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THE REGULARITY OF MINIMAL SURFACES
DEFINED OVER SLIT DOMAINS

Davip KINDERLEHRER

Let Q denote the disc 27 + 2} < 72 in the x = (1, ) plane
from which the segment {0 < z; < 7, x: = 0} has been deleted.
Suppose that u(x) e C° (ﬁ) is a solution to the minimal surface
equation in Q((1) below) and attains boundary values
f@) e C»*(0 < a <1) on the slit {0 < z; < r, 2, = 0}, We shall
prove here that the gradient of u, Du = (4.,,4.,), is continuous
at the origin x =0,

There is a corresponding result for harmonic functions, due to
H. Lewy [7], which we paraphrase here. If wu(x)e C°(2) is harmonic
and attains boundary values f(x,)eC"%0 < a <1) on the slit
{0 =2 <7, x,= 0}, then

(oo, or
lim inf %(u(h, 0) — %(0, 0)) = < — oo, or
L1 {f,(o) _

When the last alternative holds, Du(x) is continuous at @ = 0. The
harmonics u.(x) = +£p'?sin /2, x = pe’, illustrate the occurrence of
the <« and — < as possible limit values. The result to be proven
here is, then, another example of the greater regularity possessed by
solutions of the minimal surface equation (ef Bers [2], Nitsche [9],
and [4]).

As an application, we consider the problem of minimizing the
non-parametric area integrand among functions constrained to lie
above a given function defined on a segment in a domain. More
precisely, let P be a bounded, open, convex domain with smooth
boundary, o a closed straight segment in P, and f(x) a continuous
nonnegative convex function on ¢ which vanishes at the endpoints of
o. Denote by

= {v(x) e C*(P): v(z) = f(x)onoand v = 0 onoP} .
The problem is then

(A) Prove that there exists a u(x) €. such that

| VT D@ de = min | [vIF D@ T de -

VE L

Evidently, a solution to A, if it exists, satisfies (1) in the set
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{x e P: u(x) > f(x)}. Johannes C. C. Nitsche [10], considering, in fact,
a larger class of surfaces than .9 above has proven:

(B) If P is symmetric with respect to a line and o lies on this
line of symmetry, then there exists a solution to A.

Furthermore, he has shown:

(C) If a solution to A exists, it is unique. Moreover the set
T = {xe P:u(x) = f(x)} is a (connected) sub-interval of o.

Using the theorem to be proved here in addition to some similar
elementary considerations, we may prove

THEOREM 1. If u(x) is a solution to A where f e C+(0),0 < a < 1,
then ou/ox, is comtinuous in P and ou/dx, is continuous in P-t and
upon one-sided approach to v. In addition |ou/ox,| is bounded by a
constant depending only on P, o, arnd f.

For the solution of B, Nitsche has shown the second part of
Theorem I([10], p. 105). We remark briefly on the proof of Theorem
I at the conclusion of this paper. Primarily, we wish to prove

THEOREM II. Let u(x) e C¥(Q)NC(Q) satisfy

(1) @+ wl)eye, — 20 Uy Uy + (1 + 2%, = 0 im0 2
u(xlr 0) = f(wl)y 0 é xl < T,

where f(x) e CV*{0,r]),0 <a <1.
Thern Du(x) s continuous at x = 0.

To prove Theorem II, we shall utilize known properties of the
conformal representation of the surface

S = {(x, x.): 2, = u(x), x € L2}

together with Lemma 1 below. In brief, S may be viewed as a
minimal surface whose boundary contains a spike. The boundary
behavior of such surfaces is known. We quote here Theorems D and
E. To compute u,,u,, in terms of parameters (£, 7) different from
(@, x;) involves the determination of three functional determinants,
one of which, the Jacobian J = d(x,, x,)/0(&, ), occurs as a denominator.
The fact that S has a one-to-one projection onto a slit domain is
used to show that J has “lowest order” among the three determinants.

We close with remarks about extensions to weaker boundary
regularity.

2. The conformal representation and its properties. In this
paragraph we introduce conformal parameters so that the minimal
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surface S = {(x, 2.): ; = u(x), x€ 2} in (v, x, ®;) space may be
considered to be a minimal surface with a spike (cf [4]). We then
determine regularity properties of this representation.

Denote by G the open upper half { = ¢ + in plane. By a conformal
representation of S we shall understand a triple of harmonic functions.

X(©) = @.(8), 20), %:(0), e G

continuous in G and admitting finite limits at + o, which is a one-
to-one map of G onto S and satisfies the isothermal relations

X0 = X,(8) and X(0) - X,(0) = 0,{eG .

According to a result of Beckenbach and Rado [1], such a
representation for S exists because ue C°(2). We may assume that
X(0) = (0,0, f(0)) and that the curve x, = f(z), 2, =0, 0 < x, <7, is
the one-to-one continuous image of — & < & <0 and the one-to-one
continuous image of 0 < & < &,, for some &, & > 0.

For the discussion which follows, it is more convenient to consider
the conformal representation

Y(©) = @0, %00, :(0), L e G

obtained from X({) above through the Euclidean motion

Yy, = 2,088 + (x; — f(0)) sin B
(2) Yo = T
Ys = —xsin B + (¢, — f(0)) cos B,
where
B = arc tan f’(0) .
Note that |[8] < m/2. Evidently, dy./d%,|.,—, > 0 and dy./dx,|,-, =0
on the curve z, = f(z), 2, =0,0=2, <7r.
After a conformal mapping of G onto itself, if necessary, the
conformal representation Y({) satisfies these conditions:
y.(&) is strictly decreasing from y to 0 for —1 < &0
y.{&) is strictly increasing from 0 to 7 for 0 < &< 1,

for some 7% > 0, and
V(&) = 0, ¥:(8) = g(w.(8) for [&] <1

where g¢(y,) is the C“* function of y, obtained by setting », = f(x,).
The conformal representation Y({) is a representation of S as a
minimal surface with the spike

Iy, = 9(y),4.=0,0<y, < ¥;90) =90 =0.
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Let F;(C) = y;(0) + 1y¥ (), where y;({) denotes the harmonic
conjugate to y;(¢), F;(0) = 0,7 =1,2,3. It is well known, [12], that
F;(£) have absolutely continuous boundary values for Im{ = 0. About
the F;({) we state Theorems D and E which are Theorem 1 [4] together
with its corollary and Theorem 4’ [5] respectively.

THEOREM D. There is a neighborhood U = {|{| < R, Im{ > 0} and
a branch of z = F, (Y™, m > 0 even integer, such that z = F,({)''™ s
a univalent map of U onto a domain in the (ordinary) z = x + 1y
plane.

The curve ¥ which is the image of [—1, 11N U under this mapping
meets at a straight angle at z = 0. Its tangent has a modulus of
continuity proportional to ¢'(y.) at z = 0.

THEOREM E. There is a neighborhood U = {|{| < R, Im{ > 0} such
that

F.Qm, FiQeC=(U),j =23,

where m > 0, even, is the integer determined tn Theorem D.

For the proof of E, we refer to Theorem 4 in [5]. In addition
to the facts just quoted, we require

LEMMA 1. The functions F', admit the expansions
Fi{0) =af +0;0),0eU,j=1,2,3

where a, s real, a,, a, are tmaginary, |a,| = |a,| > 0 and |b;(0)| < C|L|'*=
Jor LeU,C >0, a constant.

The asymptotic expansion of the F’({) provided by Theorem £E,
and stated explicitly in Lemma 1, is similar to those in [11], which
is for minimal surfaces, and [3] which is for surfaces satisfying
certain assumptions about their mean curvature. Both of these require
the boundary to be of class C? and “regular,” although the constants
corresponding to a; and C above depend only a priori on the given
data. However, the existence of the tangent plane to a minimal
surface when the boundary is suitably smooth has been known for
some time [8].

3. Proof of Theorem Il assuming Lemma 1. In terms of the
given (x,, x,, x;) coordinates, the mapping ¢ — 2(0) = (2,(0), () is a
one-to-one harmonic mapping. In view of (2}, its Jacobian is
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J = Im(F;(§) cosp — Fy(&) sing) Fi(Q)
= 1a,a,c08B|{|* + Im {a,£b,(0) + @.7b,() + 5,(0)b,(0)} cosB

— Im {aacm + dzzbs(C) + bs(C)Ez—(—C)—} SinB
= iaa,co88 ||t + B(),CeU.

Here we have used that a, is real and a,, a, are imaginary. After
two similar computations, we find that

‘gé—z)) = imaysing |C]F + By0), Le T

and

a<x1v xs) . 2 r7
W = 10,05 |C]* 4+ By(0), Le U .

The B;({) satisfy |B;(Q)| < C|{|*** for a constant C > 0.
Therefore, for x in the image of U under x(),

gg—(w) = f(0) + R(5), where | R(0)| < const. |{]<.

But an elementary computation reveals that af + « = const. [{]|%
for |{]| sufficiently small. Hence

ou

= f’(O)l < const [z|*? forxe 2, |z

sufficiently small. In the same way

o 1%

0%, CcoSpf a,

< const |z|** forxe 2,

|| sufficiently small. Here we have used the abbreviation “const.”
to denote a positive constant, not necessarily the same at each
occurrence.

The question of determining an a priori limitation of (du/dx,)(0)
is different in nature, and will be considered elsewhere.

4. Proof of Lemma 1. The proof of Lemma 1 is divided into
the two lemmas below. Note that the strict monotonicity of ,(¢) in
— 1< £=<0and 0<¢& <1 implies the existence of continuous func-
tions H;(y.), 7 =1, 2, such that y*(&) = H,(y,(§)) for —1 < &=<0 and
Y8 = Hy(y,(§) for 0 =& < 1.

LEMMA 2. (a) H;(y,) are absolutely continuous functions of y, and
|Hj(y)| = Clg'W)], a.e.,0 <y, =¥, C, > 0 constant.

(b) 1im| 50 (%) | <1




114 DAVID KINDERLEHRER

(c) |Fi@| = CF(®] < Clel™ for - |£]<1,£eU,j=2,8,
where m = 2 1is the integer determined in Theorem D and C,, C; > 0
are constants. U 1is the set of Theorem E.

Proof. Let s denote the arc length of the minimal surface on
I''y;=9(),y.=0,0=<y <¥%. According to Tsuji’s result [12],

0 (fil§> (1 + g’(yl)z)(ayl/as)z, a.e. for !5[ <1.

Therefore, 0y,/0f + 0 a.e. for — 1 < & < 1. It follows that the inverse
function & = A(y,) to %,(£) on — 1 < £ < 0 is absolutely continuous for
0 <y =Y. Since h is also monotone, H,(y,) = y¥(h(y,)) is absolutely
continuous for 0 < y < 7.

Furthermore,

(4 - $(2) o e <1.

Hence for a constant C, > 0,

3 (LY < sup (1 + g/ = C for 5] < 1.

Yie

Using the isothermal relation
Z Yie(®) y5:() = 0, [6] <1,
we obtain that

H'(y) = —9'(y) = a% (‘Z;) a.e. for —1<£6=<0.

Hence
|H/(y)| = Cilg'(y)]ae, —1=6=0.
Now from (3),
@) = 1+ g'W))y.(9)7 161 < 1.

Hence (b) follows.
Finally

F@ 1= SIFO1 = 2(92) <20 + 0@ F@)1°

which implies that
IFi(®)| <V 2C,|F§)]| for & <1.
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Now F,(§)"™e C-*(U), for a suitable U, by Theorem E; hence,
Fi©) = S aém + 46
m

and Fj¢) = aé™ ' + b,(8), 6] <1 and £eU, |b,(§)]| < const. [&|™ =
and a, # 0. That a, # 0 is insured by the existence of a tangent
with a suitable modulus of continuity to the curve v: z = F,(&)'™, £e U,
(cf Theorem D). Also, |Fi(8)| < const. |&]™ ", &e U, from which (c)
follows.

LEMMA 3. Fy () admits the representation
F(O =3al + ot [0 <1
where a, # 0, ¢, are tmaginary.
Also the integer m = 2.

Proof. Since Re F,(¢&) = y,(6) = x,(6) = 0 for |&| < 1, F, admits a
development as that above, perhaps with a linear term, with a,, c,
imaginary. We must demonstrate that a, %= 0 and ¢ = 0. This
follows from a well known argument about harmonic mappings [2].
The mapping { — (2,(), ¥,({)) is a one-to-one harmonic map. Hence
by a lemma of Lewy [6], d(x,, 4,)/3(¢, 1) # 0 in [{]| < 1, Im{ > 0, and
therefore Fi({) # 0 in |{| < 1, Im{ > 0. For \ real, we consider the
inverse image

C={Cl <1, Im{> 0:%,(0) =}

of y, =X in Q2. If not empty, C is an analytic curve in Im{ > 0,
€] < 1 since £ — (x,, ¥,) is an analytic homeomorphism whose Jacobian
does not vanish. For{eC,

Fio) = (% + i 2L0) (L) 2 0,

where ¢ denotes the tangent direction on C. Hence dy;/dt = 0 on C,
so that F,() is monotone on C. Hence F, is univalent in [{]| < 1,
Im{ > 0, from which it follows that

FQ) = -71; 0L+ 3 et witha, # 0,n £ 2.

By the previous lemma

| F5@)| = e Fi)| = e,[&]"", m = 2 even .
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Therefore 2=n=m=2or m = n = 2.

Proof of Lemma 1. Since m = 2, we know that
Fi(©) = a;{ + b,(0), Ce U, with |5,(0)| < C[¢|**
for j =1,2,3. By Lemma 2(b) and Lemma 3,
la.| = |Rea,| = |a,| > 0.

It remains to show that a, is real and a, is imaginary. Using Lemma
2(a),

, _ ImFi¢) _ Ima, + Imb, (8!
H/(y) = = , ,
@) Re F'(¢) Rea, + Re b, (5)& $<0

and |H/(y)| = C,|9'(y)| — 0 as y, — 0. Hence Ima, = 0. Now accord-
ing to the isothermal relations

2 FQ)r=0,

hence a? + a% + a} = 0. Sinece q, is real, a, is imaginary, and |a,| = |a,],
the relation implies that (a;)? < 0. Hence a; is imaginary.

We wish to remark here that by assuming only that f’(z,) satisfies
Sat"l f')|dt < =, some a > 0, it is possible to prove that ou/ox, is
0

continuous as ¥ — 0 in any sector 0 < 7 < argx < 27 — 7. The proof
is by the same argument, except that Theorem E must be replaced
by a fact analogous to the existence of the angular derivative as
proved by S. Warschawski [13]. This fact, whose proof requires a
generalization of a classical theorem of Lindelof, is not difficult to
prove.

We now remark briefly on the proof of Theorem I. The technique
by which continuity of Du(x) was shown at the end points of the
segment 7 in Theorem II may be utilized in a simpler fashion to
show that u, (v) and u,,(x) are continuous at each interior point of z.
Continuity of w,,(x) is understood to mean continuity upon one-sided
approach to z. In fact, the functions analogous to F({) in Lemma
1 admit an expansion of the form “a; + b;({)” with |b;(0)| =< ¢|{]*,
suitable ¢ > 0, where the a; satisfy the conclusions of Lemma 1.

Given 2’€ 0P, Du(x’) may be estimated by the slopes of the plane
tangent to the space curve 0P at (!, x;, 0) and some point of the
curve z, = f(x,),x, = 0. This estimate depends only on the given
data. Finally, we observe that wu,(v) satisfies a maximum principle
in P — 7. Hence supz|u, (®)| < max(sup;» | Du(x)|, sup|f'(x.)|).
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