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APPROXIMATION BY ARCHIMEDEAN
LATTICE CONES

JORGE MARTINEZ

A 7root system A is a partially ordered set having the
property that no two incomparable elements 2 and ¢ have a
common lower bound., 17(4, R)) will denote the direct pro-
duct of copies of R, the set of real numbers, one for each
ied. V(4, R)) is the following subgroup: ve V = V (4, Ry
if the support of v has no infinite ascending sequences. We
put a lattice order on v by seiting v =0 if v =0 or else
every maximal compenent of v is positive in R,

This paper has two main results: we first show that the
cone of any finite dimensional vector lattice G can be ob-
tained as the union of an increasing sequence P;, P; --- of
archimedean vector lattice cones on G such that (G, P,) =
(G, Py) = ---, as vector lattices, Next, generalizing this, we
show that for any root system 4 the cone of the Z-group
V =V (4, Rx) can be obtained as the union of a family of
archimedean vector ~cones {P,;: 7€'} on V, where (V, P,) =
(V, Ps), as vector lattices, for all y,0¢e7.

It is proved in [1], Theorem 2.2, that V(4, R,) is indeed an -
group when 4 is a root system. In an s-group K, xc K is a strong
order wnit if x = 0, and for each 0 < age K thereisann=1, 2, +-.
such that nx = a¢. The symbol B will denote the cardinal sum of -
groups; that is, if K (ie ) are ~-groups then K = { {K;: 1€ I} means
that K is the direct sum of the K;, as groups, and 0 < xe¢ K if and
only if 0 < x;€ K;, for each 7¢I. Finally, if » is a real number,
{ry will denote the smallest integer exceeding 7.

Throughout the paper the pair (G, P) will denote an abelian -
group; that is, G is an abelian group, and P is the cone for a
lattice-group order on G. An s~group (G, P) is said to be archimedean
if for any pair a, be P there is a positive integer » such that
na £ b; P is then called an archimedean <-cone. We restrict our
considerations to abelian groups since archimedean s-groups are neces-
sarily abelian (see [2]).

Let (G, Q) be an ~group; we say that @ can be approximated by
the archimedean s-cone P if there is a family {P,: ve '} of archi-
medean s~cones on G, such that (i) (G, P,) = (G, P,), for all v,de ",
(i) @ =U{P:ve '} and (ili) P = P,, for some ve/I'. The sgroup
(G, Q) is then called a limit A-group. If the approximating family
is directed by set inclusion (resp. a chain under set inclusion) we call
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(G, Q) a directed (resp. limear) limit A-group. If I'=1{1,2,.--} and
PP, forall n=1,2, .-+, we call (G, Q) a sequential limit A-
group.

(G, Q) is a wector lattice if G is a real vector space, and in ad-
dition to being an s-cone, P is closed under scalar multiplication by
positive real numbers. The vector lattice (G, Q) can be approximated
by the archimedean wvector lattice cone P if there is a family {P,: ve I'}
of archimedean vector -cones on G, such that (i) (G, P,) = (G, P;), as
vector lattices, for all v,de I, (ii) @ = U{P;: vye '} and (iii) P= P,
for some ve I'. In this case we call (G, Q) a limit A-space. By a
directed (resp. limear, resp. sequential) limit A-spaze (G, Q) we mean
one where the approximating vector ~~cones form a directed set (resp.
a chain, resp. an increasing sequence.)

It will be useful to denote a limit A-group (G, Q) by (G, Q, P),
where P = P, for all ve['; this way we can keep track of what
approximation is being used.

Let (G, @, P) be a limit A-group (resp. limit A-space); we call it
a strong limit A-group (resp. stromg limit A-space) if @ is essential
over each P,.. (Let (G, P) be an s~group, @ be an extension of the
cone P. @ is an essential extention of P if every --ideal of (G, Q) is
an s-ideal of (G, P). For further discussion on essential extensions
see [3]). Suppose the family {P,:ve/’} has a smallest member
(which is once again denoted by P); it follows from a remark in [3]
concerning essential extensions, that (G, Q, P) is a strong limit A-
group if and only if @ is essential over P.

PROPOSITION 1. The cardinal sum of (strong) sequential limit A-
groups is a (stromg) sequential limit A-group. The same statement
holds for (stromg) sequential limit A-spaces.

Proof. Let (G, Q) = B (G;, Q;), 1€ L. Suppose each Q; is the limit
of the sequence {P,;: n=1,2,+--} of archimedean ,-cones on G,
and (G, P,,)) = (G, P,;) = -+, for all 4el. Fix n, and let P, be
the ~-cone of the cardinal sum of the (G;, P,;). Since each P, ; is
archimedean, so is P,; clearly P, = P,.,, for each n =1,2, .-+, and
P, Q.

So let ye@® and 4,14, ++-,17, be the nonzero components of v.
Then each y;  is in Qim, for m = 1,2, .-+, k, and there exists an n(m)
such that Yi,, € Puim,i,,» Lt n = max {n(m): m = 1,2, -+, k}; then
each y; € P,; , which implies that ye P,. This show that @ = U7~
P,; it is obvious that (G, P) = (G, P,) = ---. It follows therefore
that (G, Q, P,) is a sequential limit A-group.

Now suppose @, is essential over each P, <€ l. (This is equi-
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valent to saying that each «-ideal of (G;, Q,) is an ~-ideal of
(G;P,;).) Let K be an ideal of (G,Q); then K= B {K;: iel},
where K; = KN G;,. Each K; is an «-ideal of (G;, Q.), and hence an
/-ideal of (G;, P,,;). Thus K is an «ideal of (G, P,), proving that Q
is esssential over P,, that is, (G, @, P,) is a strong sequential limit
A-group.

The above proposition can be generalized, in a sense:

PROPOSITION 2. The cardinal sum of (strong) directed limit A-
groups 1s a (strong) directed limit A-group. The same statement holds
for cardinal products.

Proof. Let (G, Q) = B(G,,Q,), 1€ 1. Suppose (G;,Q;) = (G, Q;, P;)
is a directed limit A-group, and {P,;: v;e '} is the approximating
family. Let I = m{{"”: 1€ I} and consider the family {P,: vye I’} of
s-cones defined by: we P, if for each i€l »;€ P, (v;e I'”). Each P, is
clearly an archimedean -~cone for G, and (G, P,) = (G, P;), for v = 0.
The P, obviously form a directed system, and finally, if ye @ then
¥: = 0 or y;€Q;; in either case y; € P;, for some d;€ ", and therefore
ye P;, where 6 = (+++,0;, »-+)€’. Thus Q is the join of the P, and
we’re done.

Notice that the above proof works for the ecardinal product of
directed limit A-groups. If each (G;, Q;, P;) is a strong limit A-group
then one uses the technique of the proof of Proposition 1 to show
that (G, Q, P) is also a strong limit A-group. We should also point
out once more, that a similar version of this theorem holds for directed
limit A-spaces.

It is not known whether the cardinal sum (resp. product) of linear
limit A-groups is again a linear limit A-group. By Proposition 2 it is
certainly a directed limit A-group.

THEOREM 3. Let (G, Q, P,) be a strong sequential limit A-space
having a strong order unit. Let K=RP G and Q = {r + g: r >0,
or else r =0 and ge Q). Then (K, Q, R* D P) is a strong sequential
limit A-space.

Proof. Let we G be a strong order unit relative to Q; without loss
of generality we can assume wec P, for each n =1, 2, ---. Let v be
any positive real number and define
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Let V™ = {rv™: reR}; V™ is a one-dimensional space, and clearly
VenNnG=0, so K=V"@GE. Now let P, = {rv™ + g: 0 <» and
g€ P,}; then (K, P)) is the cardinal sum of V™, ordered as the reals,
and (G, P,). Since each P, is archimedean it follows that each P, is
also. Notice that V¥ =R and PY=R @ P,. If H is an ideal of
(K, Q) then either H= K or H= G, or else H is a proper ideal of
(G, Q); in any case H is an <-ideal of (X, P/), since @ is essential
over P,. Notice also that (K, P)) = (K, P,.,), for all n.

We must show (1) P, S P,., S Q and (2) @ = U, P,.

(1) We show first that P/ S P = Q’, for all k. =1,2,.... The
first inequality will follow if we can prove that ve P/, the second,
if v* e @', because we know that P, S P, = Q. That »* is in @ is
clear since (1/n)v > 0. One can easily show that

v=kv"® + (k — Du,

proving that v e Pj.
But now observe that for each n =1, 2, .-+« we have

1
n(n + 1)

/U('n) _ v(n+1) —

(v+uweP &P,

so v™ is the sum of two elements in P,,, and hence v*eP,,..
That is enough to show that P, & P, ...

(2) Let yeQ'; we have the following expressions for y: y =
sV + Y, = s™o™ 4+ y  with s,s™eR and ¥, y™ eG. This forces
certain relations:

(1) s™ =ns=0 (since ¥y @),
and
(2) (Q“_"’Q)S(mu + y(n) =1, .

n

Thus each s™ = 0; moreover, the above equations give
(2) Y™ = (m — Dsu + ¥ .

Writing ¥, as the difference of its positive and negative parts relative
to @, we obtain

@) Y® = (n — )su + U5 — Ur -

Observe that since % is a strong order unit of (G, @), then so is su.
Therefore if n is large enough, (n — 1)su > yy(rel. Q). But since the
P, form a chain we can certainly find an #n, such that y;, y; € P,, and
(n, — Dsw > yy(rel. P,). Thus yi™ € P,; together with the fact that
s{™ = 0 this impies that ye P,. This proves the theorem.
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COROLLARY 3.1. Ewery finite dimensional vector lattice is a strong
sequential limit A-space.

Proof. Note at the outset that every finite dimensional vector
lattice has a strong order unit. For if (V, Q) is a t-dimensional
vector lattice, we may regard (V, @) as V(4, R;), where 4 is a root
system of ¢ elements, and for each ne 4, R; = R. ([1], Theorem 5.11}
Then « = (1,1, ---, 1) is a strong order unit.

We proceed by induction on ¢:

Case I. A has a largest element \,. Let 4" = A\(\}; then (V, Q)
is a direct lexicographic extension of V(4’,R;) by R. But V(/, R))
has dimension ¢ — 1, so it is a strong sequential limit A-space. By
Theorem 3 (V, Q) is also a strong sequential limit A-space.

Case II. A has no largest element. Then 4 can be written as
the union of two nonempty, disjoint subsets 4, and 4, having the
property that ) is incomparable to p, for all e 4, and ped,. It
follows that (V, Q) = V(4, R;) B V(4,, R;), and both these summands
have dimension less than ¢; thus they both are strong sequential limit
A-spaces, and by Proposition 1 so is (V, Q).

Let A be a root system, /1 = [1(4, R;), V= V(4,R;) and P =
VN Il+, where II* = {x: x; = 0, for all ne 4}. The following discus-
sion will establish that V is a limit A-space. (Of course we consider
V as a vector lattice relative to the cone V+ = {v: all the maximal
nonzero components of v are positive}.) Notice that (V, P) is an ~
subgroup of //. For each x€ P let s(x) denote the support of x, m(x)
the set of maximal nonzero components of 2. Choose a family
{n,: A e m(x)} of positive integers, and define a map 6., on /I by:

n if ves(x) or A e m(x);

Yz — 1550 Yrm if A es(x)\m(xr) and N has no succes-
Y00 1np)2 = sor in s(x);

Yi — NPy, if xes(®)\m(x) and x—1 is the sec-

cessor of \ in s(x).

(Note: )\(z) is the maximal component of x that exceeds \.) This map
has an inverse 0},;:
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Y, if A ¢ s(x) or \ € m(x);

1,529 + Y if v es(x)\m(x) and A has no succes-
sor in s(x);

B>+ H\T D0y, .o [CFI
(aﬁx,m.)—l)l = n).(x? i yAl + . + ’n“';i‘ yzk—l + yxk:)‘ .
: if ves(x)\m(x) and N;_, is the suc-
cessor of \;; also A, = \{®):

M) Wy e
if ves(z)\m(x) and \,_, is the suc-

cessor of \;; A, has no successor.

Clearly then 0,,,, is a vector space isomorphism of /I onto itself.
Let P, ., = P0,,.,; we claim first that, restricted to V, each 0, ., is
an isomorphism of V onto itself. This is due to the fact that for all
yell

s(y) S s(x) U s(¥0,,p) and s(yb,,.,) S s(y) Us@) .

A quick look at the definition of 67, readily shows that P4, ., S P,
that is: P& P, .,,. Thus P, ., is an archimedean vector lattice order
on V, and (V, P) = (V, P,,.,), for all xe P and {n;: » € m(x)}.

Now if ye V+ then consider x = |y|,; of course s(x) = s(y) and
m(x) = m(y). We proceed by induction on the maximal chains of s(x).
Let /¢ be a fixed maximal component of x; of course (y0;",.,); = ¥, for
all » = ¢ and every choice of integers {n,: A € m(x)}. So assume A <
and ) € s(x); if A\ has no successor in s(z), let », be the smallest positive
integer > 2 such that n,x, = 2. If y, > 0 then n{*?y, + y, = 1, since
%, = Yp.. If y, <0 then %, = —ux;; now if 2, > 1 we get ¥ = x,
for all », = 2. This implies that »{?y, =2z, =, +1. If 0>y, =1
then n&?y, = ny,=2=1+ 1=, + 1. Hence in any of the above
cases n¥?y,+ ¥y, =1, for large enough =, Notice that =, is in-
dependent of .

If A does have a successor in s(x) there are two cases for
(YO npp)ie

Case I. (Y07' ny): = RERTTICW Y, + oo £ 0wy,  +y,, where
Ai = Ny \;_, is the successor of )\; in s(x) and \, = f.
Thus

(ya;l,(nﬂ)l = /nifc},k> [nyxz>+“'+<”lk—-1>y# 4 eee + yzk_ll -+ Ya,

and by induction the sum in the square brackets is = 1; so
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(ye;ly(nzl)l g n?f“‘) + ylk Z 1 .

(The last inequality holds since for any real number r, n<"® = r + 1,
for all n = 2.)

Case II.
(?Jﬁzl,ml))z — ,nixh)—!'(x;z)-{-...+<xxk>y# + nfzx“>+"'+<”k>y11 4 oeee + 'nfl”k)yikﬂ + Y »

where A\, = X\, \;_, is the successor of A, in s(x) and A, has no successor
in s(x). Again

(ya;l,(n;})l — nﬁf‘lﬁ[nﬁf%?*"‘+<’”1k—1>y,¢ 4 eee + ylk—ll + ?/xk ,
and again by induction the bracketed sum is = 1; so
(W07 wp)s = 0 4y, = 1.

Out of all of this we get that if A < g and M\ e s(x) then there is
an n.(independent of ) such that (y6;",,,): = 1. This works for every
rem(x) = m(y), and so we can find integers {m;: A € m(x)} such that
Y0 1ny € P. (Remark: if X < ¢ in the above arguments, but @, = %, = 0,
then there is no problem; any 6 will fix this component.) Putting
it differently: we've discovered an « in P and integers {n,: » € m(x)}
such that ye P,,,,; hence

Vi S U{Pimy: v€ P, {ng: Mem(a)}} .

To show the reverse containment we show a little bit more. The
maps 0,,.., all take V* into itself. For if ae V* and pem(a) then
(@b, (0 ) e = 0pe And if M > gt then (a,,(,,); = a;, = 0; thus m(a) & m{ab,, . ).
One shows in a similar fashion that m(ad,,..,) S m(a), and hence equality
holds. This clearly shows that V*6, ,, = V* and therefore P,,,, S V",
for all x€ P and {n,: » € m(x)}.

In addition V' is essential over P, in view of Proposition 2.5 in
[3]. We’ve thus proved the following theorem:

THEOREM 4. If A is any root system, then V= V(4 R) is a
strong limit A-space.

Again let 4 be a root system, and F' = F(4, R;) = {ve V: s(v) is
contained in the union of finitely many maximal chains;} F is then
an <subgroup of V. In the above construction we can throw out
quite a few of the P, ,; in this case we take for each e Q@ = PN F
and n = 1, 2, -+, mappings 0,,,,, where each n, = n. We abbreviate
the notation to 6,, and P,, respectively. (We mention in passing
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that (F, Q) is an «subgroup of (V, P).) For each a€@ and each
positive integer n, we denote by Q,,, the cone P, , N F = (PN F6,., =
Q0,,.. Notice that since s(b) < s{a) U s{b8d,,,) and s(bd,,) S s(a) U s(b) it
follows that F0,, = F. This means that Q,, is an scone for ¥ and
(F, @) = (F, Qo)

If yeF"=FN V' then © =|y|,cF; pick n, to be the smallest
integer = 2 such that nw,, =2, for all j =1, .-+, £, with m(x) =
m{yy = {tt, -+, 4. With this notation, we can follow the technique
oi the proof of Theorem 4 and show that ye@,,. We get therefore
that ' = UJ{Q,... 2@ n=1,2, -}, and we’ve proved the follow-
ing:

TarozeM 5. If A ts a root systew, then F = F{A, R,) is a strong
limit A-space.

REMARK. Once again in view of 2.5 in [3] we can conclude that
F is essential over Q.

Now let A be a root system having finitely many maximal chains
and no infinite ascending sequences; note that in this case V = /i.
Let m{4) denote the set of maximal components of 4. For each ze P
define ¥, , on [/ by

Y, if N e an(Aa);
Yo — nEPY if X ¢ m{A4) and N has no successor in
(yw‘:c,n>2 = /I;
Y, — nEVY, if e m{d) and A—1 is its successor
in A.

(Note: \* denotes the maximal entry of A exceeding \.) As before
¥, is a vector space isomorphism on V, and @,,= F¥,,=2 P, for
allze Pandn = 1,2, --+. Once again (V, P) =(V,Q,,); and if ye V+
and v = |y|, we pick %, to be the smallest integer = 2 such that
Wy, = 2, for all maximal components g, tt,, --+, 4, of z. Then as in
the proof of Theorem 4, with the various cases, one shows that for
all v < p;(j=1, -+, k) we get (¥¥.)), =1. (We have to assume
here that x,, = 1, for each j, but this can be done without loss of
generality.) Therefore V' = |J{Q,.. e P, n=1,2, -},

But in this case we can say more: the system {@,.. x€ P, n =
1,2, ..} is directed. To prove this we show that if m < n are
positive integers then Q,,,, = @,,.; and if 0 <& < y (rel. p) then Q,,, £Q, .-
First suppose m < n; let ae P and consider o¥,,7;.,: given \e 4
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there are four cases to consider.
1) xem(d); then (a¥,,.¥7%): = a; = 0.-
{2) né¢m(4) and » has no successor in /4; then

(aw‘x,mw'z_,ln)l - n@l)(awz,m))ﬁ +? (a’w‘l,m)l
= 10 + @, — mPq;
= q, + (nup . m(x,:))ap g 0 .

8) ngm(4) and M;_, is the successor of \;, where A, = X and
£, € m(4). Then

(awx mw‘w n)A
= newt +<x1k>(awxym)ll + e+ n<”k>(a¥fw,m)lk_l + (awz,m)lk
— 7L<”2>+"'+<“k>azl + .. L /n“),ﬁ(aik_l__m<xlk-1>a,zk_2) 4 a;k — m<“k>azk__l
= pCwtTER (S —mEw)a, 4 o0 4 (W —mEW)a,, 4+ a;, = 0.

(4) ném(4) and \,_, is the successor of A;, , = A and A, has no
successor. As in (3) one shows that (@¥,,?;.), = 0. This proves
that P¥, 7., S P, or Q.,»n & @s,ne

Next, suppose 0 <2 < y(rel. p) and = is a positive integer.
Consider (a¥,,7,%), with a € P; once again there are four cases.

(1) xem(4); then (a¥,,.7;%); = a;, = 0.

(2) Mem(4) and A has no successor in A; then one can check
that (a?,,7,.); = a; + (n¥? — nP)qu = 0, since {y,) = {zD.

(3) Megm(4) and \;_, is the successor of \; A, =\ and N 1s a
maximal component of 4. One easily verifies that

(@, ¥ = nt 0w (p — nR)ay, + .-
+ (W — nuwa, 4+ a;, = 0.

(40 rem(4) and n,_, is the successor of A;, where \, = A but A,
has no successor in A. One checks as in the other cases that
@¥,,¥;%) =0, Thus P?, 70, < P, that is Q,, & Q.-

So if Q... and Q,,, are given, with a, be P, then we may assume
m = n and 0 Qun U Qsn & Quopsws this proves that the system of the
Q... is directed. Hence:

THEOREM 6. If A is a root system having finitely many roots
and no infinite ascending sequences, then V =V (4, R;) = 11(4, R;) and
V is a strong directed limit A-space.

As an easy corollary of Theorem 4 we prove the following:

PROPOSITION 7. Let A be a root system, and D be an -subgroup
of V= V(4,R)) having the property that
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(a) D is an s-subgroup of (V, P); P={xeV: ;= 0, all A e ).

(b) And if a,be D, ce V and s(c) = s(a) Uis(b), this implies that
ceD.

Then (D, DN V*) is a limit A-group.

Proof. Condition (a) guarantees, of course, that (D, DN P) is an
s-group. Condition (b) says that for each xe DN P and each family
{n;: A e m(x)} the isomorphism 6,,.,, takes D onto D. Thus

(D, DNP)= (D, DN PNW)
and
D= U {Dﬂ Px,(nﬂ} .

This completes the proof.

In particular 3 = (4, R;) = {x € V: s(x) is finite} satisfies (a) and
(b) in Proposition 7, and so (2,2 N V+, 2N P) is a limit A-space.

In closing we point out that it is unknown whether the construc-
tion of Theorem 4 or 5 yields a directed system. Even if this should
not be the case, some subsystem might be directed and still fill out
V*. A case in point is X = ¥ (4, R;); one can show (the proof being
long, but in the spirit of that of Theorems 4 and 5) that Y is a
directed limit A-space, by taking an appropriate subsystem of the
{P z,{n 1)} *

Suppose we have an 1l-group (G, Q); if we knew under what con-
ditions G admitted an archimedean s~order P, of which @ was a very
essential extension, we could perhaps make a construction on P along
the lines of the construction of Theorem 4. It is doubtful that the
construction of Theorem 4 applies to too many ssubgroups of V. The
reason being that the archimedean --cones P, ., are of a very special
type, namely they have a basis.

A question which has some interest on its own: what groups G
admit archimedean lattice orders? They must of course be abelian and
torsion free, and if G is divisible then G does certainly admit such a
cone. There is no guarantee however, that an archimedean --cone
on the divisible closure G* of G will even induce an ~cone on G.

In view of Corollary 3.1 one can ask of course: what ~groups are
(strong) sequential (or linear) limit A-groups. Let us give one exam-
ple to show that 3.1 does not give all the strong sequential limit A-
spaces. This is also an example of a strong sequential limit A-space
with infinite descending chains of -~ideals; one can give examples of
strong sequential limit A-spaces which have infinite ascending chains
of ~-ideals. It is even possible to find strong sequential limit A-spaces
with descending chains (or ascending chains) of arbitrary length.
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Let G=RERBERHA - - = {all finitely nonzero real sequences}.
Let @ be the lexicographic total order by ordering from the left; let
P= G*. Let 0, be a map defined by

%0, = (5171,.%‘2 — MEyy 2oy Ty — Ny Tgyy Tty *°°)

In the notation of the proof of Theorem 5 6, =6, , where z, =
a,1,..+, 1,0, 0, -++); (the last 1 is the n-th position.) We therefore
know that 6, is an isomorphism of G onto itself, and P, = P4, = P.
It can be shown further that P, < P,.,, for each n =1,2, .-+, and
finally @ = U, P,. Thus (G, Q, P) is a strong sequential limit A-
space, for @ is very essential over P.
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