global
field (i.e., an algebraic number field or an algebraic function field
over a finite field) then (6) implies (3), so that all the conditions are
equivalent. Suppose then (6) holds and suppose that Σ% is not a
division algebra.1 Let n be the degree of Σ(n2 — [Σ: K\). We have
Σp ~ (D)k1 k > 1 and degree D = m < n, with m | n. Let P —
Po, Plf •••, Ps be a finite set of finite primes of K including all the
finite primes Q at which Σ is not unramified, i.e., all those Q with
I 7 ! not split. By the Grunwald-Wang Theorem [3, p. 106, Th. 5]
there exists a normal field extension L of K (which is even a cyclic
extension) with the following properties (letting nP = [L|: KP] for S
any extension of P to L): nP = m, nP. = n for i = 1, , s, nQ = 2
for each real infinite prime Q of K for which Σq is not split, and
[L: K] = n. Then by construction, for every finite or real infinite
prime Q of K, the Q-index of Σ (i.e., the index of Σ$) divides the
Q-degree of L over K. Thus the Q-index of Σ ®κ L is 1 for all Q
and Σ®κL~{L)n by Hasse's theorem ([12, p. 206, Th. 2]). But
then by [6, p. 46, Satz 14] and the fact that [L: K] = n = degree
of Σ, L is isomorphic to a maximal subfield of Σ. Therefore, P has
a unique extension to a prime of L, which implies the P-degree of L
over K must be n (as the P-degree = e f which equals n as efg = n,
g = 1) a contradiction to our construction of L with P-degree = m <n.

REMARK. The equivalence of (2) and (5) when if is a global field
shows that in general there exist nonspanning primes in Σ, see § 6.

1 The following argument was suggested by M. Schacher.
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PROPOSITION 4.2. Let Σ, K and P be as in Theorem 4.1 and
suppose P is nonsplit in Σ. Let T be the unique prime of Σ extend-
ing P. Then Aτ is the unique maximal AP-order in the division
algebra Σ, T is its unique maximal ideal (one or two sided). The
Brandt Groupoid over AP in Σ is the cyclic group consisting of all
powers of T. Moreover, Aτ is a (noncommutative) discrete rank one
valuation ring of Σ (see [11]), with T its ideal of nonunits. kτ =
Aτ/T is a finite field extension of kP — AP/P, the value group Γτ of
the valuation associated with Aτ is a finite extension of the value
group ΓP of the AP valuation, and [Γτ: ΓP] [kτ: kP] — [Σ: K] (i.e.,
«ef= n").

Proof It suffices to prove the assertions of the last two sentences,
the rest being immediate consequences of previous results. As
xAτx~ι — Aτ for all x Φ 0 in Aτ, to show Aτ is a valuation ring we
need only show x $ Aτ implies x"1 e Aτ. But x#Aτ implies (as xT =
Tx) that xT£]T, say xti T for te T. Then χ-'xte T and x~ιTxt^T
so by Lemma 1.1, xtgT implies x~ι e T, as required. The associated
valuation is discrete rank one since T is a principal ideal of Aτ by
Corollary to Proposition 3.3 of [4]. By hypothesis ΣP is a division
algebgra. T* = T-A% is the prime of ΣP extending P* = P Af and A*
is a (noncommutative) valuation ring of ΣP with [Γτ*: ΓP*\ [kτ+: kP*] =
[ΣP: K?] ([11, p. 54, Th. 11]). But Aτ*/T* = Aτ/T (see [6]) and
AP*/P* = AP/P, and also P-Aτ = Te and P* AT* - (T*)e so by order
theory (see [6]) [Γτ*ι ΓP*] = e = [Γτ: ΓΓ], proving the last assertion.

We conclude this section by showing that over a global field the
existence of a self conjugate finite or infinite prime characterizes the
division algebras among all central simple algebras of prime power
degree. Indeed when char (K) Φ 0 and K has only discrete rank one
valuations, Theorem 4.1 shows this result is equivalent, for algebras
of prime degree, to the Hasse local splitting theorem (i.e., "Σ is a
matrix algebra if and only if Σ% is a matrix algebra for all primes
P of K"). This suggests proving the Hasse splitting theorem for,
say, (generalized) quaternion algebras over an arbitrary field of non-
zero characteristic whose valuations are discrete rank one by directly
proving the existence of a self-con jugate prime in such algebras.
The author is indebted to D. K. Harrison for these observations and
for conjecturing the following result.

PROPOSITION 4.3. Let K be a global field. Let Σ be a central
simple K-algebra of degree pk where p is a prime number. If
K = Q or char (K) Φ 0, then Σ is a division algebra if and only if
there exists a self-conjugate prime in Σ.
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More generally, if K is any global field then Σ is a division
algebra if and only if Σ contains a self conjugate prime T, finite
or infinite.

Proof. First suppose I is a division algebra. The degree of
Σ — exponent of Σ (in the Brauer Group of K) = the least common
multiple of the P-exponents mp of Σ, i.e., of the exponents of the
completions Σ% of Σ at the primes P (finite and real infinite) of K.
But all the P-exponents are divisors of pk, hence powers of p, and
so for some P, the P-exponent of Σ equals pk, i.e., the index of ΣP

is pk. Since pk is the degree of Σp, Σ% is a division algebra. If P
is a finite prime we are done; when char (K) — p Φ 0 this must happen.
So suppose char (K) = 0 and P is real infinite. If K = Q, so that P
is the unique infinite prime of Q, then Σp = H the ordinary (Hamil-
tonian) quaternions, so degree Σ = 2, and since by Hasse Reciprocity
Σanp (Σ\P) = 0 (mod 1) (where (Σ | P) is the Hasse invariant of Σ at
P), there must exist a finite prime P ' with (Σ\P) ί 0 (modi), hence
with mP, > 1, hence with mP, = 2 (as mP, | degree Σ) hence with Σ%,
a division algebra. Finally suppose K is any algebraic number field.
We have Σp a division algebra, i.e., Σ% — H. Then degree Σ = 2, Σ
is a (generalized) quaternion division algebra over K. We assert that
P is in fact an (infinite) prime of Σ and hence (as P £Ξ K) a self-
conjugate prime of Σ as required. Suppose P §Ξ T a prime of Σ.
Then (as P is a prime of K) T g K, so let α e T\K. The subfield
iΓ(α) of I7 is a quadratic extension of K, in fact K{a) = iΓ(δ) for
some δ e J with δ2 e K. Let Γo be any infinite prime of K(b) contain-
ing a and extending P (To exists as α and P are in the preprime
T f] K(b)). By [7], JΓ0 is an archimedean order in the subfield L of
Kφ) which it generates; but (as P is real infinite so is the cone of
an ordering of K—see [7]) L^2K and (as aeT0) aeL so L = K(a) =
Kφ). Hence To is an order in Kφ) so ί>2e To, hence in T0Π K = P.
But now consider Σ ? = -#> and identify iΓ with a subfield of R via
the unique isomorphism K-^ T which sends P into R+, the non-
negative reals. Then be H and b2 = re P e i ί f , and r ^ 0. Hence
r = f for some real number t and we have (δ — r)(δ + r) = 0 with
δ — r and b + r Φ 0 as δ is not in the center K of Σ, so not in
the center R of iϊ, which is a contradiction since if is a division
algebra.

Now suppose Σ is any central simple algebra over the global
field K of arbitrary degree, and suppose T is a self-conjugate prime
of Σ. We show Σ must be a division algebra. If T is finite then
we are done, by Theorem 4.1 (for condition (4) of 4.1 then holds with
P — K Π T). Hence suppose T is infinite and suppose Σ = (Z?)n with
n > 1, D a central ϋΓ-division algebra. First, if Γ gΞ JBΓ then for any
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a e Σ with α2 = 0, T + Ka is a preprime properly containing T, a
contradiction. Thus Γ g if. Let T+ = {ae T\ -a£ T}. Then by
Proposition 1.6 of [7], G = T+ Π Z7(J) is a multiplicative subgroup of
U(Σ), the units of Σ, which is GL(n, D). Moreover, G is a normal
subgroup of GL(n, D) since aTa~ι = T implies aT+a~ι = T+ for all
ae U(Σ). G is not contained in the center Kx (multiplicative group
of K) (for let a e T\K, and choose n a positive integer such that — n
is not an eigenvalue of the matrix ae(D)n, then a + n IeG\K.)
Hence by Theorem 4.9 of [2], G 2 SL(w, -D) the unimodular group
and hence for all α e U(Σ), aeG if and only if d e t α e d e t G =
{det b I b e G) S DX/(DX)' (commutator factor group of Dx). If w is
even we are done immediately, for then det (/) = det (( — !)•/) (I =
identity of Σ) so —IeGQT+QT a contradiction. So suppose n is
odd. Then det (I) = det (diag {1, — , 1}) = det (diag - 1 , , -1,1})
(since ( — l)w~ ι = l if n is odd) and hence diag{ — 1, •••, - l , l } e G s T + .
Then diag {0, , 0, 1}, which is the matrix unit εnn, is in T+ + T+ S
T + . As T + is self-conjugate this implies ei{eT+ for i = 1, « ,w.
Finally, as for %Φj, det (I + ε{j) = 1 = det (I - eiy), both J + ε iy and
/ — βij are in T+, hence (multiply by ε^ on left, εj3 on right) both
ε o and ~εi3 are in T+, contradicting the definition of T+. The proof
is complete.

5* Miscellaneous results* In this brief section we prove the
analogue, for a central simple algebra Σ over a global field K, of
the fact that each unit (i.e., nonzero element) of K is contained in
only finitely many primes of the field, and we discuss the topology
on the space of all finite primes of Σ.

Let XS(Σ, P) = XS(P) be the set of spanning primes of Σ which
extends the finite prime P of K. XS(P) Φ 0 by Proposition 1.4.

PROPOSITION 5.1. Let Σ be a central simple K-algebra, let P be
a discrete rank one finite prime of K. Any two elements of XS{P)
are conjugate under a K-automorphism of Σ. If XS{P) is infinite,
then

P= Π{T\Te XS(P)}, AP=Γi {Aτ \ Te XS(P)} .

Proof. The first assertion follows from Theorem 3.1, [2, Pro-
position 3.5], and the fact that maximal left ideals in a fixed maximal
order are conjugate. The second assertion follows from the corre-
sponding assertion about XS(Σ%, P*) (P-adic completions), which holds
as Σ% is not a division algebra by Theorem 4.1.

PROPOSITION 5.2. Let K be a global field, Σ a central simple
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K-algebra. For aeΣ, a is an element of some TeXs(Σ, P) for at
most finitely many primes P of K if and only if a is a unit in Σ.

Proof Let f(x) = xn + a^'1 + + an be the minimum poly-
nomial for a over K; a is a unit of Σ if and only if an Φ 0. The
set {aiy , an} £ AP for all but a finite number of finite primes P
of K, as K is a global field. If {aιy , an] g AP then a e T for a
spanning prime T of Σ extending P if and only if an e P. For,
aeT implies α Λ = - α 1 1 - ^ * - 1 ^ α e i p Γ g Γ so α:%e TnϋΓ =
P, while conversely if α:we P, α AP[α] is a finitely generated AP-module
(since a is integral over AP by hypothesis) and a preprime (as it is
a proper ideal); therefore by § 2 and §4, a-AP[a], and hence α, is
contained in a spanning prime extending P. Thus a can be in some
Te XS(Σ, P) for infinitely many P if and only if an e P infinitely many
P if and only if an = 0.

We recall the topology on the space Y(Σ) of all primes of Σ, as
defined in [7]. A subbase for the open sets consists of the sets
W(a) = {Te Y(Σ) \ a £ T) for all aeΣ. The topology is T, and is not
Hausdorff (in general Y{R) is Hausdorff if and only if R is a generalized
Boolean ring: for all aeR there exists n> 1 with an = a). Y(Σ)
and the subspace X(Σ) of all finite primes are both (quasi-) compact.
A nonempty subset U of a topological space X is called irreducible
if and only if U is not the union of two nonempty closed proper
subsets (or, every nonempty open subset is dense)

PROPOSITION 5.3. Let XS(Σ) denote the space of spanning finite
primes of the central simple K-algebra Σ, K a global field. Then
Π {T\ TeXs(Σ)} = {0}. XS(Σ) is a dense irreducible subset of X(Σ)
and Y(Σ); thus the latter spaces are irreducible.

Proof. The first assertion follows from Proposition 5.1, the
observation that ΣP is a division algebra for at most finitely many
P, and the corresponding fact for K. For the second assertion it
suffices to show: if E={aί1 , an} is any finite set of nonzero elements
of Σ then there exists TeXs(Σ) with Tf] E = 0 . Let f(x) be the
minimal iί-polynomial for aiy with constant term a{. If all the a{ Φ 0
then choosing PeX(K) with f(x) e AP[x] for all i but with a{ £ P
for all i we have T Π E = 0 for any spanning prime T of Σ extend-
ing P, by the argument of the proof of 5.2. In particular this
proves the assertion when I' is a division algebra. If some a{ = 0
then Σ ~ (D)n, n > 1. Since the a{ are nonzero one can choose a
matrix representation for Σ over D in which the matrices for the a{

all have nonzero last columns. Let Eo — {δ e D | δ Φ 0, δ is a last-
column entry in the matrix of some αj . By the first argument,
there exists a spanning prime To of D with Tof]Eo= 0 . Let T be
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the set of matrices with last column entries in To, all other entries
in Λo = Oι(T0). One checks T is a maximal left ideal of the maximal
order (Λ0)n in (D)n = Σ, hence T is a spanning prime of Σ by 4.1.
By construction, T Π E = 0 , and we are done.

6* Examples* In this section we give some examples of finite
primes in simple algebras which are not spanning primes of the
algebra.

The first set of example arises from an important description of
finite primes containing idempotents, due to M. E. Manis (unpublished).

PROPOSITION 6.1. Let R be a ring, let e be an idempotent of R,
let f = 1 - e.

(a) Let P — ePe be a finite prime of the ring eRe, with unit
element e. A finite prime of R may be constructed as follows: let
Mo be any additive subgroup of eRf; let N= {xefRe | Mox ϋβPe = P},
let M= {xeeRf\xN g P } and finally let B = {xefRf\ xN g N}.
Then T = B + N + M + P = fBf + fNe + eMf + ePe is a finite prime
of R. Note that feT, e$ T.

(b) // T is any prime of R with fe T, then eTe — P is a finite
prime of eRe; T can be recovered from P and, say, Mo = eTf by the
construction in (α).

Proof. Straightforward checking.
Manis showed that in case R is a full matrix ring over a locally

finite field k the above construction, with e any idempotent of rank
one, yields all the finite primes of R, giving an approach to the
description of the primes of R differing from that in [10].

Applying Proposition 6.1 to the construction of nonspanning
primes in a matrix algebra Σ = (D)n, n > 1 over a division ring D,
let S be a finite prime of the center K of D, let P be any prime of
D extending S. Let {ê - | 1 ^ i, j ^ n) be a set of matrix units in
Σ. In the notation of 6.1, let e = enn, let Mo = {0}. Then N = fΣe,
M = {0}, B = fΣfi One checks that T is the set of matrices with
arbitrary entries in the first n — 1 rows, and 0 entries in all but
the ^-th column of the π-th row, the (n, n) entries being in P.
Clearly T does not span Σ over K.

The preceding construction yields nonspanning primes in Σ
whether or not D contains nonspanning primes. In case D is a
noncommutative central if-division algebra for K an algebraic number
field, the existence of nonspanning primes in D follows from Theorem
4.1, or more directly from the fact that for any subfield L of D
properly containing K, there are finite primes P of K which split in
L. For to say P splits in L is to say that the primes Sly , Sk of
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L extending P are not integral over AP, so that if T is any prime
of Σ extending Slf say, T cannot be integral over AP, hence (by 4.1)
T cannot be a spanning prime.

We now give a final example which shows that a prime of a
central simple algebra may span a "small" subalgebra. Let K be
any (nonlocally finite) field, L a cyclic Galois extension of K with
group G = <σ> of order n. Let Σ = (L, σ, α) be a cyclic algebra
(-£ = Σ Θ S Lu* with wVa: = σXcήu* for α e L and un = α e If—see
[1] or [4]). Suppose P is a finite prime of K which splits completely
in L, i.e., P has w distinct extensions Tlf •••, 7^ to a prime of L.
Then each Γ< is a prime o/ 21, with Jf T> = L, [L: If] = w = [I7: if ]1/2.
Such primes exist in any algebra Σ central simple over a global field
if, as Σ is then a cyclic algebra (see [1] or [6]), say Σ — (L, σ, a)
for some cyclic extension L of Ky and it can be shown (e.g., using
the zeta function) that there exist in fact infinitely many finite
primes of K which split completely in L.

The author wishes to thank Professor Harrison who directed
the thesis, from part of which this paper was developed. His
enthusiasm and imagination were invaluable and the germs of many
ideas herein were his.
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