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ON A PARTITION PROBLEM OF H.L. ALDER

GEORGE E. ANDREWS

We study 4;(n) = qi(n) — Qa(n), where qu(n) is the number
of partitions of n into parts differing by at least d, and
Qi(n) is the number of partitions of n into parts congruent
tol or d+2 (mod d +3). We prove that 4,(n) > + c with
n for d = 4, and that 4;(n) =0 for all n if d =2°—1,s = 4.

In 1956, H. L. Alder proposed the following problem [1].

“Let q,(n) = the number of partitions of » into parts differing by
at least d; let Q,(n) = the number of partitions of » into parts con-
gruent to 1 or d + 2 (mod d + 3); let 44(n) = qs(n) — Qu(n). It is known
that 4,(n) = 0 for all positive n (Euler’s identity), 4,(n) = 0 for all
positive n (one of the Rogers-Ramanujan identities), 4,(n) = 0 for all
positive » (from Schur’s theorem which states 4,(n) = the number of
those partitions of % into parts differing by at least 3 which contain
at least one pair of consecutive multiples of 3). (a) Is 44(n) = 0 for
all positive d and »? (b) If (a) is true, can 4,(n) be characterized as
the number of a certain type of restricted partitions of % as is the
case for d = 3?”

This problem was again mentioned in [2; p. 743] as still being
open. A recent general result on partitions with difference conditions
[3] allows us to give some partial answers to Alder’s problem.

First we derive a partition theorem which is somewhat analogous
to the type of result asked for by Alder.

THEOREM 1. Let v be the largest integer such that 2°+' — 1 < d.
Let £(n) denote the number of partitions of m into distinct parts
=1,2,4, «+-, or 22 (modd). Then

qu(n) = F(n) .

We may utilize some asymptotic formulae of Meinardus [4], [5]
to prove

THEOREM 2. For any d = 4, lim,_ ., 44(n) = + o

Finally, Theorem 1 may be utilized to prove a result which settles
Alder’s problem in an infinite number of cases

THEOREM 4. Ifd=2"—1 and s=1,2, or =4, then A n) =0
for all n.
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The proof of Theorem 4 relies on the following result which is of
independent interest.

THEOREM 3. Let S = {a;}7-, and T = {b;}7-, be two strictly in-
creasing sequences of positive integers such that b, =1 and a; = b;
Sor all ©. Let o(S; n) (resp. o(T; n)) denote the number of partitions
of m into parts taken from S (resp. T). Then

o(T; m) = o(S; n)
Jor all n.

2. Proof of Theorem 1. In Theorem 1 of [3] set N = d, a(1) = 1,
a(2) =2, -++,a(y + 1) = 2*. Thus in the notation of [3], D(4s; %)
becomes <Z(n). Now D(Ay; n) = E(A%; n) where the latter partition
funection is the number of partitions of n:

n=">0 +b,+ +++ + b,
b;=1,2,38,4, .-+, 2" — 1 (mod d)
with
b; — bivy = dw(Ba(bi+)) + v(Ba(bir) — Balbis) -
Here B,(m) is the least positive residue of m mod d, w(m) is the number

of powers of 2 in the binary representation of m and »(m) is the least
power of 2 in the binary representation of m. Consequently if b,,,

=2/ (modd),0 <j =<y,
Adw(Ba(b;1,)) + v(Ba(bis)) — Babiv) = d-1 + 2/ -2/ =d.
If b;., %= 27 (modd) 0 <j <v, then

dw(Ba(bi11)) + v(Ba(bis1) — Balbiry)
=>2d+1—-—2"—-1)=2d+1—-d=d+ 1.

Thus the difference condition is always b; — b,., = d or stronger.
Therefore FE(A)y; n) < q.n) and Theorem 1 follows.

3. Proof of Theorem 2. Meinardus has proved a general theorem
on asymptotic formulae for partitions with repetitions [4]. Following
the notation of Meinardus [4; pp. 388-389], we see that to treat Q,(n),
we must have his

Ay

_ {1 if n=1d+ 2(modd + 3)
0 otherwise .

Under these circumstances, Meinardus’s D(s) satisfies

D) = @+ 3(Y(s =) + (s 52))
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where (s, a) = 32 (n + a)~°, the Hurwitz zeta function [6; Ch. XIII],
a, the abscissa of convergence for D(s) is 1, and A, the residue at
s=11s 2/d + 3.

—_T + e—(d+2)z‘

g(z) = g

One may now easily verify that Meinardus’s analytic conditions on
D(s) and ¢g(z) are fulfilled, thus

(3.1) log Qu(n) ~ 27r]/ _3&_@_{___9_ .

In [5], Meinardus has derived the asymptotic formula
(3.2) log qu(n) ~ 2VVAm ,
where

oo rd
A= _‘i_logﬂad + Z'(a—dz— '
2 =1

and «, is real >0,ad + a; — 1= 0.
If we put a; = e%, so that ¢~ 4 ¢~% = 1, then

o d-r
A= 4 347 o Ao
2 =1 7t 2
d _ d 1
=?7~3+1—e1d>5m+xd—_2—x§

Now the following table shows that
Ay >7Bd +9) for 4 <d <14

TABLE 1.
d-—-1, 72
d 2d> 2 5> Ag> 319 <
4 0.32 0.153 0.473 0.471
5 0.28 0.15 0.43 0.42
6 0.25 0.15 0.40 0.37
7 0.22 0.14 0.36 0.33
8 0.20 0.14 0.34 0.30
9 0.19 0.14 0.33 0.28
10 0.18 0.14 0.32 0.26
11 0.16 0.12 0.28 0.24
12 0.15 0.12 0.27 0.22
13 0.15 0.13 0.28 0.21
14 0.14 0.12 0.26 0.20
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For d = 15, we have
e lEd L g 5 o2 1 — 2/d > 1,

Hence, N, > 2/d and

d—1/2) 1 10 7
A 2) 1 2/d = (4 — 2/d) > =2 .
3 <d>+/ g4 2> 50> 50
Thus for all d = 4,
A,>_©
T84+ 9

Hence comparing (8.1) with (3.2) we find
lim (log ¢y(n) — log Qu(n)) = + o= .

Thus lim,_.. 4,(n) = lim, ... ¢,(n)(1 — Qu(n)/qs(n)) = +oo.
and we have Theorem 2.

I would like to thank the referee for aid in simplifying and ex-
tending Theorem 2.

4. Proof of Theorem 3. Let us define S; = {a,, a,, ---a;} and
T; = {b,, b, ---, b;}. We shall proceed to prove by induction on ¢ that
o(T;; m) = p(S;; »); this will establish Theorem 3 for if we choose I
such that a; > n, b, > n, then o(T; n) = o(T;; n) = o(S;; n) = o(S; n).

First we remark that o(7T;; #) is a nondecreasing function of #;
this is because 1 = b, € T; and thus every partition of » — 1 into parts
taken from 7, may be transformed into a partition of % merely by
adjoining a 1.

Now o(T;;n) = 1 for all n since T, = {1}. Since S, = {a,}

1if a,|ln

OS5 ) = 0 otherwise .

Hence
o(Ty; m) = 0(S,; ) .

Now assume that o(T;_; n) = 0(S;_;; n) for all n. Hence if we
define o(T;; 0) = o(S;;0) = 1,

>, (0(T5 m) — 0(S5 m))g”
d 1

T 1
~gxl—q”i J‘H=11——q“i

_ (z—l 1 )( 1 + qbi q% >_ Q
Fl=g9/AL =g (=g —¢g%)/ i=1l—q%
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_ 1 ('é—-l 1 _ G—1 1 ) qbi . qai 3 1
1 —qui\imi 1 — gt jH=11-q"J +(1—q“i)jﬂ=11—qbf
1

== (i (0(T;; m) — (S;_;; m))g"
— q K3 n=0

+ 3 (0T = b) — o(Tsm — aar)

Now the coefficients of these two infinite series are nonnegative:
the first by the induction hypothesis, and the second by the fact that
o(T;; ») is a nondecreasing sequence. Since (1 — ¢%)™ = 37, ¢'*, we
see- that all coefficients in the power series expansion of our last ex-
pression must be nonnegative. Hence

o(T; m) = o(S;; n) ,

and Theorem 3 is proved.

5. Proof of Theorem 4. Since d = 2° — 1, we see that the v
of Theorem 1 is just s — 1. Now

i Za(n)q" = ﬁo A+ g¥™) 1 + g%+ «e0 (1 + qii+?")
n=0 =

- N 1
- ]I=IO (1 . qzdj+1)(1 _ qzdj-)-d-)—Z)(l . q2dj+d+4) e (1 _ qzdj+d+2’/) °

Thus “(n) = o(T;n) where T={m|m=1,d + 2,d + 4, -+, or
d + 2°7'(mod 2d)}. Clearly, 1€ T. We now show that for s = 4 the
1™ element of T (arranged in increasing magnitude) is no larger than
the ™ element of S where S = {m|m =1,d + 2(modd + 3)}. Since
s = 4, the first four elements of T are

1,d+2,d +4,d+8(2d +5>d + 8 since d = 15) .

Thus the first four elements of T are less than or equal the first four
elements of S respectively. In general the (dm + 1) — st element of
T is <2dm +1 while the (4m + 1) — st element of S is 2m(d + 3) +1;
for 2 <j <4 the (dm + j) — th element of T is < 2dm + d + 2!
while the (4m + j) — element of S is = 2m(d + 8) + d + 2 and for
2<j<4,m=L2dm+d+ 2 <2dm+d+8<2dm +d+6+2=
2m(d + 3) + d + 2. Hence, the conditions of Theorem 3 are met, and
therefore

2:(n) = F(n) = o(T; n) = o(S; n) = Qu(n) .
Thus Theorem 4 is established.

6. Conclusion. By modification of the results in [3], it appears
possible to apply the techniques of §4 to prove that 4,(n) = 0 for
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any d = 15 which is a difference of powers of 2; however, since this
approach does not yield a complete answer to Alder’s problem it seems
hardly worth undertaking.

Lengthier versions of the following table indicate that Alder’s
problem may be extended as follows.

Conjecture. Adyn) >0 for n =d + 6 if d = 8.

n As(m) Ay(n) As(m) ds(n) d«(n) As(m)
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
9 1 0 0 0 0 0

10 0 1 0 0 0 0

11 0 1 1 0 0 0

12 0 1 1 1 0 0

13 0 0 2 1 1 0

14 0 0 1 2 1 1

15 1 0 1 2 2 1

16 1 0 0 2 2 2

17 1 1 0 1 3 2

18 1 2 0 1 2 3

19 1 2 1 0 2 3

20 1 2 2 0 1 3

21 2 2 3 1 1 2

22 2 2 3 2 0 2

23 2 3 3 3 1 1

24 2 4 3 4 2 1
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