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ON A SIX DIMENSIONAL PROJECTIVE
REPRESENTATION OF PSU, (3)

J. H. LINDSEY, II

In the course of an investigation of six-dimensional com-
plex linear groups, it was discovered that a central extension
of Z; by PSU.3) has a representation of degree six, In fact,
this representation has as its image the unimodular subgroup
X(G) of index 2 of the following 6-dimensionzl matrix group:
<(all 6 by 6 permutation matrices; all unimodular diagonal
matrices of order 3; I, — Q/3 where Q has zll its entries equal
to one)>. This matrix group leaves the following lattice in-
variant: {(a, ---, @) | @; € Z{w) where throughout this paper o
is a primitive third root of unity; a; — a; € v —3 Z(») for all
1,73 >, 0,€3Z(w)}. The generators of the matrix group are
similar to the following generators for an 8-dimensional com-
plex linear group with Jordan-Holder constituents Z,, the non-
trivial simple constituent of 052), Z,: (all 8 by 8 permutation
matrices, all unimodular diagonal matrices of order 2, I, — P/4
where P has all entries equal to 1),

The projective representation of PSU,(3) can be used to
construct a 12-dimensional representation Y(H), a central ex-
tension of Z; by the Suzuki group, which leads to the known
24-dimensional projective representation of the Conway group.
In fact, H has a subgroup K isomorphic to a central extension
of (Zs X Z;) by PSUL(3). Also, Y| H has two six-dimensional
constituents coming from the above matrix group where the
constituents are related by an outer automorphism of PSU,(3)
which does not lift to the central extension of Z; by PSU.(3)
with the six-dimensional representation. We obtain two com-
muting automorphisms, « and j respectively, of G from I, —
/3 and complex cornjugation. For PSU,(3), the outer auto-
morphism group is dihedral of order eight with its center
corresponding to complex conjugation of X(G). The entire
automorphism group lifts to K. We may take the center of
K to be <a,b,c¢) with ¢ and b of order 3 and ¢ of order 2,
with G = K/b, and with a(a) = a, a(b) = b, fla) = a1, B(b) =
b~'. We can zalso find an auntomorphism 7y of K with 7(a) =b
and y(b) =a., We give the character table of K giving only
one representative of each family of algebraically conjugate
characters and classes, Irrational characters and classes are
underlined. Only one class in each coset of Z(K) is repre-
sented by the character tables. The characters in the table

U% give the characters with Z(K) in the kernel. The suc-
ceeding five character tables in order give the following linear
characters, respectively, on Z(K):f0(a)=0(b) =1, 0(c) = —1;
0a) = w, 0(b) = 6(c) = 1; 0(a) = o™, 6(b) = 1, 6(c) = —1; 6(a) =
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0(b) = w, 6(c) = 1; 8(a) = 8(b) = w, 8(c) = —1, The characters
with other actions are obtained by applying elements of the
outer automorphism group. The automorphism « transposes
7, with z7'; and N; with N;' in the character tables, The
automorphism S transposes N; with Ni'; and N; with N;".
The automorphism 7 transposes 7 with Ty; JT; with JT%; N,
with N,; N7' with N;'; and possibly =; with =7, As SU.3)/
Q(ZSU(3)) has the centralizer of some central involution iso-
morphic to the centralizer of some central invelution J in G,
presumably SU,(3)/2,(ZSU3)) = G/0;(Z(®)).

The first four character tables give the characters of the central
extension of {d) = Z, by LF(3,4) with a six dimensional, complex re-
presentation. Respectively, they give the following linear characters
on {ay:0(a) =1, 6(a) = w, 0(a) = —1, 8(@¢) = —w. The characters with
f(a) = @ or f(a) = —w™ come from complex conjugation of the second
and fourth table respectively.

We let Z/J'Ii’,/) = PSU,3) and let S, be a p-Sylow subgroup of
whatever group is in question. The term “Blichfeldt” refers to the
theorem in [1] that no primitive complex linear group contains an
element with some eigenvalue within 60 degrees of all the other
eigenvalues of the element. Where clear, we use ¥, to refer to the
previously discussed character of G of degree n. Finally, a(X, Y, Z)
is the coefficient of the conjugacy class containing Z in the product
of the classes containing X and Y.

This paper fills a gap in [9] concerning groups G with a faithful
unimodular representation X with character y of degree six and G
simple of order 273°35 where Z = Z(G) and G = G/Z. We also know
by [9, §8], that C(S,) = S,Z, C(S,) = S.Z, 4/t; = [N(S;): C(S;)] = 4, and
6/t, = [N(S): C(S,)] = 3. Also, the principal 7-block B,(7) has degree
equation 1 + 729 = 640 + 90. Finally, by [9, § 8], x(G) & Q(w), 3||Z]|,
and we may take X(S,) to be

/ 01 0 0 1 0\
diag(1,1,»,1,1,»™),{0 O 1)@13,13@(0 01

\ 1.0 0 100/.

I learned from the referee that this representation was discovered
earlier by Mitchell, [10]. Mitchell also showed that this linear group
and the first orthogonal group on six indices with modulus three have
isomorphic nonsolvable Jordan-Holder constituents. Hammill, [6] and
Todd, [12] also worked on this linear group with the latter construct-

. ol
ing the character table of U,(3).
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2. The character table. By the above, |Z| = 6 since X,, the
character of the skew-symmetric tensors of X ® X ® X, does not have
a constituent of degree 90 or 640. There is a character y.,, completing
the 2-block of ¥, in G/Z, Since Y, is the T-exceptional character in
the block B,(7) with characters whose kernel is Z,, and G/Z, does not
have a character of degree 6, y, is irreducible. Degrees divisible ex-
actly by 2 or 4 and = +1 (mod 7) and =0 or *=1 (mod 5) are 6, 36,
90, 20, and 540. The possibilities are 660 — 36 = 624, 660 + 90 = 750,
660 + 20 = 680, and 660 — 540 = 120. The degree equation is 20 +
640 = 120 + 540. By [5], 3-7 block separation in G/Z,, these characters
are in the same 3-block of G/Z,. Let Te Z(S,), x(T) = —3. Then (mod
3) (G Xsu(T)/(340)|C(T) | = |G AT)/2O) C(T) | = (=1)IG|/(20)|C(T) | =
some 3-unit, s0 ¥,,(7T) is divisible exactly by 27 and |C(T)|/|Z| > 3°.

A T7-block whose characters have kernel Z, contains yx,, from the
skew-symmetric tensors (irreducible since G/Z, has no representation
of degree 6) and y,,, completing a 3-block of defect 1. There is another
degree divisible exactly by 3 which must be 384, 24, 15, 60, 120, 480,
or 960. The degree 24 is impossible since

X24(7r7)X24(77:7) =2,

but Yufw cannot fit ¥, + Y in B(7) inside. The possibilities are
729 + 15 — 384 = 360, 744 + 15 = 759, 744 + 60 = 804, 744 + 120 = 864,
744 + 480 = 1224, and 744 + 960 = 1704. Since G/Z, has no representa-
tion of degree 6, ¥, corresponding to the symmetric tensors of X ® X,
is irreducible. In the case of 864 there is a 5-block with degree equation
864 + 864 + 729 = 21 + ... and the fifth degree is too large. There-
fore, the 7-block has degree egquation 15 + 729 = 384 + 360. Suppose
that G has an element J with X(J) having eigenvalues 1, ¢, %, —%, —1,
—1. Then x(J) = (0* — (—6))/2 = 8. Also s has 2-defect 0 and
Xsse(J) = 0. Since ¢, = 2,a,,,,.,, =0 in G/Z and G/Z, so

3%/15 + Yrao (J)*/T29 — Ysu(J)*/360 = 0

and 8 + Yue(S) = Yso(J).  Then 9| Yo (J), 3| Yaso(S)s 27 | Yre(J), and
4| ¥s60(S); SO Yrop(J) = —27 (mod 108). Then Y0 (J) = —27, otherwise
| %220 (J) | > 80 and the sum is negative. Then in B,(7),

X)) = 1, Yusl) = =27, Lol J) = 0, Yool J) = 1 — 2T = —26,

and 1%/1 + 27%/729 — 26%/90 == 0, a contradiction. Therefore, J cannot
exist. We have a character y., faithful on Z completing a 2-block
containing Y... Then a 5-block faithful on Z contains characters of
degree 6 and 384. Now 1 = (Y5 XeXs) = (eXasr Xs) SO AsX1s contains y,
as a constituent. Also ¥ — X has an irreducible constituent of
degree = —1 (mod 5) and divisible by 6: 84 or 24. By the previous
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YeXos(0;) argument, 24 is impossible and the 5-block contains the degree
6, 384, and 84. We have another degree divisible exactly by 2: 6, 486,
126, or 1134. The possibilities are

384 + 84 — 6 — 6 = 456, 486 — 462 = 24
already shown to be an impossible degree,
462 — 126 = 336, and 462 + 1134 = 1596 .

The degree equation is 6 + 126 + 336 = 84 -+ 384. As with 84, %Yo — Xs
is a character. Since (Yo)u: %) = 1, XsXs — ¥s has no constituent of
degree 6. Therefore, from the 5-block, all its constituents have degrees
divisible by 30, and must be 120, 90, or 60. The degree 90 would
imply the impossible degree 30. If 60, then a T7-block has degree
equation 6 + 384 = 60 + 330, impossible. Therefore, it is irreducible,
and the 7-block is 6 + 884 = 120 + 270. If J gives an involution in G/Z,
then possibly replacing J by —J, X(J) has eigenvalues 1,1,1,1, —1, —1
as x(G) = Q(w) and eigenvalues 1, 1, i, —7, —1%, —+¢ are impossible. In
G = G/Z, {x;y is self-centralizing and a,,,., =0 or 5. Now [Ce(J)| =
|CJ)| | Z| and ay,-,= 0 or bin G/Z, G|Z, G|Z, and G. Then look-
ing successively at G, G/Z,, G/Z,, and G we see that > x.(J)*x:(ms)/x:(1)
over each 5-block is 0 or 5 |Cz(J)[?/|G|. By 2-block orthogonality on
L, I, Asser(J) = 0. Also y(J) = 2, ¥eu(J) = 2(4 — 6)/2 — 2 = —4. Then
Lol J) + Yae(J) = —4 — 2 = —6. Let a = Yu(J). We may find some
J in Z(S,) with 27|3, = 4/6 + a*/336 + (6 + @)*/126 — 16/84. Then 4|a
and we may let a = 4b. Multiply the sum by 63:

27142 + 30* + 8b® + 24b + 18 — 12 = 11b° + 24b + 48 .

Then 4|b and if ¢ = b/4, then 8|11¢* + 6¢ + 3. Then ¢ is odd. Eince
|6 + 16¢| < 126, we have ¢ = +=1, &3, &5, or &=7. Also 11¢* =11 =3
(mod 8), so 6¢ =2 (mod 8) and ¢= 3 (mod 4). The possibilities are
11 — 6+ 3=28,99 + 18 + 3 = 120 impossible by the factor 5 since
54 1CzJ)], 275 — 30 + 3 = 248 divisible by 31 and impossible, 539 +
42 + 3 = 584 divisible by 73. Therefore,

¢c=—1,5[C(J)[/IG| = (8)(4)(4)/63,

and |[Cz(J)| = 279. Then J inverts a 5-element and there is only one
such class of such J mod Z. If another involution J, does not invert
a b-element, then 27|10 = 3 ¥.(J)*x:(7;)/x:(1), and the above leads to a
contradiction. Therefore, G/Z has a unique class of involutions. Sup-
pose that there is an element F' with X(F') having eigenvalues 1,1,
1,1,4, —i. Then

LoF) = (@ =2)2 =T, 7.(F) = (£ + 2)/2 =9, (F) = 28 — 4 = 24,
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and ¥.,(F) = 36 — 4 = 32. However, 82° +24°>2'9 = |C5(F?) | = |C3(F),
a contradiction.

3. The centralizer of an involution. Let J be an involution
with X(J)=I, & — I,. Then X|C(J)=U@V and x|C(J) = 6 + ¢ where
0 corresponds to U and 6(J) = 4. If « is a field automorphism fixing
w, then 6%+ ¢* =0 + ¢,0* = 0, and ¢* = ¢ since 6 and 6 are the
sums of irreducible characters of y|C(J) with J in the kernel. There-
fore, 6(C(J)) and ¢(C(J)) are contained in @Q(w). Let K be the sub-
group of C(J) of elements k& such that (det V(k))*" = 1 for some m.
Then |K| = 29/Z|/3 = 2%9. Suppose « € ker U. Then z is a 2-element,
otherwise, some power ¥ of v has order 3 with 6(y) = 4, ¢(y) = —1,
and Jy contradicts Blichfeldt. If x has order 4, then X(x) has eigen-
values 1,1,1,1, 7, —1; already shown impossible. Therefore, ker U =
(J) and |UK)| = 29.

Suppose U has 2-dimensional spaces S and T as spaces of impri-
mitivity or invariant spaces. Then H of index 1 or 2 in U(K) has
0|H = p + v corresponding to the 2-dimensional spaces S and 7. Let
L be a 2-Sylow subgroup of U(K). Unless [U(K): H] =2 and p¢|LNH
and v|L N H are irreducible, H has an abelian subgroup A of order
2°, impossible (if A has an element of order 8, the linear characters
of 6| A are algebraic conjugates and faithful, so |A| = 8. Therefore,
irrational characters of 6]A occur in pairs and have image of order
4. Rational characters have image of order 2. Therefore, |A| < 16).
Therefore, ¢ and v are irreducible and a 2-element x € C(J) transposes
S and T. If ¢ & Q(w), then p and v are algebraic conjugates, g is
faithful on H, and H N L has an abelian subgroup of index 2 and
order at least 2°, impossible. Therefore, p, v S Q(w) and p|L N H,
v|L N H are rational. Then

WL nHLWLNHIS[2/@Q-1] +[22] + -+ =3.

Since |[LNH|=2LNH=%kery xkerpg. In 2 by 2 matrix blocks

let Ux) = <gr Ig) Then U(x?) = <W6Y YOW> is contained in a

conjugate in H of Kery x Kerpu=LNH, a 2-Sylow sub-

group of H. Therefore, (W()Y ?) = U(y) is contained in H. Now

Uly—z) = ((1), 18_1>. Changing cof)rdinates by conjugation vvi’ch(é1 107)
and replacing z by y~'z, we may take U(x) = G) (I)Z> Since ¢|LNH
is irreducible and L N H = Ker v X Ker g, there is a 2-element y with
Uly) = -1, I,. Then U(xy)) = —1,, so V((xy)®*) = —1,. However,
¢ is rational and 1 = det U(zry) = det V(zy). Therefore, ¢(xy) + 2. If
Kery has an element T of order 3, then ¢(T) = —1,»(T) = 2, and
X(J(xy)"TxyT~") has eigenvalues ®, ®, w, ®, -1, —1; contrary to
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Blichfeldt. Therefore, the representation corresponding to y« has image
of order 72. Then ¢ < Q(w) implies that there is a 3-element g with
1(9) = 2w. Then y(9) =1 + w, otherwise, v(9) = 2® and X(J(xy)'gryg™)
contradicts Blichfeldt. Now ¢(g9) = ® + ®, otherwise, ¢(g) =2 and
X(J(xy)~'gxyy) has eigenvalues w, ®, ®, ®, —1, —1 and contradicts
Blichfeldt. There exists a 2-element z with n(2) = ¢ + (—7), (%) =
—2, and v() = 2. Then ¢() =7 + (—1) and ¢(z*) = —2, otherwise,
X(z) or X(zJ) has eigenvalues 4, —,1,1,1,1. Then 6(z7'g7'29) = 4
implies that z7'g~'2ge<{J,. As Jz'g~'z has order 6, it cannot equal
¢g~', and z7'¢g~'zg is the identity in G. Then V(z) with eigenvalues
1, —1 commutes with V(g) with eigenvalues @, @ contrary to ¢ = Q(w).

Now suppose that U is monomial, but not imprimitive on 2-di-
mensional subspaces. Then there exists a 3-element ¢ corresponding
to a permutation of order 3. As before, U(K) has no abelian sub-
group of order 32, so the image of U(K) under o, the natural per-
mutation representation on four letters has order eight and must be S,.
Then U(K) has an element T of order 3 in Ker o and conjugates of
some commutator of 7T with a transposition show that U(K) contains
all diagonal matrices of order 3 and determinant 1. Then 27|| U(K)]|,
a contradiction.

Now by Blichfeldt’s classification of groups of degree 4, U(K)
modulo Z(U(K)) has a subgroup N of the tensor product of 2-dimen-
sional representations W of M = GL(2,3). Also, N has index 2 or 1
in UK). Now Z(UK)) S<—1I, since det U(k) for ke K is a 2"-th
root of 1 and 0 S Q(w). Let U/N=AQB. Now W(M)R I, does
not appear as a subgroup modulo scalars of U(K) since eigenvalues
v, Y, YL v with Y =1 or 1, 1,1,1 contradict 2-rationality of 6. There-
fore, the image under A of Ker B in M/Z(M) has order at most 12.
The image of N under B in M/Z(M) has order at most 24. This
gives |N| = |Z(N)|(12)(24) < 2°9. We must have equality. Then an
element x takes AQ B to B A. Therefore, N D W(SL(2, 3)) ® I,
I, ® W(SL(2, 3)) after elements of W(SL(2, 8)) are changed by scalar
multiplication. Also, the quaternions @ = SL(2, 3)’ can have W(Q)
taken as the matrices in [1, § 57]. Since det U is a 2™-th root of 1
we may also use the matrix in § 57 for a 3-element S in W(SL(2, 3)).
Let g be a 3-element with U(g) = S® L. Then V{(g) has eigenvalues
w, ®; otherwise ¢(9) = 2 and g¢J has eigenvalues w, @, w, ®, —1, —1;
contrary to Blichfeldt. If & is a 3-element with U(h) = I, ® S, then,
similarly, ¢(h) = —1. Also U(g) and U(hk) commute, V{(9) and V(h)
commute modulo {J), and V(g) and V(k) commute. Both may be
taken as diagonal. There exists e W(M) with E-'SE = S~'. Let
Vig) = o @ ®. If necessary, we may replace » with ~2~' and change
coordinates of U by conjugation with I, @ E to take V(h) = o @ @.
If xeC(J) with U(x)e W(Q) ® I, and U(x) of order 4, then U(x) has
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eigenvalues 14,%, —1, —7 and V(x) cannot have eigenvalues 7, —1.
Possibly replacing x by Jx, we may take ¢(x) = 2. Because of equality
in |N| < 2%, UK) contains a tensor product of elements in

W(GL(2, 3)) — W(SL(2, 3)) .

By [1, §57], we may take this element U(y) as a("P 7 HRQ (v B 7))
where ¥* = ¢. Then U(y) has eigenvalues a1, a, &, —at. By 2-rationality,
o = #=1 and U(y) is determined. The action of U(y) on the group of
order 3: W(SL(2, 3)) ® W(SL(2, 3)) K W(Q) Q W(Q), S® S™) is non-
trivial. Therefore,

Viy) " V(g V(y) = V(y)" V() V(y) = V(g™

(since — V(g)™ is not a 3-element). Since 1 = det U(y) = det V(y), we

may choose coordinates so that V(y) = (2 6) The element x flipping

W(SL2,3) X I, to I, Q W(SL(2, 3)) is determined modulo W(M) ®
W) [KU(y), W(SL(2, 3)) @ W(SL(2, 3))> and modulo scalars to be 1
<(1) é) @D 1. We may take x as a<1 ) (2 (1)) o) 1) or a(l &p) @ %) ) z)
As 0 is rational on 2-elements, 2« or a(l + %) is rational. Therefore,
a = *1, and we are in the first case, so U(x) is determined. Then
—1 = det U(x) = det V(z) and V(x) has eigenvalues 1, —1. Since the
action of U(x) on W(SL(2, 3)) @ W(SL(2, 3))KW(Q) K W), SR S~
is trivial, V(x) and V(g) commute. Possibly replacing = by zJ we
may take V(z) =1 —1. Therefore, C(J) and X(C(J)) are completely
—_——

determined. In fact C(J)/Z is isomorphic to C(I,P —I1,) in {]IS/):
(W(SL2,3) Q)@ -+ —»SL2,3) B L; (I.® W(SL2,3)) D --- ~ LD
.((* O 1 0 0 =2 v 0 1 0
ste3:(( )@@ D)@ () ¢)—( 1)@(5 _9) nereot
elements have the same action on the central product of SL(2, 3) with

itself, the square of the left element is ((ﬂé g) 0 <é ~g) DL~

<( _8 g>®<8 _3))@12- The square of the right element is

(/=1 0 7 0\\. 01 0 I,
-i( 7 els k1@ o)@1e1e-1-(; ). Here
both elements have order 2. Both elements have identical action on
the central product of SL(2,3) with itself. The commutator of X(x)

with X(y) is I, —1I,. The corresponding commutator in f]“\(‘g) is 1P
1P —1 —1. This shows that C(J)/Z is isomorphic to the centralizer
of an involution in PSU,S8). By Phan’s characterization of PSU,(8),
PSU,3) = G/Z.

4, The normalizer of Z(S,). Earlier, for

T = diag (0, 0, », @, @, ®) ,
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we showed that |C{T)/Z| > 38° and T is centralized by an involution
in G =G/Z. We may take Tin C(J) and J in the center of a Sylow-
2-subgroup of C(T)/Z. As y(T)= -3, UT)=8*"QI, or I,Q S*,
say the former. Then

UC(TT)) = U(T), UZ), I, Q SL(2, 3)), |C(T)| = 38 2],

and 7 is conjugate to T'. As the constituents of X |C(T) are not
algebraically conjugate, X(C(T)) =<—1I,) x H where H = the sub-
group of X(C(T)) whose action on the homogeneous w-space of X(T)
has determinant = to a third root of 1. A Sylow-2-subgroup of H is
Q, the quaternions. Let —1 have order 2 in Z(G). Now {(+J) =
Z(Q) is represented faithfully in the @ or the ® space of H, say the
w space with { = the corresponding constituent of X |H. If { is mo-
nomial, then +J, being a square in H, is diagonal and conjugating

¢c 0 0
we have C(T)/Z contains an elementaryi abelian subgroup of order 4,

a contradiction. Therefore, the representation corresponding to ( is
the Hessian group in [1, § 79], except that w @ 1 P 1 has been changed
by a scalar. As an element inverting 7 flips the constituents of X |C(T),
taking H O S, with X(S,) in the normal form given at the start of
this chapter, X(CT)) C {M, P M,| M, appears in the Hessian group in
[1], except that diag (1,1, w) replaces " diag (1,1, )}. As the nor-
mal siabgroup K of order 27 of the Hessian group appears independently
in each component, we may examine the components of X(H) modulo

0 a O
with (0 0 b) @ I, (the first component is taken to correspond to (),

11
K. Let ¢ be the image of (1 0] (I))/(w — @) in this homomorphism.
1 &

Since @ is represented faithfully in the top component and some ele-
ment in X(C{T)) flips the components, @ is represented faithfully in
the bottom component. By changing coordinates by conjugating with
a power of diag (1,1,1,w,1,1,), we may assume that X(C(T)) con-
tains 1 @+ ¢ (i stands for a coset of 3 by 3 matrices and % is obtained
by complex conjugation of the entries) where

j = (diag 1,1, (B))“dlag (1’ 1, (t))), —1=1,
and k& = ij. If X(C{T)) contains i @ —i_,_then, conjugating with 7, =
diag (1,1, w, 1,1, ®)e S,, we have j P —Jj and kP —ke X(C(T)) and
D -1 D-7k® -k =-1H1e X(C(T),

contrary to 8|/ |H|. Since diag (1,1, w), 1, and K generate the Hessian
group, H=<K®L IO K, M@ M wheré M is any matrix in the
Hessian group changed as shown by scalars).

X(N(KT>)) is obtained from X(C(T)) by addition of a 2-element
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X(x) = <2, g") where E and F are 3 by 3 matrices normalizing the

Hessian group, and, hence, in the Hessian group modulo scalar multi-
plication. By multiplication with an element in C(T) we may take E
as scalar and, changing coordinates by conjugation with a direct sum
of 3 by 3 scalar matrices, we may take EF = I,. Again, we are only
interested in F modulo K. If F is scalar, then by determinant, F' =
—I, and X(2*) = — I, impossible. The other possibilities are F' = some
scalar times —1, &%, &J, or +k in the notation of the previous para-
graph. If not —1, then replace x by TefxT?® to take F' = some scalar
times +17. The scalar is —I, by determinant = 1. Then

(—I)X() = (“ﬂ 0) .

0 =+

Possibly replacing this by its third power, we have (8 g)(g %> =

<_ (1) (1)>’ contrary to 8|||H|. Therefore, F' = some scalar times —1
and the scalar is —1 by determinant = 1. This completely determines
X(NKT?)).

5. The correlation between X(C(J)) and X(N(T)) for Te C(J).
Take X(T)=(SQR L) P wP v in our normal form for X(C(J)). Let
GL(2,3) and SL(2, 38) be the 2-dimensional matrix groups in [1, §57]
and ¢ be an isomorphism from SL(2,3) to SL(2, 3)/0,(SL(2, 3)) = Z,
with ¢(S) =1 and 0,(SL(2, 3)) isomorphic to the quaternions. Then
X(NKITY) =<X(JIT)=(SQL)D ~o@D -0 (L.Qu) D (0P w)*™

for e SL(2,3); Y = (y X (g 2_1>> &b (3 8) for some

7o )0 SL(2,3
ye(o e | 0(5L(2, 3))

with y~'Sy = S7; —wl;). We get a subgroup of order at least 273°
of X(G) generated by our normal form for N((T)) and the image
under conjugation by a matrix R of our normal form for X(C(J))
where R conjugates X(JT) and X(N(KJT))), in our normal form for
X(C(J)), to X(JT) and X(N(JT))), respectively, in our normal form
for X(N(KT>)). Therefore, R is determined modulo multiplication on
the left by a matrix P fixing X(JT) and X(N(JT))) in the normal
form for X(C(J)). As we are only interested in the image of X(C(J))
under conjugation by B. We are only interested in P modulo multi-
plication on the left by a matrix fixing X(JT), X(N(JT?)), and X(C(J)).
As 0,(0%(X(NIT))))) = (L. @ u) D I, such that ue 0(SL(2, 3)), by [7,
Satz 3] and [1], P=(A®X B) @D C where Be GL(2,3), Ac Cypp,0(S),
and Ce GL(2, C) where C is the complex number field. If B¢ SL(2, 3),
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then P conjugates (SQ S™) P I, to (SR Sv) P I, for some
ve 0,(SL(2, 3)) ,

a contradiction, since the former, but not the latter is in X(N(JT))).
Therefore, multiplying P by an element in X(N(JT))), we may take
B =1, Also,

(A7'yA)7'S(A7'y4) = (A7'yA) 7 (A7'SA)(A7'yA)
= A7y Syd = A7S74A =S,

Therefore, A-'yd e NGL<2,3>(<S>) - CGL(z,S)(<S>) where
NorenS)) =<y, S, ZGL(Z, 3)) .

Multiplying P on the left by a power of X(T), we may take A~'yA
in {y, ZGL(2, 3)) of order 4 and A-'yAeyZGL(2,3) = y{—1,). Let
@ € GL(6, C) be the matrix which acts as I; on the space where X(T)
acts as wl;,, and acts as —1I, on the space where X(T') acts as wL,.
Then for We Ny, (XKTY), WHX(T) W= X(T)* and Q" W'QW =
(—1)te-v2T with a equal to either 1 or —1. Therefore, @ normalizes
X(NKT>)) and X(NKJT>)). Also, Qe C(J), C(T), and

C((L, ® 0.(SL(2,3))) D L) ,

and Q'Y"'QY = —1I,. If we are allowed the possibility of replacing
P by QP, then we may take A~'yA = y. Then, as {y, S) is an irre-
ducible two dimensional group on which A acts trivially, A and AR I,
are scalar. As the homomorphism C(J)— U(C(J)) has kernel J, and
A Q@ I, centralizes U(N(KJT))), C centralizes V(N(JT)))/{—1I,>. Then
C centralizes V(T) = w @ w™, and C is diagonal. Let

0 1
F:l@(l O)@l@l@—l.

Then V(F) is centralized by C. As V(C(J)) = <V(NKJIT))), V(F)>, C
centralizes V(C(J))K—1L), and P normalizes X(C(J)).

Therefore, X(JT) and X(N(JT))) determine X(C(J)) except pos-
sibly for conjugation of X(C(J)) by a matrix U which is +1I; on the
homogeneous spaces of X(T). Now <{C(J), NKT»)> has index in ‘G
dividing 35. As B,(7) has only ¥, with degree < 35,

G =<LC(J), NKT))» .
We put X(N({T))) in our normal form. Then X(JT) and X({NJT))
determine X(C(J)) within conjugation by U. However,
U<X(C(J)), X(NKT))H»U =UX(CI) U, UX(NKTH) Uy
=UX(CU)) U, X(NKT?)»
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so the similarity class of the representation is not affected by replacing
X(C(J)) by UX(C(J))U. Therefore, there, is at most one unimodular,
6-dimensional, complex, linear group projectively representing a simple
group of order 273°35.

6. Existence of X(G). We shall show that G, = {«, D, P>, where

_ 1 1 1
x2=V@HVand V= <1 ® (D)/(a) — @), D = (all diagonal matrices of
1 0o w

order 3 and determinant 1), and P = (all permutation matrices) has
a central extension of Z; by U,3) as a subgroup of index 2. First

we show it is finite. In fact, (g (1)> @ I, has a total of 126 conjugates,

C, U C,, where C, consists of 45 monomial matrices and C, of 81 con-
jugates of z = I, — Q/3 where Q = (¢;,;) and ¢;; =1. <C,> has no
invariant subspaces, so only scalars commute with all conjugates. If
S; are sets of matrices, define S7*S,S, = {y|y = s's.s, for s;€S;}). Then
C,= D"2D. Let M= DP = PD. Now M'CM = C, and M~'C,M =
MY (D '2D)M = M'2M = D*(P~*2P)D = D2D = C,. It only remains
show that 2='(C,U Cyx = C, U C,. Let {U;} be the top 3 by 3 blocks
of the 9 elements of C, whose bottom 3 by 3 block is I,, Then {U;} =
— I, {2-elements in the normal subgroup of order 54 of the Hessian
group, [1, §79]}). As the top left 3 by 3 block of x is contained in
the Hessian group, conjugation by x permutes these 9 elements. We
may reverse the roles of the top left and the bottom right to show
that « permutes 9 more elements of C,. As x~'zx is a permutation
matrix transposing 1 and 4, z'2x has eigenvalues —1,1,1,1,1, 1.
Suppose that d = diag (d,, ---, d;) € D with d,d,d;, = 1. Then in each
row and column of d~'xzd, and nonzero entries are distinct and have
sum 0, or are identical. Then u, = (d'zd)"'2(d'xd) = I, — C, where
nonzero entries of C,; are sixth roots of 1. As z and wu, are unitary,
u, has entries 1 or 0 on the diagonal and third roots of 1 off the dia-
gonal and is monomial. Then u%,e C, since u, has eigenvalues —1, 1,
1,1,1,1. Therefore, 2~'dzd'x ¢ dC,d—* = C, where d runs through 27
cosets of {wl;»>. This gives the other 27 = 45 — 9 — 9 elements in C,
and z~'C,UCxx D C,; C,UC,DaCa ' = ' (a*)C.a¥)x = 2~'C,x as — [;x*e P.
It only remains to show that x‘dzd‘x ¢ C, where d,d,d; = w or @, say
@ without loss of generality. We may find ¢ in <D, diag (0, 1,1,1,1, 1))
with (0w — @)d'wde = (a;,;); {a,,;, @s,j, as,;} = {1, @, @} counting multipli-
city for j =1, 2, 3; and {a,,;, a5, @;} = {—1, —w, —w} for j = 4,5, 6.
As d'xde is unitary, the +1’s appear in different rows. Then the
product of the nonzero entries in the first and the fourth rows is still
—1,and ee D. Now (0 — @)d'zdeQ and (® — ®)Qd'xde have all their
entries equal to @ + ® + 1 = —@w — @ — 1. Then zd'zde = d~'xdez,
d-x'dzd'ad = eze™, and x'dzd~'x = deze"'d'e DzD™ = C,.
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G, is primitive since D contains any proper normal reducible subgroup
of M and 2 does not preserve the monomial form of M. Furthermore,
G, may be made unimodular by replacing odd permutation matrices by
their products with 7f,. As 37| |G,|, by [9]'s classification of groups
of degree 6, (¢, contains a central extension of Z, by U,3) as normal
subgroup, G. However, G, contains an element with eigenvalues
—~1,1,1,1,1,1 and G contains no element with eigenvalues —1, ¢, 1,
1,1, 1. By [8], "V |G\/Z|. By [4], 8F, S, is self-centralizing in G,/Z,
otherwise G, has a normal p-subgroup not contained in Z for some prime
p, a contradiction. Since [N(S;); C(S;)] = 3 and [N, (8:; C6,(S)] = 6,
[G:G] =2 and [G:G] = 2. For any unimodular finite linear group
normalizing X{G), applying this argument to G, in place of G, shows
that [G,: X{G)] = 2, so G, is maximal among finite unimodular 6-di-
mensional complex linear groups normalizing X(G).

7. LF@3,4). From [9] we may have a six-dimensional group
X.G) with G/Z\G) simple of order 2°3%35, y(G) < Q(w), and B,5) with
degree equation: 1 + 63 = 64. As S, is self-centralizing in G = G/Z
and By(5) does not contain the degree 6, |Z| = 1. If |Z|= 2, then
B/(5) contains the degrees 6 and 64 from a 2-block of defect 1, im-
possible as 64 — 6 = 58 cannot be a degree. If |Z| = 3, then B,5)
contains the degrees 6 and 63 from a 3-block of defect 1, impossible
as 63 + 6 = 69. Therefore, |Z| = 6. Let J be any involution in G.
Then 0 or 5=a,,,. = |G (L + Yool /68 — %ai(J)/64)/|C) 2. Now,
Zo: has 2-defect 0, so ¥u(J) =0 and yuJ) =1 — y,/J) =1. Then
51CJ) P = 2%335(1 + 1/63) = 25 and [Cz/J)| = 2°% Therefore, /C_(\J/)

has a normal 2-Sylow-subgroup, and by [11], G ~ LF(3,4). As U(3)
has a subgroup isomorphic to LF'(3, 4) and LF(3,4) has no projective
representation of degree < 5, by §6, G exists with a representation
of degree 6. By private communication with N. Burgoyne, G is
unique, and the subgroup of the outer automorphism group with tri-
vial action on Z has order 2. A group G, [> G with [G,: G] = 2 comes
from the product of a field and a graph automorphism.
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