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APPROXIMATION BY ARCHIMEDEAN
LATTICE CONES

JORGE MARTINEZ

A root system A is a partially ordered set having the
property that no two incomparable elements λ and μ have a
common lower bound. I7(Λ, Rλ) will denote the direct pro-
duct of copies of R, the set of real numbers, one for each
λ e A. V(A, Rλ) is the following subgroup: v e V = V(A, Rλ)
if the support of v has no infinite ascending sequences. We
put a lattice order on v by setting v ^ 0 if v — 0 or else
every maximal component of v is positive in R.

This paper has two main results: we first show that the
cone of any finite dimensional vector lattice G can be ob-
tained as the union of an increasing sequence Plf P2 of
archimedean vector lattice cones on G such that (G, Pi) =
(G, P2) = , as vector lattices. Next, generalizing this, we
show that for any root system A the cone of the ^-group
V= V{Λ, Rλ) can be obtained as the union of a family of
archimedean vector /'-cones {Pr: γeΓ} on V, where (V, Pγ) —
(F, Ps), as vector lattices, for all γ, δeΓ.

It is proved in [1], Theorem 2.2, that V(Λ, Rλ) is indeed an /-
group when A is a root system. In an /-group K, x e K is a strong
order unit if x ^ 0, and for each 0 < ae K there is an n — 1, 2,
such that nx ^ α. The symbol EB will denote the cardinal sum of /-
groups; that is, if K^ίel) are /-groups then K~ EB {ϋΓ<: ίel] means
that K is the direct sum of the Kif as groups, and 0 <; x e K if and
only if O g ^ e Ki9 for each ίel. Finally, if r is a real number,
<V> will denote the smallest integer exceeding r.

Throughout the paper the pair ((?, P) will denote an abelian /-
group; that is, G is an abelian group, and P is the cone for a
lattice-group order on G. An /-group (G, P) is said to be archimedean
if for any pair α, be P there is a positive integer n such that
na jC b; P is then called an archimedean /-cone. We restrict our
considerations to abelian groups since archimedean /-groups are neces-
sarily abelian (see [2]).

Let (G, Q) be an /-group; we say that Q can be approximated by
the archimedean /-cone P if there is a family {Pγ: γ e Γ } of archi-
medean /-cones on G, such that ( i ) ((?, Pr) ~ (G, Po), for all T , O G Γ ,

(ii) Q = U {Pr' ΎeΓ} and (iii) P = P r, for some γ e Λ The /-group
(G, Q) is then called a ίΐmίί A-group. If the approximating family
is directed by set inclusion (resp. a chain under set inclusion) we call
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(G, Q) a directed ( r e s p . linear) limit A-group. I f Γ — {1, 2, •••} a n d

Pn ϋ Pn+ι for all w = 1, 2, , we call (G, Q) a sequential limit A-
group.

(G, Q) is a vector lattice if G is a real vector space, and in ad-
dition to being an /-cone, P is closed under scalar multiplication by
positive real numbers. The vector lattice (G, Q) can be approximated
by the archimedean vector lattice cone P if there is a family {Pγ: y e Γ}
of archimedean vector scones on G, such that (i) (G, P7) ~ (G, Pδ), as

vector lattices, for all 7, 3 e Γ, (ii) Q = U {Pr

: Ύ e Γ} and (iii) P = P r ,

for some 7 6/". In this case we call (G, Q) a ϊimiί A-spαce. By a

directed (resp. linear, resp. sequential) limit A-spaoe (G, Q) we mean
one where the approximating vector /-cones form a directed set (resp.
a chain, resp. an increasing sequence.)

It will be useful to denote a limit A-group (G, Q) by (G, Q, P),
where P ~ Pv for all 7 e Γ; this way we can keep track of what
approximation is being used.

Let (G, Qy P) be a limit A-group (resp. limit A-space); we call it
a strong limit A-group (resp. strong limit A-space) if Q is essential
over each P7. (Let (G, P) be an /-group, Q be an extension of the
cone P. Q is an essential extention of P if every /-ideal of (G, Q) is
an /-ideal of (G, P). For further discussion on essential extensions
see [3]). Suppose the family {Pr:7eJΓ} has a smallest member
(which is once again denoted by P); it follows from a remark in [3]
concerning essential extensions, that (G, Q, P) is a strong limit A-
group if and only if Q is essential over P.

PROPOSITION 1. The cardinal sum of (strong) sequential limit A-
groups is a (strong) sequential limit A-group. The same statement
holds for (strong) sequential limit A-spaces.

Proof. Let (G, Q) — ffl (G, , Qi), ie I. Suppose each Q{ is the limit
of the sequence {Pnfi: n— 1, 2, •••} of archimedean /-cones on Gi9

and (G. , Pui) ~ (Gi9 P2ti) = •••, for all ΐ e J . Fix n, and let P w be

the /-cone of the cardinal sum of the (Gif Pnfi). Since each Pn>i is

archimedean, so is Pn; clearly Png^Pn{.19 for each n= 1,2, « , a n d

So let 2 / G Q and iL,i2," ,ik be the nonzero components of y.

Then each s/»m is in Qim, for m = 1, 2, , k, and there exists an n(m)

such t h a t 2/i G P w { w M m Let w = max {^(m): m = 1, 2, •••,&}; then

each α/ί e P w „• , which implies t h a t y e Pn. This show t h a t Q = UΓ=i

P w ; it is obvious t h a t (G, PL) = (G, P2) = . I t follows therefore

t h a t (G, Q, Pi) is a sequential limit A-group.

Now suppose ζ), is essential over each Pn>i, ie I. (This is equi-
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valent to saying that each /-ideal of (G;, Q{) is an /-ideal of
(GtPnti).) Let K be an /-ideal of (G, Q); then K= ffl {Kf. iel},
where Ki — Kf] Gi9 Each Kt is an /-ideal of (G<, Qi), and hence an
/-ideal of (G*, Pn>i). Thus K is an /-ideal of (G, Pn), proving that Q
is esssential over Pn, that is, (G, Q, Px) is a strong sequential limit
A-group.

The above proposition can be generalized, in a sense:

PROPOSITION 2. The cardinal sum of (strong) directed limit A-
groups is a (strong) directed limit A-group. The same statement holds
for cardinal products.

Proof. Let (G, Q) = ffl (Gi9 Q<), i e I. Suppose (Gif Q{) = (Gi9 Qi9 P<)
is a directed limit A-group, and {Pr.: 7» € P(i)} is the approximating
family. Let Γ = ττ{Γ(ί): i e l } and consider the family {Pr: jeΓ} of
/-cones defined by: xe Pr if for each i e / xte PTi{ΊiG Γ{i)) Each P r is
clearly an archimedean /-cone for G, and (G, P r) = (G, Pδ), for 7 ^ δ.
The P r obviously form a directed system, and finally, if y e Q then
yt = 0 or i/i G Qiί in either case ^ e Pδ., for some δ< e JΓ(<), and therefore
y e Pδ, where δ = ( , £<, •• ) e Λ Thus Q is the join of the P r and
we're done.

Notice that the above proof works for the cardinal product of
directed limit A-groups. If each (G<, Q ί? P4) is a strong limit A-group
then one uses the technique of the proof of Proposition 1 to show
that (G, Q, P) is also a strong limit A-group. We should also point
out once more, that a similar version of this theorem holds for directed
limit A-spaces.

It is not known whether the cardinal sum (resp. product) of linear
limit A-groups is again a linear limit A-group. By Proposition 2 it is
certainly a directed limit A-group.

THEOREM 3. Let (G, Q, Px) be a strong sequential limit A-space
having a strong order unit. Let K — R 0 G and Qf = {r + g: r > 0,
or else r = 0 and g eQ}. Then (K, Q', R+ φ PJ is a strong sequential
limit A-space.

Proof. Let u e G be a strong order unit relative to Q; without loss
of generality we can assume uePn for each n — 1, 2, •••. Let i; be
any positive real number and define

v™ = (-i-V + ( J ^ - W , for n = 1, 2, .
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Let Vin) = {rvin}: r e R } ; V{n) is a one-dimensional space, and clearly
Vin) Π G = 0, so if = F ( w ) φ G. Now let P^ - {rvin) + flr: 0 ^ r and
#eP % } ; then (if, Pn') is the cardinal sum of V{%\ ordered as the reals,
and (G, P J . Since each Pn is archimedean it follows that each Pi is
also. Notice that Vω = R and P' = R ffl P l β If i ϊ is an /-ideal of
(if, Q') then either H = K or H = G, or else i ϊ is a proper /-ideal of
(G, Q); in any case H is an /-ideal of (if, P/), since Q is essential
over P1# Notice also that (if, PJ) = (if, PJ+1), for all w.

We must show (1) PI g Pί + 1 S Qr and (2) Q' = ( J ^ i P
(1) We show first that P/ S Pi S Q', for all & = 1, 2, - - . The

first inequality will follow if we can prove that v e Pi, the second,
if v{k) e Q', because we know that P1 C Pk g Q. That v(A) is in Q; is
clear since (l/n)v > 0. One can easily show that

v = k v i k ) + ( k - l ) u ,

proving that v e PI.
But now observe that for each n — 1, 2, we have

π(w + 1)

so t;(w) is the sum of two elements in P«+1, and hence ^(% G P % M .
That is enough to show that P'n ^ Pή+ι

(2) Let yeQ'; we have the following expressions for y: y =
sv + yo = s{n)v{n) + 2/(%), with s, s(ίι) e R and ?/0, τ/(%) G G. This forces
certain relations:

( 1 ) s{n) = ns ^ 0 (since yeQ') ,

and

( 2 ) ( ί k l ^ ) V > w + yt ) = y0 .

Thus each s{%) ^ 0; moreover, the above equations give

(20 y(n) = (n - ΐ)su + y0 .

Writing i/0 as the difference of its positive and negative parts relative
[to Q, we obtain

(2") y{n) = (n- )m + yt - w .

Observe that since u is a strong order unit of (G, Q), then so is su.
Therefore if n is large enough, (n — l)su > y^(rel. Q). But since the
Pn form a chain we can certainly find an n0 such that yt, y7 e PΛo and
(n0 - 1)8« > 2Λ"(rel. P.o). Thus i/ίw) e P.o; together with the fact that
8{

o

n) ^ 0 this impies that y e Pn. This proves the theorem.
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COROLLARY 3.1. Every finite dimensional vector lattice is a strong

sequential limit A-space.

Proof. Note at the outset that every finite dimensional vector

lattice has a strong order unit. For if (V, Q) is a ί-dimensional

vector lattice, we may regard (V, Q) as V(Λ, Rλ), where A is a root

system of t elements, and for each XeA, Rλ = R. ([1], Theorem 5.11)

Then x — (1, 1, , 1) is a strong order unit.
We proceed by induction on t:

Case I. A has a largest element λ0. Let Af = Λ\(λ0}; then (V, Q)
is a direct lexicographic extension of V(Λ', Rλ) by R. But V(Ά, Rλ)
has dimension t — 1, so it is a strong sequential limit A-space. By
Theorem 3 (V9 Q) is also a strong sequential limit A-space.

Case II. A has no largest element. Then A can be written as

the union of two nonempty, disjoint subsets Ax and A2 having the

property that λ is incomparable to μ, for all X e At and μ e A2. It

follows that (V,Q)= V(Λ19 Rλ) EB V(Λ2, Rλ), and both these summands

have dimension less than t; thus they both are strong sequential limit

A-spaces, and by Proposition 1 so is (V,Q).

Let Λ be a root system, Π = Π(Λ,Rλ), V= V(Λ,RX) and P =

VC\ ΠΛ, where 77+ = {x: xλ ^ 0, for all XeA}. The following discus-

sion will establish that 7 is a limit A-space. (Of course we consider

V as a vector lattice relative to the cone V+ = {v: all the maximal

nonzero components of v are positive}.) Notice that (F, P) is an /-

subgroup of //. For each xe P let s(x) denote the support of x9 m(x)

the set of maximal nonzero components of x. Choose a family

{nλ: Xem(x)} of positive integers, and define a map θxΛnχ] on Π by:

(yλ if X£s(x) or Xem(x);

yι — ^λfxfVλix) if Xe s(x)\m(x) and X has no succes-
sor in s(x);

Vx — nλ%? yλ-x if X e s(x) \ m(x) and λ — 1 is the sec-
cessor of λ in s(x).

(Note: X(x) is the maximal component of x that exceeds λ.) This map

has an inverse θ~]n~}}:
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if λ£ s(x) or λe m(x);

fλ if X e s(x) \ m(x) and X has no succes-
sor in s(x);

if X e s(#) \ m(x) and λ
cessor of λii also λi =

;_! is the suc-

+ + yλ -i

if λ 6 s(x) \ m(x) and λ ^ is the suc-

cessor of λ*; λi has no successor.

Clearly then θxΛnχ) is a vector space isomorphism of Π onto itself.
Let P * , ^ = PθxΛnχ}] we claim first that, restricted to F, each θxΛnχ] is
an isomorphism of F onto itself. This is due to the fact that for all
yen

s(y) g s(x) U s{yθxΛnχ}) and s{yθxΛnχ]) g s(2/) U φ ) .

A quick look at the definition of tf"'^ readily shows that PΘXf{nχ]ξΞ:P,
that is: P g PXf{nχ}- Thus Pa-,^^ is an archimedean vector lattice order
on F, and (V, P) ^ (V, Px>{nχ)), for all xeP and fe: λem(x)}.

Now if ye V+ then consider χ= \y\p; of course s(#) = s(y) and
m(#) = m(y). We proceed by induction on the maximal chains of s(x).
Let μ be a fixed maximal component of x; of course (yθ~\{nχ])λ — yλ for
all λ ^ ^ and every choice of integers {nλ: X e m(x)}. So assume λ < μ
and λ e s(x); if λ has no successor in s(x), let nμ be the smallest positive
integer ;> 2 such that nμxμ ^ 2 . If yλ > 0 then w?^ 2//e + ^ ^ 1, since
x^ = yμ. lί yλ < 0 then i/A = —xλ; now if ^ > 1 we get nμ

x$~ι ^ a?Λ,
for all nμ ^ 2. This implies that nμ

x^yμ ^2xx^xλ + l. If 0 > yλ ^ - 1
then nμ

Xλ>yμ = nμyμ ^ 2 = 1 + 1 ^ xλ + 1. Hence in any of the above
cases nμ

xΰyμ + yμ ^ 1, for large enough nμ. Notice that nμ is in-
dependent of λ.

If λ does have a successor in s(x) there are two cases for

Case I. (yθ-\{nι))λ = nμ

9^>+'

Xk = λ, λί_L is the successor of
Thus

Hx^>yλι + . . . + nf^
in s(x) and λL = μ.

^ + yik, where

and by induction the sum in the square brackets is ^ 1; so
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(The last inequality holds since for any real number r, n<lrl> ^ r + 1,
for all n ^ 2.)

Case II.

+ + ^ W i + yλk ,

where λfc = λ, Xi^1 is the successor of λ* in s(a?) and \ has no successor
in s(x). Again

and again by induction the bracketed sum is ^ 1; so

Out of all of this we get that if λ < μ and λ e s(x) then there is
an ^(independent of λ) such that {yθ~\{nχ))λ ^ 1. This works for every
μ G m{x) — m(y), and so we can find integers {nλ: λ e m(^)} such that
yθ7ι,inλ} e P. (Remark: if λ < μ in the above arguments, but xλ = yλ = 0,
then there is no problem; any 0"1 will fix this component.) Putting
it differently: we've discovered an x in P and integers {nλ: λ e m(x)}
such that yePXt{nv; hence

7 + g | J {P.,ι.,»: « e P, {Λ,: λ e m(x)}} .

To show the reverse containment we show a little bit more. The
maps θxΛnχ) all take V+ into itself. For if aeV+ and μem(a) then
(α^.ί-j})* = a>μ And iί\>μ then ( α ^ , ^ ^ = α̂  = 0; thusm(a) Sm{aθ x Λ n λ ]).
One shows in a similar fashion that m(aOx>{n?]) £ m(α), and hence equality
holds. This clearly shows that F + ^ , { w ; > = F + and therefore Px,{n?} S F + ,
for all xe P and {ŵ : λ e m(x)}.

In addition V+ is essential over P, in view of Proposition 2.5 in
[3]. We've thus proved the following theorem:

THEOREM 4. If Λ is any root system,, then V = V(A, Rλ) is a
strong limit A-space.

Again let A be a root system, and F — F(Λ, Rλ) = {v e V: s(v) is
contained in the union of finitely many maximal chains;} F is then
an /-subgroup of V. In the above construction we can throw out
quite a few of the PXt\nλ}\ in this case we take for each xeQ = Pf] F
and n — 1, 2, , mappings 0Xt{nχ) where each nλ — n. We abbreviate
the notation to θXy% and Px>n respectively. (We mention in passing
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t h a t (F, Q) is an ^-subgroup of ( F , P).) For each aeQ and each

positive integer n, we denote by Qa>n the cone Pa,n Π F = (P Π F)θat,t =

Qθa,n. Notice t h a t since s(b) g s(a) U s(bθajΎl) and s(bθa!n) gΞ s(a) U s(δ) it

follows that Fθa>n — F. This means that Qa>n is an /"-cone for F and

(F, Q) ~ (F, QαJ.
If yeF'r = j P n F ' then a; = l ^ e F ; pick wc to be the smallest

integer >̂ 2 such t h a t n,xμ, ^ 2, for all j = 1, , &, with m(#) =

m('#) = {/̂ , •••, /J/J. With this notation, we can follow the technique

of the proof of Theorem 4 and show t h a t y e QX,%Q> We get therefore

t h a t F r = fj {Qx,n: xe Q, % — I, 2, •}, and we've proved the follow-

ing:

THEOREM 5. If Λ is a root system, then F — F(Λ9 Rλ) is a strong

limit A-spacβ.

REMARK, Once again in view of 2.5 in [3] we can conclude t h a t

F'r is essential over Q.

Now let A be a root system having finitely many maximal chains

and no infinite ascending sequences; note t h a t in this case V= 11.

Let m{Λ) denote the set of maximal components of A. For each x e P

define ΨXtn on Π by

yλ if λ G m(Λ);

yλ — n<Xλ>y;* if λ £ m(A) and λ has no successor in

yλ — n^tyχ-! if λ g m(A) and λ — 1 is its successor

in A.

(Note: λ* denotes the maximal entry of A exceeding λ.) As before

Ψx>n is a vector space isomorphism on F, and Qx,n = PΨx,n 2 P, for

all xe Pand w = 1, 2, . Once again (V, P) ~ (V, Qx,n); and iίye V+

and x = \y\P we pick n0 to be the smallest integer ^ 2 such t h a t

nCjxμj ^ 2, for all maximal components μlf μ2, •••, ^ of a;. Then as in

the proof of Theorem 4, with the various cases, one shows t h a t for

all λ < μj (j = 1, , k) we get {yΨ^n^? ^ l (We have to assume

here t h a t xμ. ^ 1, for each j , but this can be done without loss of

generality.) Therefore V ^ \J {Qx,n: x e P , ^ l , 2 , - | ,

But in this case we can say more: the system {Qx,n\ xe P, n —

1.2, •••} is directed. To prove this we show that if m ^ n are

positive integers then Qx,m S Qx,n; and if 0<Lx^y (rel. p) then QXtn £ Qy,n,

First suppose m ^ n; let α e P and consider aΨx,mΨ'^n: given XeA
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there are four cases to consider.
(1) Xem(Λ); t h e n {aΨx,mΨ~:n)λ - aλ^ 0.
(2) λ g m(A) and λ has no successor in A; t h e n

= aλ + (V3^ - mixΐ)aλ* ^ 0 .

(3) Xgm(A) and λ ^ is the successor of X{1 where λ̂  — λ and

x G m(Λ). Then

l + . . . + ( ^ ^ ^ - m ^ ^ ^ ^ + α^ ^ 0 .

(4) λ g m(/ί) and λ{_L is the successor of λ*, λ̂  = λ and λL has no
successor. As in (3) one shows that (aΨΛtm Ψ^)λ ^ 0. This proves
that PΨx,mψ-ι

n S P, or Q,,. s Qβ,n.
Next, suppose 0 ^ x <£ ̂ / (rel. p) and % is a positive integer.

Consider (aΨx>nΨ~^)λ with α e P ; once again there are four cases.
(1) λ G m(Λ); then (a¥x,nW^n)2 = α, ^ 0.
(2) λ g m(/ί) and λ has no successor in A; then one can check

that {aΨx,nΨyln)x - aλ + (ή<^>'- ^<^ >)α^ S 0, since <>;> ̂  <x,>.
(3) λ g m(/ί) and λ^j. is the successor of λ$, λΛ = λ and λx is a

maximal component of Λ. One easily verifies that

h^ + aλ]c ^ 0 .

(4) X^m(Λ) and λ^i is the successor of λ;, where Xk = λ but λx.
has no successor in Λ. One checks as in the other cases that
{aΨx,nΨ^n) ^ 0f Thus PΨy>nW-:n.^ P, t h a t is Qx,n s Q,,%.

So if Qa,m and Qδ,w are given, with a, beP, then we may assume
m^n and so Qa>m U Q6,w S Qαvp^«; this proves that the system of the
Qx,n is directed. Hence:

THEOREM 6. If Λ is a root system having finitely many roots
and no infinite ascending sequences, then V — V{A, R;) = Π(A, R;J and
V is a strong directed limit A-space.

As an easy corollary of Theorem 4 we prove the following:

PROPOSITION 7. Let A be a root system, and D be an /-subgroup
of V — V{Λ, R;) having the property that
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(a) D is an s-subgroup of (V, P); P = {xe V: xλ ^ 0, all Xe A}.
(b) And if α, be D, c e V and s(c) g s(a) U |s(Z>), this implies that

ceD.
Then (D, D ΓΊ V+) is a limit A-group.

Proof Condition (a) guarantees, of course, that (D, D Π P) is an
/-group. Condition (b) says that for each xeD Π P and each family
{nχi Xem(x)} the isomorphism θxΛnχ) takes D onto D. Thus

and

J9 = U Φ n P.,,.,,} .

This completes the proof.

In particular Σ = Σ{A, R;) — {xe V: s(x) is finite} satisfies (a) and
(b) in Proposition 7, and so (Σ, Σ Π F + , Σ Π P) is a limit A-space.

In closing we point out that it is unknown whether the construc-
tion of Theorem 4 or 5 yields a directed system. Even if this should
not be the case, some subsystem might be directed and still fill out
V+. A case in point is Σ = Σ (A, Rλ); one can show (the proof being
long, but in the spirit of that of Theorems 4 and 5) that Σ is a
directed limit A-space, by taking an appropriate subsystem of the

{P.W
Suppose we have an 1-group (G, Q); if we knew under what con-

ditions G admitted an archimedean /-order P, of which Q was a very
essential extension, we could perhaps make a construction on P along
the lines of the construction of Theorem 4. It is doubtful that the
construction of Theorem 4 applies to too many /-subgroups of V. The
reason being that the archimedean /-cones PXf{ni) are of a very special
type, namely they have a basis.

A question which has some interest on its own: what groups G
admit archimedean lattice orders? They must of course be abelian and
torsion free, and if G is divisible then G does certainly admit such a
cone. There is no guarantee however, that an archimedean /-cone
on the divisible closure G* of G will even induce an /-cone on G.

In view of Corollary 3.1 one can ask of course: what /-groups are
(strong) sequential (or linear) limit A-groups. Let us give one exam-
ple to show that 3.1 does not give all the strong sequential limit A-
spaces. This is also an example of a strong sequential limit A-space
with infinite descending chains of /-ideals; one can give examples of
strong sequential limit A-spaces which have infinite ascending chains
of /-ideals. It is even possible to find strong sequential limit .̂-spaces
with descending chains (or ascending chains) of arbitrary length.
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Let G=Rff lRf f lRf f l ••• = {all finitely nonzero real sequences}.
Let Q be the lexicographic total order by ordering from the left; let
P =z G+. Let θn be a map defined by

X"n = (#i,$2 7ίXί9 * * , Xn WίC^—!, Xn+u Xn+2i * * */

In the notation of the proof of Theorem 5 θ% = θXn,n, where xn —
(1,1, •••, 1, 0, 0, •••); (the last 1 is the n-th. position.) We therefore
know that θn is an isomorphism of G onto itself, and Pn = Pθn 3 P.
It can be shown further that Pn g Pn+1, for each n = 1, 2, •••, and
finally Q = UΓ=i P»- Thus (G, Q, P) is a strong sequential limit A-
space, for Q is very essential over P.
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