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FINITE PRIMES IN SIMPLE ALGEBRAS

Hoytr D. WARNER

A “prime” in an arbitrary ring with identity, as defined
by D. K. Harrison, is shown to be a generalization of certain
objects occurring in the classical arithmetic of a central simple
K-algebra Y, i.e., the theory of maximal orders over Dedekind
domains with quotient field K. Specifically, if K is a global
field the ‘‘finite primes’’ of ¥ (in Harrison’s sense) which con-
tain a K-basis for > are the generators of the Brandt
Groupoids of normal R-lattices, R ranging over the nontrivial
valuation rings of K. The situation when 3 contains a finite
prime invariant under all K-automorphisms is studied closely;
when K is the rational numbers or char (K) # 0, and Y has
prime power degree, such a prime exists if and enly if Y is
a division algebra.

The techniques developed here are applied to yield new
information concerning the generators and factorization in
the Brandt Groupoids over certain Dedekind domains.

Harrison showed in [7] that his definition of prime (see §1)
yields the finite and real infinite prime divisors of number fielas, as
well as yielding the “primes” (i.e., prime ideals) of the rings of
integers of these fields. His conjecture ([7, p. 13, footnote]), that
a suitable modification of this definition existed which would yield
objects in the arithmetic of “noncommutative number fields”, was
the starting point for this investigation; § 3 contains the results.

NoTATION. Throughout this paper all algebras will be assumed
finite dimensional and all fields considered will be assumed not locally
finite unless explicitly stated otherwise. (By locally finite we mean
each element is contained in a finite subfield.) Z, @, and R will
denote the integers, rationals, and reals, respectively. For sets 4
and B,

A\B={xecAlxeB}.

1. Preliminaries. In this section we prepare for the body of
the paper by fixing notation and definitions we will need and proving
some preliminary general results. We refer the reader to [7] for
all unproved assertions about primes.

A preprime of a ring R with identity 1 is a nonempty subset
closed under addition and multiplication and not containing —1; a
prime is a maximal preprime. A prime P is called finite if 1¢ P,
which is equivalent to ae P if and only if —acP, ie., P is an
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additive subgroup of R; otherwise P is called infinite. If P is finite,
Ap={acR|aP<S P and Pa & P} is a subring of R and A,/P = k;,
is a locally finite field. If P is a finite prime of a field F, then A,
is a valuation ring of F with P its ideal of nonunits. When F is
a global field the finite primes of F' are thus in one-to-one corre-
spondence with the finite prime divisors of F. We note also that
for F a number field, the infinite primes which generate F' as a
ring (called real infinite primes in [7]) are in one-to-one corre-
spondence with the real infinite prime divisors (i.e., the real places)
of F [7, Proposition 3.5]. We will say a finite prime P of a field
F is discrete rank ome if the valuation determined by A4, is non-
trivial and discrete rank one. If R < S are rings, P and 7 are
primes of R, S, respectively, we shall say “T extends P” if and only
if T2 P, which is equivalent to 7N R = P. Note that if T extends
P then T is finite if and only if P is finite.

The following lemma generalizes [7, Proposition 2.1] to non-
central elements of a ring.

LemmA 1.1. Let P be a finite prime of a ring R. Let a,be R.
Then aPb = P and abe P tmply ae P or be P.

Proof. Suppose aPb = P, abe P, but neither a nor b are in P.
For 1 =1, let W;(a) be the set of all finite sums of elements of R
of the form auaa,a --- a;_aa;, where a;e Z-1 + P for 0 <5 < 4; let
Wya) = P and note W,(a) is an additive group for each 7. Let
T, = >wWia); this is precisely the smallest additively and multi-
plicatively closed subset of R containing P and a, hence it must
contain —1 since a€¢ P implies T, 2 P, and P is a maximal pre-
prime. Likewise —1¢ T, (defined similarly). Write

(1) —1=a+ fla) + +-- + fu(a)
and
(ID) —1=p8+g/(b) + -+ + gu(b)

where fi(a) e W.(a), ¢:(b)e W;b), «, B are in P, and where n and
m are chosen minimal (# =1, m =1 as —1¢ P). An easy induction
argument shows that for 1 =75 =1, Wyi(a) W;®) S W;_;(a) and for
1157, Wila) W) & W,_i(b), because aPb = P and abe P implies
a(Z-1 + Pb= P. If now n=<m, multiply (I) on the right by —g.(b)
(after transposing « to the left side) which yields, by the preceeding
remark, (1 + a)g,(0) e > »=, W;(b). Then multiply (II) on the left by
1 + a, transpose the —« to the right side and an expression like
(II) results, but with the right side now in >\»—'W,(b), contradicting
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the minimality of m. If n = m, the argument is similar.
The facts in the following corollary were first observed by
Manis and Harrison (unpublished).

COROLLARY 1.2. Let P be a finite prime of R.

(1) If p is the largest two sided ideal of R contained in P,
then b is a prime ideal.

(2) If a,becenter of R, abe P implies ac P or be P, and
abe Ay, ag Ap tmply be P.

(3) If R, is a subring of the center of R arnd P,= PN R is a
prime of R,, then Ap N R, = Ap.

(4) If K is a subfield of the center of R then PNK 1is a prime
of K, and Ap-x = Ap N K.

Proof. (1): If ¢-b<p, a and b two sided ideals then aPb &
aRbcCcp S P, so if a<Zp, i.e.,, a £ P, the lemma implies b & P, i.e.,
bSp. (2): abe A, and a, b e center implies aPb = abP S P so a ¢ A,
implies aw ¢ P for some «c P, but aaPb SaPb <= P and (ax)bcaPbS
P then implies be P. (3): A, N R, &S A, is clear. P, S P< A, s0
suppose a € A, \P; then as A, /P, is a locally finite field, a" — 1e P,
for some %; so a"el + P, &1+ PSS A,, and hence ac A, by (2).
(4): By (2), AN K is a valuation ring; since (4, N K)/(PN K) is a
subring, hence a subfield, of the locally finite field A,/P, PN K is
the maximal ideal of A,NK and is a prime of K by [7, Proposi-
tion 2.5].

The following corollary shows that in studying the primes of a
finite dimensional K-algebra ¥, it is sufficient to study the case when
2 is simple, as we shall do in this paper.

COROLLARY 1.3. Let X be a K-algebra, let C be the center of 2.
If T is any finite prime of ¥, TNC is a finite prime of C. Every
finite prime of X contains the radical rad X of X so there is a one-
to-one correspondence between the primes of X and those of the semi-
simple algebra 3 = Sjrad Y. The primes of a semi-simple algebra
I1r Y, ¥ simple, are precisely those subsets of the form T;+1liw: 2;
where T, 1s a prime of X,.

Proof. Note that if R is a ring, a a two sided ideal of R then
P 2 a is a preprime or prime of R if and only if P/a is a preprime
or prime of R/a. Next observe that if P is a prime of R and R =
b+ -+- + 0, b, two sided ideals with bb; & P for ¢ % j then all
but one of the b; is contained in P, by (1) of 1.2. Hence P/(3};..:b;)
is a prime of the ring R/>;..0;,. The last two assertions now follow
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immediately, observing that as rad X is nilpotent, rad ¥ < T for any
finite prime T by (1) of 1.2. That TN C is a prime of C follows
from the preceeding remarks and (4) of 1.2.

In §3 and §4 below we shall be considering finite primes T of
a simple K-algebra 3 which satisfy K-T = 2%, i.e., such that T
contains a K-basis for Y. The following proposition suggests that,
by analogy with the commutative case, it is not unreasonable to
impose this condition on (finite) primes of a noncommutative algebra.

PROPOSITION 1.4. Let Y be a K-algebra.

(1) If Y is commutative then KT =3 for any finite prime
T of 2.

(2) 2% always contains finite primes T with KT = 2.

(3) Let C be the center of X, let L be any subfield of C such
that 3 is finite dimensional over L. For a finite prime T of 2,
the following are equivalent:

(@) KT=2%
(by KC=2%
(¢) KL =2.

Proof. First note that TN K, a prime of K by 1.3, is== 0 (as
K is not locally finite) so KT 2 A, as T2 (TN K)A;; thus KT =%
if and only if KA, = 2. Proof of (1): If ael then [J: K] < =
implies a" +a,a" '+ -+ +a,=0 for «;¢ K, not all zero. TNK=P
is a finite prime of K by 1.2, (4), and so A, = A, N K is a valua-
tion ring of K by [7, Proposition 2.5] and there exists e = 0 in P
with aa;e P for 1 <7< m. One checks that then «a is integral
over A,, so a fortiori over A,, hence waec A, as A, is integrally
closed by [7, Proposition 2.7]. Thus ae K-A4,, and (1) holds. (2): If
Y is arbitrary, let P be a finite prime of K; P = {0} and A, is a
valuation ring of K. If 1 =12x,%, --,2, is a K-basis of 3 and
T = >uYiinkes Vi€ K for 4,7 = 2, we can choose a % 0 in P such
that av;;,, € A, for all 4,7,k (using A, a valuation ring of K); then
one checks S = P+ > 7 A(«x;) is a preprime of ¥ containing P and
a K-basis for Y; any prime 7 containing S is as desired. (3): By
Corollary 1.3, TN C is a (finite) prime of C, and hence by (1) above,
(since [C: K] = [2: K] < «)K-(TNC)=C; [2: L] < e implies L also
is not locally finite so also L-(TNC)=C. Hence K-T=C-T=L-T,
proving the assertion.

DEFINITION 1.5. Let X be a K-algebra (recall we assume ¥
finite dimensional, K not locally finite). A finite prime T of ¥ will
be called spanning if K.-T = Y. Proposition 1.4 shows this defini-
tion does not depend on the choice of the (not locally finite) field K
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over which 3 is finite dimensional and is equivalent to requiring
C.T = % for C the center of 2.

We conclude this section by stating the main result of [10] and
deriving a corollary we will need.

PROPOSITION 1.6. ([10, Th. 3.2 and Corollary 2.2].) Let k be a
locally finite field, 3 = Hom,(V, V) for V a finite dimensional
k-vector space. Ewery prime T of X s finite and has the form T =
LW, U)={feX|fAW) S U} for uniquely determined k-subspaces
W2 U of V with dim, W/U = 1 and conversely every such L(W, U)
(t.e., with dim, W/U = 1) is a prime of 2.

COROLLARY 1.7. Situation as above, with dim,V > 1. FEvery
prime T has the form T = e + Xe,, where 1 = ¢, + &, + &, the g
are orthogonal idempotents, and &, has rank 1 (so &, #= 0).

Proof. T=L(W,U), dim,W/U=1 so W=Fkx@ U for some
x; write V=W O W=U@ W Pkx. Let ¢,e¢,e, be the idem-
potents associated with the decomposition (i.e., ¢, = projection on U
along W' @ kx, etec.). Then ¢33 = L(V,U)<S L(W,U) and s, &
L(W,0 S L(W,U) so TS ¢e2 + Xe,. For the reverse inclusion, let
teT. Then as 1 — &)V =(,+&)V=UPkx=W and as t- WS
U< kernel of 1 — ¢, 1 —¢)t(1 —&)=0s0 1l —¢)—6&t(l—¢)=0
80 t = &,(t(L — &) + te, €63 + Ze,.

2. Brandt groupoid generators over classical dedekind domains.
First we recall some facts and establish notation. Throughout this
section R will denote a Dedekind domain distinet from its quotient
field K, and ¥ will denote a separable (see [4]) K-algebra. We refer
the reader to [4], [5], and [6] for the following facts. An R-lattice
M in ¥ is a finite (i.e., finitely generated) R-submodule of ¥ with
K-M=23. An R-order in X is a subring which is an R-lattice;
every R-order is contained in a maximal one. If M is an R-lattice,
O(M) ={xed|aeM<S M} and O, (M) ={xeX| Mz = M} are R-orders,
the left and right orders of M. M is called integral if M < O,(M)
and normal if O, (M) is maximal; these definitions are really right-
left symmetric. If 4 is an R-order then all nonzero prime (ring)
ideals of 4 are maximal ideals and are R-lattices. If 4 is a maximal
order the set of all R-lattices in Y which are two sided 4-modules
forms an abelian group free on the maximal ideals of 4 as generators,
with identity 4 and inverses M~ = {xe Y| MaxM < M}; when % is
simple the set of all normal R-lattices forms a groupoid, called the
Brandt Groupoid. Briefly, for M, N normal R-lattices, the product
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M-N = {3, mmn;|m;e M, n;e N} is allowed only when O,(M) = O,(N);
the maximal orders are the units; N7' = {xe 3| NxN S N}; NN =
O(N), N7'N = O,(N); every normal R-lattice M = N,-N,;* with N,,
N, integral, and every integral R-lattice M has an essentially unique
decomposition M = N, --- N, (product in the groupoid) where the
N, are indecomposable (i.e., not expresible as a groupoid product of
nonunit integral normal lattices); the indecomposable R-lattices are
exactly the maximal one-sided ideals in the maximal R-orders in X,
and are called the generators of the Brandt Groupoid (over R in J).

The main result of this section is a characterization of the
generators of the Brandt Groupoid over R, when R satisfies the
additional condition that each maximal ideal P of R is a prime of
R, or equivalently R/P is a locally finite field for each maximal
ideal P. We shall call such Dedekind domains ¢classical”’, since this
condition is satisfied by all Dedekind domains whose quotient fields
are (possibly infinite) algebraic number fields, and is also satisfied by
the valuation rings of classical local fields; moreover, any Dedekind
domain which is finitely generated (as a ring) is classical by [5, p. 68,
Th. 8].

THEOREM 2.1. Let R be a classical Dedekind domain, X a stmple
separable algebra over the quotient field K of R. The generators of
the Brandt Groupoid over R in 2 are the maximal finite R-module
preprimes of 2. Moreover, each generator is a prime of any R-order
containing it.

Proof. Let I= I, be the set of generators of the Brandt
Groupoid over R in X, and let W = W, be the set of all preprimes
of X which are also finite R-submodules of Y. We are to prove that
I is the set of maximal elements of W.

If Se W then R + S is a subring which is a finite R-module so
is contained in an R-order A (Proposition 1.1 of [4]) so S & 4; thus
the elements of S are integral over R. A key step is the following:

LEMMA 2.2. Let Se W. Let P be any maximal ideal of R with
P2SNR. Let A be any R-order containing S. Then there exists
a positive integer n with P"A+ Sec W, i.e., P"A+ S is a preprime.

Proof. 1¢S so SN R is a proper ideal of R and P exists.
P"A 4+ S¢ W for all positive integers n means lc P"4 + S for all
n (as P"4 + S is a finite R-module closed under + and:). Let R,
be the localization of R at P, let M, = R,-M for any R-submodule
of Y. Then 1ePrA,+ S, for all » which implies, as R, is a
Noetherian local ring and A, is a finite R,-module, that 1e¢ S,
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(Proposition 6, of Chapt. 3, §3, no. 3 of [5]). But then there exists
s€ R\P such that s-1 =se S i.e.,,seSN R < P, a contradiction.

Combining the initial remarks with the lemma above, any Se W
is contained in S, e W with S,-K = 3. Now apply Zorn’s lemma to
the inductive collection of preprimes T of X such that T2 S, T is
an R-submodule of ¥ and T consists of elements of Y integral over
R; let T be maximal such. Then R + T is a ring of elements
integral over R and K(R+ T)2 K-S, = 2% so R + T is an R-order
of Y hence a finite R-module, hence Te W, and clearly T is maximal
in W (since we noted any Se W consists of integral elements).
Thus any element S of W is contained in a maximal element T
of W.

Now suppose T is any maximal element of W. TN R = Pis a
maximal ideal (as TN R & P, a maximal ideal of R, implies T + P
is a preprime and a finite R-module so T= T + P) and P is a prime
of R as R is classical. Next let 4 be any R-order containing 7T, we
claim T is a prime of A. For suppose TS T, a prime of 4. Then
T.N R is a preprime of R containing the prime P= TN R of R, so
T.N R = P, and hence by Corollary 1.2, 3) R = A, = A, N R, i.e.,
T, is an R-module. But T, < 4 a finite R-module so T, is a finite
R-module so T,e W and T, = T by maximality of T in W.

Now let 4 be any maximal R-order containing 7, a maximal
element of W. We contend T is either a left or a right ideal of
A, hence a maximal left or right ideal of 4 (as all proper ideals of
A are in W) and hence a generator of the Brandt Groupoid. By
Lemma 2.2, T contains a nonzero two-sided ideal of A so by Corollary
1.2, (1), the largest two-sided ideal p of A contained in T is a non-
zero prime ideal hence a maximal ideal of 4. Hence (as T is a
prime of /)T = T/p is a prime of the simple R = R/P algebra A =
A/p. But R is a locally finite field so any finite dimensional division
algebra over R is again a locally finite field (see [7]), so either A1
is a locally finite field or 4 = Hom,(V, V), k locally finite, 2 <
dim, V < . In the first case T = {0} i.e., T = p and we are done
(this is always the case when X is commutative). In the second
case, by Corollary 1.7, T = ed + Ae, with 1 =¢, + ¢, + ¢ in 4, ¢,
orthogonal idempotents in /4, and & == 0. Choose e;ed, 1 <17=<3
withe, +p=¢,¢,+p=¢,e=1—( +e), s0e,+p=¢ and 1 =
e, + e +e. Then T=ed+ Ae, +p. Our assertion about 7 will be
proven if we can show either e, €p or e,cp (as then T=e¢4 + p, a
right ideal, or = Ae, + p, a left ideal). So suppose both e, and e,
are not in p. Let S= T + eple,; using ee;cp if 1 -7 (as €, =0
if © = j) one checks that S is closed under multiplication as well as
addition. If —1€¢ S, then 1S (as —SES) so as —e¢, — e, TE S,
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e&s=1—e —ecS. But then eee,ce,Se;, which one checks (using
again e;e;ep if 7 # j) is contained in p, s0 & = (&) = (e;)* + p =0, a
contradiction. Hence —1¢S, so Se W (as S is clearly a finite
R-module), and hence S = T as T is maximal in W. Then ebpe, &
S=T< 4, but as A(e; + p)4 = A since e; ¢p for 1 = 1,2, ep e, & 4
implies p~' = Ap~'4d = A(e, + p)Ap—'A(e, + p)4 = A, a contradiction.

To complete the proof of 2.1 it remains to show that any T¢I,
i.e., any generator of the Brandt Groupoid, is maximal in W; but
if T were not maximal we would have TS T, maximal in W, but
then T, eI and (by Satz. 16, p. 76 of [6])T=MT,N for M, N normal
integral T-lattices, M or N not a unit in the groupoid, contradicting
T indecomposable.

REMARKS. (1) If Y is a separable field extension then I, is
the set of nonzero prime ideals of the integral closure B of R in
2, so the theorem characterizes them “intrinsically”.

(2) The final assertion of the theorem shows that a maximal
R-order 4 in Y again is “classical” since the maximal one-sided ideals
of A are primes of 4.

(3) The finite R-module preprimes S with KS=23 are precisely
the proper integral R-lattices (M proper meaning M & 0,(M)), so
the theorem shows every proper integral R-lattice is contained in a
maximal one, which is in fact a normal lattice.

(4) It follows immediately from the proof above (or use [6])
that if T is a generator of the Brandt Groupoid over R in X, then
T is contained in exactly two maximal R-orders, namely O,(7T) and
0.(T).

3. Spanning primes of a simple algebra. In this section we
apply Theorem 2.1 in the special case when R is the valuation ring
A, of a discrete rank one prime P and X is central, to show that
the generators of the Brandt Groupoid of normal A,-lattices are
then precisely the spanning primes of Y extending P. With this we
can characterize spanning primes over global fields. A close analysis
of the case when A, is complete and use of Rutherford’s Theorem
(Proposition 1.6) yields some apparently new information about the
factorization of the unique maximal ideal of a maximal Aj-order as
a product of generators.

THEOREM 3.1. Let X be a central simple K-algebra. Let P be
a discrete rank one finite prime of K. For T S X the following are
equivalent:

(1) T s a spanning prime of X extending P;

(2) T s a prime of X extending P and T is a finite Ap-module;
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(3) T is a generator of the Brandt Groupoid of normal Ap-
lattices in 2.

Proof. We first assume that A, is a complete discrete rank one
valuation ring and prove 3.1, then deduce the general case. The
proof depends on the special case when XY is a division algebra, in
which the situation is particularly simple.

PrOPOSITION 3.2. Let D be a (not mecessarily central) division
algebra over K. Let P be a finite prime of K with A, a complete
discrete rank one valuation ring. Then there is a unique prime T
of D extending P. Namely, T s the unique maximal one or two-
sided tdeal of the unique maximal Ap-order 4 in D. T is a spanning
prime of D and T is a finite Ap-submodule of D.

Proof. Let T be any prime of D with T2 P; such a T always
exists by Zorn’s lemma, and 7T is a finite prime if P is. Then
TNK=P and A, S A, (by Corollary 1.2, (3)) so that T is an A,-
submodule of D. To show T = p, the unique maximal one or two-
sided ideal of 4, it suffices to show T & A. For then T is a finite
Ap-module and so a maximal finite A,-module preprime, hence by
Theorem 2.1, T = p, as p is the only maximal one-sided ideal of a
maximal A,-orderin D. LetteT. Iftc Kthente TN K=P=A,=4.
If te T\K let f(x) = > a;x* be the monic minimum polynomial for ¢
over K, so a,=1. Since Y is a division algebra and ¢t =+ 0, f is
irreducible. Let v be the (exponential) valuation determined by A.
Then v(a,) > min {v(a;) |1 < ¢ < n}, for if not, we have w(a;'a;) = 0,
1<i<n, so &;'f(x) = a;'a,x™ + +++ + a;'a,x + 1 has all its coefficients
in A, & A,, but then 0= a;'a,t, + -+ + a;'a,;t + 1 implies —1 =
alat” + <+ + ay'ate A+ T S T, a contradiction. Hensel’s Lemma
holds in K so ([11, Lemma 21, p. 52]), f(x) irreducible over K implies
min {v(a;) |1 < ¢ < n — 1} = min {v(a,), v(a,)}. Now, min {v(a,), v(a,)} =
v(a,) = v(l) = 0 by what we just showed, so v(a;) =0 for all 7 and
f(z) e Ap[x], proving ¢ is integral over A,, and hence te 4. Done.

Proof of 3.1 in the case that A, is complete, and X 1is mot a
division algebra: applying Theorem 2.1, we see immediately that (2)
implies (3) since (2) implies T is a maximal element of the set of
finite Ap-module preprimes in 3; moreover, as 7 is then a normal
R-lattice, K-T = %, so also (2) implies (1).

To show (1) implies (2) we identify Y with (D), where D is a
division algebra finite dimensional (and central) over K, and n > 1.
Let T satisfy (1) and let {e;;|1 < 4,7 < n} be the usual matrix units
(¢;; has 1 in 1%, j-th spot, 0 elsewhere). Let 7w be a prime element of
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Ap, ie., mAp = P. Then KT =3 implies there exists a positive
integer k with n*e;e T for all ¢,7. We assert that 7T < (z~*T,),
where T is the unique prime of D extending P (see 8.2); if so then
since TN K = P implies T is an Ap-module (by (8) of Corollary 1.2)
and since T, is a finite A,-module (by Proposition 3.2), T will be a
finite Ap-module, proving (2) holds. Identify D with the set of
“scalar matrices”, i.e., matrices of the form diag {a, a, ---, a} where
ac D. Since D is a subring of ¥, TN D is a preprime of D, and
TND extends P, so TN D must be contained in T, the wunique
prime of D extending P. To prove T & (z~*T,), it then suffices to
show 7*M,; = TN D where M;; = {ac D|a is the 17,j-th entry of
some matrix in 7T}). Let ae M;;, say a = a;; for t = (a;,) € T. Then
diag {7*a, - -, 7%a} = X r, (whe,)t(we;)) e T-T-T = T so n*ac TN D as
asserted.

Thus (1) is equivalent to (2). Finally if (3) holds, i.e., T is a
generator of the groupoid, let 7, be any prime of ¥ containing T;
then KT, 2 KT =2 so (1) holds for 7T,, hence (2) holds for T, so
T,e W,p so T, = T as T is maximal in W,, by Theorem 2.1. Thus
(2) and (1) hold for T, concluding the proof of 3.1 when A, is
complete.

To deduce the general case we apply the following well known
lemma:

LEMMA 3.3. Let V be a finite dimensional K-vector space. Let
A be a discrete rank one valuation ring of K, with maximal ideal
P. Let A* denote the P-adic completion of A.

(1) If M is any A-submodule of V, (M@, A*)NV = M.

(2) If N* is any A*-lattice in V@, A*, then N*NV =N 1is
an A-lattice in V and N@,A* = N*.

Proof. See Chapter 7 of [5]. One easily checks that M need
not be a finitely generated A-module in (1).

Proof of Theorem 3.1. Suppose first that 7T satisfies (1) of
Theorem 3.1. Then T is an A,-submodule of ¥ and K7 = Y. Hence
(letting ()3 denote P-adic completion) T*=TQ A} is an A}-submodule
of I} =3Y® K}, T* 2 P-A} = P* the maximal ideal of A} (a prime
of K}) and T* spans XY}; moreover T* is a preprime of X} as
—1e T* implies —1e T*N X =T (by 3.3, (1)), a contradiction. Now,
letting T, be any prime of 3} with T, 2 T*, T, is a spanning prime
extending P* and hence a finite Aj-module. This proves 7* is an
Aj-lattice in 3%, so T= T*N2Y is an Ap-lattice in ¥ by 3.3, (2),
and (2) of Theorem 3.1 holds. (2) immediately implies (3) by Theorem
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2.1. Finally, if (3) holds, suppose T is not a prime, and let T, be
any prime of XY containing 7. Then KT, D KT =2 (as T is an Ap-
lattice) so T, is a spanning prime and hence by what we just showed
T, is a finite Ap-module. But 7T is a maximal finite Ap-module
preprime by Theorem 2.1 so T = T, a contradiction. Thus 3.1 is
proven.

REMARK. If ¥ is a division algebra, (1)-(3) of Theorem 3.1 are
equivalent to: T is a prime of Y extending P and T consists of Ap-
integral elements. For suppose this condition holds and let KT =
3, &%, As X is a division algebra, X, is a division algebra with
center L2 K. Let S= TN L, a prime of L by Corollary 1.2, (4).
KT = 3%, implies T is a spanning prime of ¥, (by Proposition 1.4) so
(as Ay must again be a discrete rank one valuation ring) 7T is a
finite Ag-module by 3.1. As S = T all elements of S are A.-integral
so by [5, p. 151, Proposition 6], Ag is the integral closure of A, in
L. Therefore A; and hence T is a finite Ap-module. But then
K-T=2% by 3.1 so (1) of 3.1 holds. Conversely if T satisfies (1)
hence (3) of 3.1 then 7T is contained in an Ap-order of X so the
elements of T are Ap-integral.

Theorem 3.1 essentially verifies Harrison’s conjecture in [7, p.
13, footnote 3]. Explicitly:

THEOREM 3.4. Let K be a field such that all its (nontrivial)
valuations are discrete rank one, or equivalently such that all tts
finite primes are discrete rank one; for example, any global field.
Let ¥ be a central simple K-algebra. Then the spanning finite
primes of 3 are the generators of the Brandt Groupoids over the non-
trivial valuation rings of 2. Specifically, vf T s spanning then
TNK=UP is a finite prime of K and T 1is a generator of the
Brandt Groupoid of mormal Ap-lattices in 3.

Proof. Immediate from Corollary 1.2 and Theorem 3.1.

Turning again to the situation of Theorem 3.1 we study the
complete case more closely, with the aid of Rutherford’s Theorem
(Proposition 1.6), and obtain information on the groupoid generators,
i.e., spanning primes in Y, which divide the maximal ideal of a
maximal order.

THEOREM 3.5. Let X be a central simple K-algebra. Let P bea
discrete rank one finite prime of K. Let A be a maximal Ap-order
of X with unique maximal ideal P.

(1) The primes of XY which contain p are precisely those
generators of the Brandt Groupoid of normal Ap-lattices which divide,
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1.6., contain p.

(2) Themap T—*(T'N A)/p gives one-to-one correspondence between
the generators which divide p and the set of finite primes of the
finite dimensional simple k, = A,/P-algebra A = Alp, which set is
completely described by Rutherford’s Theorem (Proposition 1.6).

(3) For each generator T which divides p there is an integer
r=o(T,p) =1 such that T can only appear as the r-th term in any
factorization of p as a product (in the groupoid) of generators.

Proof. (1) is an immediate consequence of Theorem 3.1, as T2 p
implies KT2 Kp=23 and TN K2pnN K= P. To prove (2) and (3)
it suffices to consider the case when A, is complete, for M — M Q A}
and M* — M* N Y gives an isomorphism between the Brandt Groupoid
in X over A, and that in Y} over A} (see § 11 of Chapter 6 of [6]).
If 3% is a division algebra then p is already a prime, 4 is a locally
finite field and there is nothing to prove. Hence we assume A, is
complete and we identify ¥ with Hom, (V, V), D a central division
algebra over K, V a right D-vector space with 2 < dim, V < .
Let 4 be the unique maximal A-order in D with unique maximal
ideal 74 = An (where 7 is not necessarily in K); 4 is a (noncommuta-
tive) discrete rank one valuation ring of D (cf. [11, Chap. 2]).

For M and N right 4-submodules of V let

L(M, N) = {ae 3 |aM = N} .

Let 4 be the fixed maximal Ap-order of Y. Then A= L(E, E)=
Hom, (E, E) for a free 4-submodule E of V with rank, E=n=dim,V,
and the unique maximal ideal p of 4 i.e., the radical of 4, equals
L(E, Er). Let 2, denote the set of all free, rank %, 4-submodules
F of V such that F € E but F £ Er.

CLAIM. (a) every maximal R-order A’ equals L(F, F') for a unique
FeQ,; (b) every prime T of ¥ with T2 p has the form T = L(W,, U,)
for a unique pair of free, rank n, 4-submodules of E, with W,2U,2
Er and rank,(W,/U,) = 1.

Proof. (a) follows since ED = V and L(F, F) = L(F’, F') if and
only if F'= Fr* for some k. For (b), let O(T) = L(F, F) with
FecQ,. Then T2y = L(F, Fr), the radical of O,(T), and T/’ is a
maximal left ideal of O,(T)/p’ = Hom; (F', F') where F = F/Fx is an
n-dimensional 4 = 4/m4 vector space. But then T/p’ = Hom; (F, U)
for a uniquely determined (n— 1)-dimensional d-subspace of F. Letting
U2 Fr be the unique 4-submodule of F with U/Fr = U, we see
that T< L(F, U); but L(F, U) is a preprime (as FR U) so T =



FINITE PRIMES IN SIMPLE ALGEBRAS 257

L(F, U). Letting W,=F, U,=U we have E2 W,2 U, and
rank, W,/U, = 1; it remains to show U, 2 Ex. Now as W,e 2y,
there exists x ¢ W,\Er. By Nakayama’s Lemma, E has a free 4-basis
T =®, 2, -+, 2, then Er = 3 x,wd. For each ¢ let ¢, L(E, E) be
defined by ¢x; = 0,;4;7 (Kronecker 6). Then ¢,e¢ L(E, Ex) = p S T so
et =taxet; Wy U, for 1=1, ..., n proving Erx & U,. Assertion
(b) is proven.

Now, if T2 p and T=L(W,, U,) as in (b) above, let W,= W,/Er,
U, = U,/Exr. Then (TNnA))p={acd=Ap|laW,< U,} which, by
Rutherford’s Theorem, is a prime of 4=Hom; (E, E) (where E=/Ex)
since W, < U, are A-subspaces with dim;W,/U, = 1. Conversely, by
lifting back to 4 and then extending to a prime of 3, any prime of
A has the form (TN 4)/p for some prime T2 p. Thus T— (TN A)/p
is onto the primes of A; that the map is one-to-one follows from
the uniqueness part of Rutherford’s Theorem and the uniqueness of
the representation of T as L(W,, U,).

Thus (2) is proven. To prove (3), let T =p and suppose T =
L(W,, U,) where W,, U, are chosen as in the claim above. We claim
r = rank; (W,/Er) has the property claimed in (3). First, note that
0.(T) = L(W,, W,;) and O(T) = L(U,, U,). In any factorization p =
Tio++- T,y O(T) = O(T;) so W,, = Uy, ., and the factorization
corresponds to the chain Er=U,S W, =U,S--- & W, _, =
U, & W;, = E, with rank,(W,/Er) =1 as rank, W, /W, _ = 1.

COROLLARY 3.6. Suppose A,/P is a finite field (which is always
true for the classical fields). Then the maximal ideal p of a maximal
Ap-order A is divisible by only finitely many generators of the Brandt
Groupoid over Ap (although there are in general (see §4) infinitely
many distinet maximal Ap-orders in 2.)

Proof. A/p is a finite ring.

4. The Non-split case; self conjugate primes. In this section
we study the special situation which arises when a discrete rank one
prime P of K does not have infinitely many extensions to spanning
primes of ¥, and give a characterization of division algebras of prime
power degree.

THEOREM 4.1. Let X be a central simple K-algebra, and P a
discrete rank one finite prime of K. Then the following four condi-
tions are equivalent:

(1) 2% contains only finitely many spanning primes extending P;

(2) there is a unique prime T of 3 extending P;
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(3) 2% is a division algebra (where 2% = 3@ Kz, the P-adic
completion);

(4) thereis a prime T of 2 extending P which is “self-conjugate”
wm X, 1.e., aTa™ = T for all units ac 2.

Moreover, the following two conditions are equivalent and are
implied by the first four; they are equivalent to the first four if K
1s a global field:

(5) every prime T of Y extending P is spanning;

(6) 2 is a diviston algebra and P has a wunique extension to
each subfield L of X containing K.

Remarks. In condition (5), “is spanning” can be replaced by “is
a finite A,-module” or by “consists of Ap-integral elements”. (2), (3)
and either one of these alternate versions of (5) are equivalent when
2 is merely simple and separable, e.g., when X is a separable field
extension of K.

We will say P is nonsplit in ¥ if any of (1)-(4) above hold.

Proof. By §3 there is a one-to-one correspondence between the
spanning primes of Y extending P and the spanning primes of the
P-adic completion X3 of X which extend P* (the prime of K}).
Either there is exactly one maximal Aj-order in X} or there are
infinitely many, according as Y3 is a division algebra or is not. With
3.1, 8.2 and the remark at the end of §2, this implies that X}
contains exactly one prime, or contains infinitely many spanning
primes according as it is a division algebra or not. Thus (1) is
equivalent to (3). Clearly (2) implies (1); (3) implies (2) for if T) is
any prime of Y extending P then by Lemma 3.3 (1), T.,-A} is a
preprime of X} which extends P*, so T,-Aj & T* the unique prime
in 3} extending P*, hence T* N XY 2 T, which implies (as T* N 2Y is
a preprime) T, = T* N %Y, the unique spanning prime of ¥ extending
P. Thus (1), (2), and (3) are equivalent.

(2) clearly implies (4). Suppose (4) holds and let T be self con-
jugate. Suppose that (3) does not hold, i.e., that X} is not a divi-
sion algebra. Then there are infinitely many maximal A,-orders in
Y which are all conjugate under inner automorphisms of X (by
Proposition 3.5 of [4]) and hence (using remark at end of §2 and
Th. 3.1) given any spanning prime it has infinitely many distinct
conjugates. Thus T cannot be spanning. But we show that it is:
for let 3, = K-T= {3, a;t;|a;€ K, t;e T}, the K-subalgebra generated
by T (as T-T< T). We assert that K-T contains every unit of 2.
If so, we are done, as one checks X has a basis consisting of units.
Let w be a unit in ¥ and suppose w¢ KT. Then u¢ A, (as TN K =
P+ 0 implies A, S KT) so 4T = Tu & T and there exists te T with
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uteT; but u*(ut)eT and w*TuT=T-t =T so by Lemma 1.1,
wtle TS KT. But KT is a K-subalgebra of 3 so w'e KT implies
u e KT, a contradiction. This completes the proof of the equivalence
of conditions (1) to (4).

(5) is equivalent to (6): if (5) holds then ¥ must be a division
algebra, for otherwise there exists a € X with a* = 0 and then P+ Ka
is a preprime of Y containing P which is not a finite Ay-module, so
cannot be contained in a spanning prime. (5) is equivalent to the
assertion that every preprime T of Y containing P is a finite Ap-
module, hence in particular every prime of a subfield L2 K of X
which extends P must be a finite A,-module. But this implies, by
[5, p. 151, Proposition 6] that P has a unique extension to each
such L, and (6) holds. Now suppose (6) holds and suppose 7 is a
prime of 3 extending P. EKach xe T is in the unique extension of P
to the subfield K(x) of 3, and so « is integral over A, by the result
of [5] just quoted. Hence T is spanning by the remark following
Theorem 3.3.

Clearly (2) implies (5) so any one of the first four conditions
implies the last two. We conclude by showing that if K is a global
field (i.e., an algebraic number field or an algebraic function field
over a finite field) then (6) implies (8), so that all the conditions are
equivalent. Suppose then (6) holds and suppose that X} is not a
division algebra.! Let n be the degree of 3(n*= [2: K]). We have
2= (D), k>1 and degree D = m <n, with m|n. Let P=
P, P, -+, P, be a finite set of finite primes of K including all the
finite primes @ at which ¥ is not unramified, i.e., all those Q with
25 not split. By the Grunwald-Wang Theorem [3, p. 106, Th. 5]
there exists a normal field extension L of K (which is even a cyclic
extension) with the following properties (letting », = [L%: K;] for S
any extension of P to L): mp,=m, np,=mn for 1 =1, +,s,ny = 2
for each real infinite prime @ of K for which Xj is not split, and
[L: K] = n. Then by construction, for every finite or real infinite
prime @ of K, the Q-index of ¥ (i.e., the index of X}) divides the
Q-degree of L over K. Thus the Q-index of X ®x L is 1 for all @
and 3 @x L = (L), by Hasse’s theorem ([12, p. 206, Th. 2]). But
then by [6, p. 46, Satz 14] and the fact that [L: K] = n = degree
of ¥, L is isomorphic to a maximal subfield of X. Therefore, P has
a unique extension to a prime of L, which implies the P-degree of L
over K must be n (as the P-degree = e-f which equals n as efg = n,
g =1) a contradiction to our construction of L with P-degree =m < n.

REMARK. The equivalence of (2) and (5) when K is a global field
shows that in general there exist nonspanning primes in X, see § 6.

1 The following argument was suggested by M. Schacher.
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ProrosiTiON 4.2. Let 2, K and P be as itn Theorem 4.1 and
suppose P is nonsplit in 3. Let T be the unique prime of X extend-
ing P. Then A, is the unique maximal Ap-order im the division
algebra 2, T is ts unique maximal tdeal (one or two sided). The
Brandt Groupoid over A, in X 1s the cyclic group consisting of all
powers of T. Moreover, A, is a (noncommutative) discrete rank one
valuation ring of X (see [11]), with T its ideal of monunits. k, =
A,/T is a finite field extension of kr = Ap/P, the value group I’y of
the valuation associated with A, 1is a finite extemsion of the value
group I’y of the Ap valuation, and [[y: I'pl-lkr: kp] = [2: K] (t.e.,
“6f= ,n”)'

Proof. It suffices to prove the assertions of the last two sentences,
the rest being immediate consequences of previous results. As
xAxt = A, for all x = 0 in A,, to show A, is a valuation ring we
need only show z ¢ A, implies ‘e A,. But z¢ A, implies (as 2T =
Tx) that «TZT, say «t¢ T for te T. Then x'wte T and ¢ 'Tat & T
so by Lemma 1.1, zt¢ T implies 2~'¢ T, as required. The associated
valuation is discrete rank one since T is a principal ideal of 4, by
Corollary to Proposition 3.3 of [4]. By hypothesis X} is a division
algebgra. T*=T.A} is the prime of Y} extending P*=P-A% and A}
is a (noncommutative) valuation ring of X} with [ p: I'p] [k kp] =
[Z5: KZ] (11, p. 54, Th. 11]). But A,/T* = A,/T (see [6]) and
Ap/P* = A,/P, and also P-A, = T° and P*-A,. = (T*)° so by order
theory (see [6]) [{p: ['p] = ¢ = [[";: I';], proving the last assertion.

We conclude this section by showing that over a global field the
existence of a self conjugate finite or infinite prime characterizes the
division algebras among all central simple algebras of prime power
degree. Indeed when char (K) = 0 and K has only discrete rank one
valuations, Theorem 4.1 shows this result is equivalent, for algebras
of prime degree, to the Hasse local splitting theorem (i.e., “Y is a
matrix algebra if and only if Y} is a matrix algebra for all primes
P of K”). This suggests proving the Hasse splitting theorem for,
say, (generalized) quaternion algebras over an arbitrary field of non-
zero characteristic whose valuations are discrete rank one by directly
proving the existence of a self-conjugate prime in such algebras.
The author is indebted to D. K. Harrison for these observations and
for conjecturing the following result.

PROPOSITION 4.3. Let K be a global field. Let ¥ be a central
simple K-algebra of degree p* where » 1s a prime number. If
K = @Q or char (K) + 0, then X is a division algebra if and only if
there exists a self-conjugate prime in 2.
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More generally, if K is any global field then X 1is a division
algebra if and only if 3 contains a self conjugate prime T, finite
or infinite.

Proof. First suppose Y is a division algebra. The degree of
Y = exponent of ¥ (in the Brauer Group of K) = the least common
multiple of the P-exponents m, of X, i.e., of the exponents of the
completions X} of ¥ at the primes P (finite and real infinite) of K.
But all the P-exponents are divisors of p*, hence powers of p, and
so for some P, the P-exponent of X equals p*, i.e., the index of X'}
is p*. Since p* is the degree of 3%, X} is a division algebra. If P
is a finite prime we are done; when char (K) = p # 0 this must happen.
So suppose char (K) = 0 and P is real infinite. If K = @, so that P
is the unique infinite prime of @, then X}=H the ordinary (Hamil-
tonian) quaternions, so degree 3 = 2, and since by Hasse Reciprocity
Sanr (2| P) =0 (mod 1) (where (2| P) is the Hasse invariant of X at
P), there must exist a finite prime P’ with (Y| P) = 0 (mod 1), hence
with mp > 1, hence with m, = 2 (as m, | degree X) hence with 23},
a division algebra. Finally suppose K is any algebraic number field.
We have Y% a division algebra, i.e., 3% = H. Then degree ¥ =2, ¥
is a (generalized) quaternion division algebra over K. We assert that
P is in fact an (infinite) prime of X and hence (as P < K) a self-
conjugate prime of X as required. Suppose P& T a prime of 2.
Then (as P is a prime of K) TZ K, so let ae T\K. The subfield
K(a) of ¥ is a quadratic extension of K, in fact K(a) = K(b) for
some be Y with b*’e K. Let T, be any infinite prime of K(b) contain-
ing o and extending P (T, exists as a and P are in the preprime
TN K®)). By [7], T, is an archimedean order in the subfield L of
K(b) which it generates; but (as P is real infinite so is the cone of
an ordering of K—see [7]) L2 K and (as a€ T, ac L so L= K(a) =
K(). Hence T, is an order in K(b) so b*c T,, hence in T, K = P.
But now consider >} = H, and identify K with a subfield of R via
the unique isomorphism K — T which sends P into R*, the non-
negative reals. Then be H and »#*=rec PSR+, and » % 0. Hence
r = ¢* for some real number ¢ and we have (b — 7){(b + r) = 0 with
b—r and b+ 7r%0 as b is not in the center K of Y, so not in
the center R of H, which is a contradiction since H is a division
algebra.

Now suppose X is any central simple algebra over the global
field K of arbitrary degree, and suppose T is a self-conjugate prime
of 3. We show Y must be a division algebra. If T is finite then
we are done, by Theorem 4.1 (for condition (4) of 4.1 then holds with
P= KN T). Hence suppose T is infinite and suppose ¥ = (D), with
% > 1, D a central K-division algebra. First, if T & K then for any
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ac with a*=0, T+ Ka is a preprime properly containing 7T, a
contradiction. Thus TZ K. Let TH={aeT| —-a¢T}. Then by
Proposition 1.6 of [7], G = T+ N U(2) is a multiplicative subgroup of
U(2), the units of ¥, which is GL(n, D). Moreover, G is a normal
subgroup of GL(n, D) since aTa™ = T implies aT+a* = T+ for all
ac U(Z). G is not contained in the center K* (multiplicative group
of K) (for let a e T\K, and choose n a positive integer such that —=
is not an eigenvalue of the matrix ae(D),, then a + n-Ie G\K.)
Hence by Theorem 4.9 of [2], G 2 SL(n, D) the unimodular group
and hence for all ae U(X), acG if and only if detaecdetG =
{detb|be G} & D*/(D*)" (commutator factor group of D*). If » is
even we are done immediately, for then det () = det ((—1)-I) (I =
identity of X) so —IeG & T+ & T a contradiction. So suppose 7 is
odd. Then det(I) = det (diag {1, ---,1}) = det (diag —1, ---, —1,1})
(since (—1)"'=1 if 7 is odd) and hence diag {—1, ---, —1,1}eGST".
Then diag {0, ---, 0, 1}, which is the matrix unit ¢,,,is in T+ + T+ &
T+. As T+ is self-conjugate this implies ¢;;¢ T+ for 1 =1, ---, n.
Finally, as for ¢ = 7, det (I + ¢;) = 1 = det (I — ¢;;), both I + ¢,; and
I —¢;; are in T+, hence (multiply by &; on left, ¢;; on right) both
¢;; and —e¢;, are in T+, contradicting the definition of 7*. The proof
is complete.

5. Miscellaneous results. In this brief section we prove the
analogue, for a central simple algebra Y over a global field K, of
the fact that each unit (i.e., nonzero element) of K is contained in
only finitely many primes of the field, and we discuss the topology
on the space of all finite primes of 2.

Let X (2, P) = X (P) be the set of spanning primes of ¥ which
extends the finite prime P of K. X (P) # @ by Proposition 1.4.

PROPOSITION 5.1. Let Y be a central simple K-algebra, let P be
a discrete rank one finite prime of K. Any two elements of X(P)
are conjugate under a K-automorphism of Y. If X (P) is infinite,
then

P=N{T|Te Xs(P)}, Ap = N{As|Te Xy(P)}.

Proof. The first assertion follows from Theorem 3.1, [2, Pro-
position 3.5], and the fact that maximal left ideals in a fixed maximal
order are conjugate. The second assertion follows from the corre-
sponding assertion about X (X%, P*) (P-adic completions), which holds
as Y% is not a division algebra by Theorem 4.1.

PROPOSITION 5.2. Let K be a global field, 3 a central simple
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K-algebra. For acZX, a is an element of some Te X (2, P) for at
most finitely many primes P of K if and only if a is a unit in 3.

Proof. Let f(x) = 2" + a,x®* + +++ + a, be the minimum poly-
nomial for a over K; a is a unit of % if and only if «,# 0. The
set {a, ---,a,} & A, for all but a finite number of finite primes P
of K, as K is a global field. If {a, ---,a,} S A, then ac T for a
spanning prime T of 3 extending P if and only if «,€ P. For,
ae T implies ¢, = —a"—aa"'—+++—, €A TS T so a,ec TNK =
P, while conversely if a, € P, a-Ap[a] is a finitely generated A -module
(since a is integral over A, by hypothesis) and a preprime (as it is
a proper ideal); therefore by §2 and §4, a-Ar[a], and hence a, is
contained in a spanning prime extending P. Thus a can be in some
Te X2, P) for infinitely many P if and only if «, € P infinitely many
P if and only if a, = 0.

We recall the topology on the space Y(X) of all primes of X, as
defined in [7]. A subbase for the open sets consists of the sets
Wia) = {Te Y(Z)|ag¢ T} for all ac 3. The topology is 7, and is not
Hausdorff (in general Y(R) is Hausdorff if and only if R is a generalized
Boolean ring: for all ae R there exists » > 1 with a" = a). Y(2)
and the subspace X(2X) of all finite primes are both (quasi-) compact.
A nonempty subset U of a topological space X is called irreducible
if and only if U is not the union of two nonempty closed proper
subsets (or, every nonempty open subset is dense)

PROPOSITION 5.3. Let X (%) denote the space of spanning finite
primes of the central simple K-algebra 2, K a global field. Ther
NI{T| Te Xs(2)} = {0}). Xs(2) is a dense irreducible subset of X(X)
and Y(2); thus the latter spaces are irreducible.

Proof. The first assertion follows from Proposition 5.1, the
observation that XY} is a division algebra for at most finitely many
P, and the corresponding fact for K. For the second assertion it
suffices to show: if E={a, ---, a,} is any finite set of nonzero elements
of Y then there exists Te X((2) with TN E = @. Let fi(x) be the
minimal K-polynomial for a;, with constant term «,. If all the ;0
then choosing Pe X(K) with fi(x)e Ap[x] for all 7 but with «,¢ P
for all ¢+ we have TN EF= @ for any spanning prime 7T of Y extend-
ing P, by the argument of the proof of 5.2. In particular this
proves the assertion when 3 is a division algebra. If some «a; = 0
then Y = (D),, » > 1. Since the a; are nonzero one can choose a
matrix representation for Y over D in which the matrices for the a;
all have nonzero last columns. Let E,={6eD|d =0, ¢ is a last-
column entry in the matrix of some a,}. By the first argument,
there exists a spanning prime 7T, of D with T,N E, = @. Let T be
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the set of matrices with last column entries in T, all other entries
in 4, = O(T;). One checks T is a maximal left ideal of the maximal
order (4,), in (D), =23, hence T is a spanning prime of 3 by 4.1.
By construction, TN E = @&, and we are done.

6. Examples. In this section we give some examples of finite
primes in simple algebras which are not spanning primes of the
algebra.

The first set of example arises from an important description of
finite primes containing idempotents, due to M. E. Manis (unpublished).

PROPOSITION 6.1. Let R be a ring, let e be an idempotent of R,
let f=1—e.

(a) Let P= ePe be a finite prime of the ring eRe, with unit
element e. A finite prime of R may be constructed as follows: let
M, be any additive subgroup of eRf; let N={x¢c fRe| Mz < ePe= P},
let M= {xeceRf|aN S P} and finally let B = {xecfRf|«N < N}.
Then T= B+ N+ M+ P = fBf + fNe + eMf + ePe is a finite prime
of R. Note that feT, e¢T.

(o) If T is any prime of B with fe T, then eTe= P is a finite
prime of eRe; T can be recovered from P and, say, M, = eTf by the
construction in (a).

Proof. Straightforward checking.

Manis showed that in case R is a full matrix ring over a locally
finite field & the above construction, with ¢ any idempotent of rank
one, yields all the finite primes of R, giving an approach to the
description of the primes of R differing from that in [10].

Applying Proposition 6.1 to the construction of nonspanning
primes in a matrix algebra 3 = (D),, » > 1 over a division ring D,
let S be a finite prime of the center K of D, let P be any prime of
D extending S. Let {e;; |1 =<1,5 <n} be a set of matrix units in
Y. In the notation of 6.1, let ¢ = ¢,,, let M, = {0}. Then N = fZe,
M = {0}, B= f3f. One checks that T is the set of matrices with
arbitrary entries in the first » — 1 rows, and 0 entries in all but
the n-th column of the =n-th row, the (u,n) entries being in P.
Clearly T does not span 3 over K.

The preceding construction yields nonspanning primes in %
whether or not D contains nonspanning primes. In case D is a
noncommutative central K-division algebra for K an algebraic number
field, the existence of nonspanning primes in D follows from Theorem
4.1, or more directly from the fact that for any subfield L of D
properly containing K, there are finite primes P of K which split in
L. For to say P splits in L is to say that the primes S,, :---, S, of
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L extending P are not integral over A,, so that if T is any prime
of 3 extending S,, say, T cannot be integral over A,, hence (by 4.1)
T cannot be a spanning prime.

We now give a final example which shows that a prime of a
central simple algebra may span a “small” subalgebra. Let K be
any (nonlocally finite) field, L a cyclic Galois extension of K with
group G = <o) of order n. Let ¥ = (L,0,a) be a cyclic algebra
=3 @t Lu' with w'a = o'(@)u’ for e L and w" = ae K—see
[1] or [4]). Suppose P is a finite prime of K which splits completely
in L, i.e., P has n distinct extensions T, ---, T, to a prime of L.
Then each T; is a prime of %, with K-T; =L, [L: K] =n = [2: K]
Such primes exist in any algebra X central simple over a global field
K, as ¥ is then a cyclic algebra (see [1] or [6]), say X = (L, o, a)
for some cyclic extension L of K, and it can be shown (e.g., using
the zeta function) that there exist in fact infinitely many finite
primes of K which split completely in L.

The author wishes to thank Professor Harrison who directed
the thesis, from part of which this paper was developed. His
enthusiasm and imagination were invaluable and the germs of many
ideas herein were his.
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