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THE ABSTRACT GOURSAT PROBLEM

H. 0. FATTORINI

Let Da be a differential monomial in n variables. We
try to identify in this paper those closed, densely denned
linear operators A (in a fairly general class of locally convex
spaces) such that the equation {Da—A)S = δ (g) I has a solution;
here S is an operator-valued distribution in n variables with
support in the cone of nonnegative coordinates. The results
are applied to the study of the equation (Da - A)U = T, T
a distribution with values in the space where A is defined,
and to the formulation and solution of an "abstract Goursat
problem" that reduces to the abstract Cauchy problem when

Throughout this paper E will be a quasi-complete, barreled
(tonnele) linear topological space over the field C of complex numbers
([1], Ch. II, §4; [2], Ch. Ill, §1 and § 2), A a closed linear operator
with domain D{A) dense in E and range in E. For n an integer
^> 1 Rn denotes ^-dimensional Euclidean space endowed with its natural
vector space operations; elements of Rn will be written s = (s19 , sw),
t = (tίy •••,£»), etc. We shall also denote R\ (resp. R\) the subset
of Rn consisting of elements t = (tly , tn) with tk > 0 (resp. tk ^ 0),
1 ^ k <̂  n. The symbol Zn stands for the set of all points in Rn

with integer coordinates; we also define Z+ = Zn Π Rn

+, 2% = ZnΠRl
Elements in Z$, Zl will be denoted a = (a19 , an), β = (β19 •••,£»),
etc. Finally, for aeZl the symbol Da means, as customary, the
differential monomial D^Dt2 Da

n

n, where Dk = d/dtk, 1 ^ k ^ n.

The operator A belongs to the class Θ(a) if there exists a dis-
tribution Sa in the n variables t19

 β , ί n with values continuous
operators from E into D(A) (that is, a Sa e ^(Rn; £f(E, D{A))\ see
definitions in next section) locally of finite order, with support in
Rl, commuting with A (AS(φ) = S(φ) A for all test functions φ in 3f{Rn))
and satisfying

(1.1) (Da- A)Sa = δ®I

where δ is the Dirac measure in Rn. We relate in § 2 the previous
assumption on A with solvability of the equation

(1.2) (Da - A)U= T

where T is an arbitrary distribution with values in E and support in
some translate of Rl; this is done by reduction to the case of one
variable (n = 1) where the results are well known ([3] for the case
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a — 1, [4] for a >̂ 1). Section 3 is (mostly) devoted to the study of
the case | α: | = α̂ ! + + an >̂ 3, again by reduction to the case of
one variable and—this time—by application of results in [6]. In
particular, it is proved that Θ(a) = θ(\ a\) for | a | ^ 3, which provides
a complete identification of these classes (Recall that, according to
[6], especially Theorem 4.1, the class θ(a) for a an integer >̂ 3
consists of those continuous, everywhere defined operators A such
that the series

i=o (aj)\

converges in E for all u e E and t ^ 0 or, equivalently, such that

lim -^-Aju = 0
i— (aj)ϊ

for all ue E, t ^ 0. In § 4 the previous results are applied to the
solution of the "usual" Goursat problem, that is, finding ordinary
(smooth) solutions of the equation

(1.3) Dau = An

in R%, the value of the solution and of its normal derivatives up to
a convenient order given in the boundary of Rn

+. A few comments
on nomenclature may be in order. The name "Goursat problem" is
used in current literature mostly in the following context: to find
solutions u = u(tu t2, , tn, xly x2, , xm) of the partial differential
equation

(1.4) D"u = /

for (tly •• , tn)e R", the values of u arbitrarily prescribed in the
boundary of R\ (Here a = (1, 1, , 1) and / depends on the variables,
on u and on some of its partial derivatives with respect to t17 , tn

and x19 * xm; the order of any of those partials with respect to the
t-variables should be less than n). If one allows only derivatives with
respect to the α -variables to appear in the right-hand side of (1.4)
and / is independent of ί1? •••, tn and linear in these derivatives then
the equation (1.4) can be written—at least formally—in the form
(1.3). (Note, however, that we do not assume α: = (1, 1, , 1) in
(1.3)). In this framework we are able to give an abstract version of
a result of A. Friedman ([7], § 9 and [8], Chapter 7) where as in
the case outlined above A is a partial differential operator in the
"space" variables xlt •••, xm and E itself is a distribution space (note,
incidentally, that the space E in [7] is not a Banach space, which
provides a justification for setting the abstract Goursat problem in
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spaces more general than Banach). Section 5 deals with the case
I a I = 2—the case | a | = 1 is just the well-known first-order Cauchy
problem—and completes the results in § 3 by showing that Θ((l, 1)) =
(9(2). A similar, but weaker property is shown for the classes Ξ(a),
defined with reference to the usual Goursat problem. The last section
is devoted to the case in which E is a Banach space and relies heavily
•on [3], where the case n = 1 was considered. Although the results
for I a I ̂  3 are merely particular cases of the previous ones for
general E, a better characterization of the class <9((1, 1)) is obtained.

Observe, finally, that when A is a partial differential operator
it is in general possible to define E, as a space of functions or dis-
tributions, in such a way as to obtain a Banach space—then A is
not continuous except for trivial cases—or to allow E to be a more
general space, but rendering A continuous. Treating these two cases
separately would probably allow for some simplification of detail but
would also make for a lengthier exposition and a real loss of generality;
thus, we have adopted a unified point of view.

The present paper can be considered an extension (or continuation)
of [6]; nevertheless, no great familiarity with [6]—except for Theorem
4.1—is required.

2* The Goursat problem for distributions and the classes Θ(a).
We shall assume D(A), as customary, endowed with the strongest
topology that makes the maps u—>u and u—>Au continuous. Under
this topology D(A) is a quasi-complete locally convex linear topological
space. (If £ is a Banach space this topology is generated, for
instance, by the norm \u\D{A) = | u \E + \Au\E).

In the following remarks the spaces F, G, are quasi-complete
locally convex linear topological spaces. The space S^(F, G) consists
of all linear continuous operators from F to G endowed with the
topology of uniform convergence on bounded sets of F. If F is
barreled then Jzf{F, G) is a locally convex, quasi-complete linear
topological space (see [2], Ch. Ill, §3, No. 7). Moreover, the "equi-
continuity principle" holds in £?{F, G), that is, the three following
properties are equivalent for a family {J3J <Ξ J^:\F, G); (a) {Bv} is
bounded (b) {Bu} is equicontinuous (c) {Bvu} is bounded in G for each
%eF ([2], Ch. Ill, §3, Theoreme 2).

Modifying slightly a notation of [13] we shall call &(Rn) the
space of all complex-valued infinitely differentiate functions with
compact support equipped with its usual L. Schwartz topology ([13],
Ch. III). According to [13], p. 49, the space &r'(Rn; F) of F-valued
distributions (of n variables) is Jϊf(jgr(Rn); F). Given a = (aι, , an) e
Rn denote by &ra'{R*\ F) the subspace of 3f\Rn\ F) consisting of all
distributions with support in R%(a) = {te Rn; tk ^ ak, 1 ^ k ^ n} =
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{t + a te R\} endowed with the topology that it inherits from 3r'{Rn', F).
If {αm} is a sequence in Rn such that Π™=-~^+(αm) = 0 (for instance
am = (m, m, •••, ra)), then we write

and we assign to &+(Rn; F) the inductive limit of the topologies of
the 2$:(Rn\ F) ([l], Ch. II, § 4). As customary, we write &\Rn) C) =
.^'(i?*) and similarly for other distribution spaces. (For additional
information on the above definitions see [13], [14], [15].)

If Ω is any open subset of Rn we shall denote by £gr{Ω) the sub-
space of 3ί(Rn) consisting of all functions φ e &(Rn) with support
contained in Ω, endowed with the topology that it inherits from
&(Rn). As for &rm{Ω) (m an integer ^ 0 ) , it consists of all func-
tions φ with support in Ω having continuous partials Dpφ for all
peZ+ with \p\ <g m; a sequence {φu( )} converges to zero in £&m{Ω)
if and only if the supports of the φ[s are contained in a fixed compact
subset of Ω and Dpφu( )-+Q uniformly for all p with \p\<^m.

We shall say that a distribution Te^'(Rn;F) has (or is of)
finite order locally, if, given any open bounded set Ω there exists an
integer m (depending in general on Ω) such that T is a continuous
operator from £gr(Ω)—endowed with the topology of &m{Ω)—to F. ([14],
p. 83) or, equivalently, such that T can be extended to a continuous
operator from &m{Ω) to F (we design again by T the extension).
The space of all such distributions will be denoted &r(Rn\ F)f;
similarly ^(Rn; F)f = &'{Rn\ F)f Π ̂ i(Rn; F). (If F is a Banach,
or more generally a (DF)—space—definition in [15], p. 201—then
&'{Rn, F)f = &\Rn\ F) as shown in [14], p. 85. However, this is
not true in general, as the example in [14], p. 83 shows.)

Distributions that are locally of finite order are (also locally)
derivatives of continuous functions; see [14], Proposition 24, p. 86.
We shall need several times in what follows a result of similar type,
less general but yielding additional information about supports.

THEOREM 2.0. Let Te^'(Rn; F)f with support in Rl(a) for
some a = (aί9 , an) e Rn. Let (δx, , bn), (cly , cn) e Rn be such
that bk < ak < ck for 1 ^ k g n. Finally, let

Ω = {t; bk < tk < ck; 1 ^ k ^ n} .

Then there exists a continuous, F-valued function f defined in Ω and
with support in Ω Π R\{a) and a pe Zl such that

(2.1) T = Dpf
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in Ω.

Proof. Let Ωr be any bounded open set containing the closure
of Ω, m the integer corresponding to Ωf in the definition of finite
order. Define

V(t) = h h bt
(m + 1)! (m + 1)! (m + 1)!

for teRl, η(t) = 0 elsewhere; plainly, η(-) has continuous partial
derivatives of all orders ^ m in R*. Then, if %(•) is any function
in &{Ω') the function s —> X{s)η{t — s) belongs to 3ϊm(Ω') for any t;
moreover, the map t—>X( )η{t — (•)) from Rn to ££fm{Ωr) is continuous.
Then the jP-valued map

f(t) = T(X(-)τ](t - ( • ) ) )

is continuous in Rn; moreover, if tk < ak for some k the support of
%(*)y(t — (•)) i s disjoint from β+(α)> thus / has support in Rn

+(a).
Observe next that, is φ if any function in &(Rn) we have

φ(t)f(t)dt = T(σ) ,
n

σ the function (in 3ϊ{Rn)) defined by

σ(s) = Z(s)ί )7(ί - s)φ(t)dt

where we have written dt = dti ••• dtn (this follows easily approximat-
ing the integrals involved by means of Riemann sums). Assume
now that l(s) = 1 for seΩ and let φ by any function in 3ϊ{Ω), p =
(m + 2, , m + 2). We have

( (D*p(t)f(t)dt = T({-

where

f{s) = X(s)[ η{t - s)Dpφ{t)dt = (-iyplX(s)φ(s) = (-iyplφ(s) .

This shows that Dpf = T in Ω, as required.
It should be noted that the converse of Theorem 2.0 holds; more

generally, if T is a distribution in &'(Rn; F) and if for every open
bounded set ΩczRn there exists a continuous, F-valued function
defined in Ω and a peZn

b such that (2.1) holds, then Te^(Rn; F)f.
The proof is simple.
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We shall say that the Goursat problem for the equation

(2.2) (Da - A)U= T

(aeZ+) is well set if (a) for every Te &'{Rn\ E)f with support in
some R+(a), aeRn there exists a unique Ue jS?+(Rn; D{A)) also with
support in Rn

+(a) satisfying (2.2); (b) the map

(2.3) T >U=^ίTT

from ^(Rn; E)f to Ί^-l(Rn; D{A)) defined by equation (2.2)—which
map, by virtue of (a), is well defined and linear—is continuous.
(]^+(Rn; E)f is here assumed to inherit the topology of &i{Rn] E)).

Observe that the uniqueness condition in (a) is only stated in
reference to ^+(Rn; D(A)); that is, there may well be, say, nonnull
distributions U in &\Rn\ D{A)) such that (Da - A) U = 0. As for
(b), in view of the definition of the inductive limit topology, it can
be stated as follows: if {TJ is a generalized sequence in 2&\Rn\E)f

such that the supports of all the Tv are contained in a fixed R\{a)
and Tv—»0, then the generalized sequence {£/"„} in &\Rn\ D{A))
provided by (2.2) converges to zero.

Let now φ e &{Rn). Define a linear operator from E to D(A) by

(2.4) Sa(φ)u = {^{δ 0 u)){φ) , ueE .

If {uv} is a generalized sequence in E such that uu—»0, then
<?(g)^->0 in &\Rn\ E); continuity of ^ shows that Sa(φ)uv-+0
in D(A). Accordingly, Sa(φ) e J^(E, D(A)). Assume now that {φv}
is a generalized sequence in &{Rn) such that φv —> 0 and let K be a
bounded set in F. Then {<? 0 u; u e K} is a bounded set in ]^+(Rn; E).
Since ^ ^ is a continuous operator it takes bounded sets into bounded sets
([2], Ch. Ill, § 2.3) thus {^//{δ ®u);ue K} is bounded in ^(Rn; D{A)).
Using now the fact that £^(Rn) is a barreled space ([13], Ch. Ill,
Theoreme 2) and the equicontinuity principle formulated at the beginning
of this section we see that {^(J®w), u e K} is equicontinuous (as a sub-
set of £?(&r(Rn); D{A)). But then lim Sa(φJ)u = lim Λf(δ<g>u)(φu) = 0
uniformly for u in K, which shows that φ—> Sa(φ) is a distribution
in Sf\Rn\ ^f{E, D{A)). It is clear from (2.4) that Sa satisfies

(2.5) (D« - A)Sa = δ 0 / .

On the other hand, if φe& is such that supp (φ) Π R+ = 0 (where
supp (<p) denotes the support of <p) £α(<p) = (^(δ 0 u))(<p) = 0—this
follows from the fact that, according to (a) supp {^f{δ 0 %)) g ^ + —
and thus supp (Sα) S β+. We shall call the distribution Sa the pro-
pagator or fundamental solution of the equation (2.2). Observe that,
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if u e D(A), U, = ASau = DaSau - δ (g) %, Z72 = SαAu then both dis-
tributions obviously belong to £gr+(Rn; D{A)) and satisfy

(2.6) (Da - A)U3 = δ<g>u.

Thus U1 = Z72, which shows that £α and A commute. Collecting all
the results so far proved, one obtains the direct part of

THEOREM 2.1. Assume that the Goursat problem for (3.1) is well
set, and that the propagator Sa of (2.2) belongs to &'{Rn) J*f(E, D(A))f.
Then A e Θ(a). Conversely, let A e Θ(a). Then the Goursat problem
is well set and the propagator Sa of (2.2) (which satisfies (2.5) and
then must coincide with the distribution Sa in the definition of the
class Θ{a)) belongs to ^'{Rn; £f{E, D(A))f.

For the proof of the remaining half we shall need a few facts
on convolutions of vector-valued distributions. Although they are
very particular cases of results in [15] (especially Proposition 39,
p. 167) an independent presentation seems reasonable, as they can be
established by elementary means (moreover, some of the techniques
sketched will also be used in § 3).

Let Te 3t\Rn\ F) and let φ = φ(s, t) be a function in ^(R2n) =
&{Rn

s x jβ?) (the notation is self explanatory). Define an F-valued
function of s by applying T to φ(s9 •), that is

(2.7) ψ(s) = T(φ(s, •)) .

Plainly ψ has compact support. Observe next that, if hj —
(0, 0, , h, 0, , 0) (h in the jth place), l^j^n, hγ{φ{s + hi9 •) -
φ(s, -))—>Dj(p(s, •) for each s in the topology of 3f(RY). But then
Djψ exists and Djf(s) = T((Dj)sφ(s, •). Iterating this procedure, we
see that ψ has continuous partial derivatives of all orders and that,
for any qe Z+,

(2.8) (D°1r)(s) = T(D>φ(s, •)) .

Let now F be barreled, S a distribution in &\Rn\ Jif{F, G))f such
that supp (S) C Rl(a) for some a e Rn. Pick c = (cu , cn) e R\ such
that

(2.9) supp (φ)czΩ x Ω

where Ω = {t; \ tk — ak \ < ck} and let / be a continuous, <2f{F, G)-
valued function with support in Ω Π R+(a) such that

(2.10) S - D*f in Ω

for some pe Z+ (the existence of / is assured by Theorem 2.0). Define
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(2.11) (S®T)(φ) = (-iyA f(s)(D*ψ)(s)ds

where ψ is the function given by (2.7). A few remarks are now in
order.

I. Since Dpψ is continuous and has compact support the set
{(Dpψ)(s); s e Rn) is bounded in G. Boundedness of {(Dpψ)(s)} and
continuity of / imply continuity of the integrand in the right-hand
side of (2.11), thus the integral exists.

II. Let (Ω,f,p), (Ω,f,p) both satisfy the conditions (2.9) and
(2.10). By repeated indefinite integration of /, / (if necessary) we
may assume that p = p. Then Dp(f — f) — 0 in Ωo = Ω Π Ω; since
supp (/ - /) S Rn+{o)i this implies / = / in Ωo. Accordingly, Definition
(2.11) is independent of /, Ω or p.

III. If {φv} converges to zero in &{R2n) then, as the supports of
all the φu's are contained in a fixed compact in R2n, it is clear that
/, Ω and p in the definition (3.11) can be chosen independently of v;
on the other hand, it follows from (2.8) that Dp

sT(φ(s, ))—>0 uniformly
for all p, thus (S ® T)(φ»)-+0 in G. This shows that S®Te
^\R2n; G).

IV. It follows from the form of compact sets in & spaces that
if a s e t ̂ Γ is c o m p a c t i n &(R2n) t h e n so is {φ(s, -);φe <3Γ,seRn

s}
in &{Έtΐ). This shows that if Tv -> 0 in &\Rn\ F) then so does

v in ^r'(R2n;G).

V. It is easy to see that supp (S® T) <Ξ supp (S) x supp (T);
the proof is very similar to that for the scalar case, where S® T
coincides with the tensor product S® T.

Assume now that supp (T) Q Rlφ) for some beRn and let φe
^(Rn). Denote by φ the function in R2n = Rn

s x Rn

t defined by
φ(s, t) = <p(s + t), and let Xe^(R2n) such that X = 1 in supp (φ) Π
(Rl(a) x Rl(b)). Define

(2.12) (S*T)(φ) = (S®T)(Xφ).

It is immediate from V that Definition (2.12) is independent of X.
Moreover if {φu} converges to zero (resp. is bounded) in St(Rn) and
{ΓJ is a set in ^r'(Rn; F) such that supp(T,) Sfiϊ(α) for all η, then
X can be chosen independently of v, η and Xφv —> 0 (resp. {Xφv} is
bounded) in &'{R2n\ F). Applying this observation with
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and <pu~+0 and using III we see that S*Te 3ϊ'(Rn\ G). In a similar
way, it follows from IV that the map

(2.13) Γ — S*T

from j3r+(Rn; F) into ]^i(Rn; G) is continuous.
Observe now that, since D*(S ® T) = Dp

s ® T for any p e ZZ
(immediate verification) it follows from (2.12) that

(D>S*T)(φ) = D>(S® T){lφ) = (_l)ii%S® T)(Dl{lφ)) .

Noting now that Dp

a(Xφ) = ZDJ^ = X{D*φ) in the subset of R2n where
X = 1 we deduce

(2.14) DP(S*T) = DPS*T .

Finally, it follows from V that

(2.15) supp (S* T) C supp (S) + supp (Γ) .

We may note at this point the relation between the operations ® and
* defined above and the definitions in [15]. According to Proposition
33 (especially equality II. 6; 2) the product S® T coincides with the
image of the tensor product S(g)(g), Te ^'(R2n; ^f(F, G) ®, F) by
the canonical linear map π: J^iF, G) 0 , F —» G. Likewise, S*T
is the image under the same map of the convolution S*cTe
&\Rn\ ^f{F, G) (§), F) (see [15], Proposition 39, especially equality
II. 7; 8; the definitions of the topological tensor products and maps
involved can be found in the first pages of [15]).

These facts can now be applied to our problem as follows. Let
Aeθ(α), and let Sα e &'{Rn\ J^f{E, D{A))) with support in Rn

+ and
satisfying

(2.16) (D"-A)Sα = 8®I.

Then, by virtue of (2.13), (2.14), (2.15) and surrounding comments,
Sα* T furnishes a solution of (2.2) for any Te<37l(Rn;E) such that
supp (Sα * T) C Rl(α) if supp (T) C Rl(α). There only remains the
question of uniqueness of this solution; that is, we have to show
that if an Ue <3ϊl(Rn; D(A)) satisfies

(2.17) (Dα - A)U= 0

then U = 0. We observe first that this needs to be shown only in
the case U is a D(A)-valued function, defined in Rn and infinitely
differentiate. For, if φe£^(Rn), u= U*φ is such a function. By
virtue of (2.14) u satisfies (2.17), and it follows from (2.15) that
supp (v) lies in some jβ+(α). Then u = 0; in particular u(0) = (U*φ)(0) =
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U{φ) = 0, where φ(s) — φ( — s). But φ—thus φ—is arbitrary in
hence U = 0.

We settle next the case n = 1 (one variable). To this end, let u
be as above; let φe^(R) with support in t^O and define σ — Sa*φ.
Again σ is an infinitely differentiate function—this time with values
in £f(E, D(A)). In view of (2.16) it satisfies

(2.18) (Da - A)σ{t) = φ(t)I.

Define now, for t > 0

v(s) = v(s, t, φ) = Σjσ^it - s)u{a-ι-j){a + s)

where a is such t h a t supp (u) lies in ί ^ α . A moment 's considera-
tion shows t h a t v{-) is infinitely di f ferent iate : in particular,

v'(s) = σ(t - s)u{a)(a + s) - σ{a)(t - s)u(a + s) .

Making now use of (2.17), (2.18) and of the fact that σ(t) and A
commute for any t—a simple consequence of the property that S and
A commute—we obtain

(2.19) v'(s) = φ(t - s)u(a + s) .

In particular, v'(s) = 0 for s ^ t. Thus v is constant for s ^ t; as it
vanishes for s ^ 0, v(s) = 0 for s ^ t. Repeating this reasoning for
any ί ^ 0 we obtain

f ^ ί )
3 = 0

for t ^ 0. Since σ{j)(0) = (SίJ) * φ)(0) = Su\φ), where φ{t) = φ(-t),
it is clear that the fact that u is everywhere zero will be a con-
sequence of the following statement:

Let u0, , ttα_! G E. Assume

(2.20) ΣS^(φ)uj = 0

for all φe^(R) with support in ί ^ 0. Then

(2.21) ^ 0 = ux = = V i = 0 .

Assume this is not true, and call U = Σi=o S^Uj. Since Sα

vanishes for £ < 0, so does Z7; on the other hand, (2.20) implies that
U vanishes as well for t > 0. This and the fact that Sa—thus U—
is locally of finite order yields: either U = 0 or
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(2.22) U = Σ $
w
 ®v

k

for some m >̂ 0 and v0, , vm e E. (See [6], § 3 for a similar reason-
ing.) Making now use of (2.6) we see that £7must satisfy (Da — A)U=
Σ?=o δ{j) ® % which, combined with (2.22) yields

Σ

Equating the coefficients of each derivative of δ it is plain that
(2.22) implies (2.21).

We now proceed to the case n > 1. Denote, as in [13], p. 43 by
Yp (p any complex number) the distribution in &'{R, C) defined by
the function

Γ(p)

(h the Heaviside function equal to 1 for t ^ 0, 0 for t < 0) when
Re p > 0 and extended to all values of p by analytic continuation
(see [13], Ch. II or [9], Ch. I where this distribution is denoted
tl^/Γip)). For each p the support of Yp lies in t ^ 0; moreover, we
have

(2.23) YPl * YP2 - YPί+P2 , Y'p = Y^ , Yo = δ .

Let now g7 = ^ '( i?"" 1 ; J&). Define an operator J ^ in this space
as follows: D(.JZf) = ^\Rn'ι\ D(A)) and for any VeD(j^)

(2.24) S/V = (Yai ® Fα2 (g) . ® Γ ^ J * A F

where each Fα/c acts on the variable tk and ® is the usual tensor

product of distributions. It is easy to verify that D(,J>f) is dense

and that sf is closed. Take now the solution Sa of (2.16) and

define, for φ e &{Rn-1), ψ e

(in the last expression we have used the fact—plain from (2.23)—
that Y_m = dim) for any integer m). A moment's consideration shows
that S^ e &\R\ D(.s^)). Moreover

= (-l)a«{D? Dl«-iSa){Dl»{φ ® ψ)) = DaSn{φ (8) ψ) ,

) - ^ S α ( ^ ® ψ)
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in view of (2.24), (2.25). Then, taking into account that δ e &'(Rn)
can be written <5X (g) 0 δίf <?x e 2&\R) and that the operator of con-
volution by δx <g) ® d1 (n — 1 times) is the identity operator
in if we see that £f satisfies

After the (simple) verification that S? and J ^ commute, this
means that s$feθ(an). Let now Ue J£r+(Rn; D(A)) satisfy (2.17).
Define ^ e ^ ' ( i2; D(J&)) again by the formula

*-1), ψe^(R). Plainly supp(^) lies in t ^ α for some α;
moreover, a few manipulations similar to the ones above show that
^ satisfies

^<«»> _ j ^ ^ / = 0 .

By the uniqueness property, already proved for n = 1, ^ = 0 (it
should be pointed out that, although g7 = ^ ' ( ϋ ^ - 1 ; J?) may not be
barreled, this property was not used in the proof for the case ^ = 1).
Taking now into account the definition of ^ and the fact (proved in
[13], Ch. IV, Theoreme III) that {φ (g) ψ; φ e 3f{Rn~ι), ψ e ^(R)} is
dense in 3ϊ{Rn) we see that Dl1 ••• D;*τ1ί7= 0; taking advantage of
the fact that Ue^(Rn;D(A)) to convolute with Yai (g) (g) Yan_t

we obtain U — 0, as desired. This ends the proof of Theorem 2.1.

3. The case | a \ ̂  3. If β = (βl9 , βn), Ί - (ΎU , 7n) are
elements of Z+ we shall write, for the sake of brevity, β + 7 =
(βi + %, , βn + τΛ), /3! = A! βj, βj = (βj, , # j ) for i e ^ + ;
we will also write 1 = (1, 1, •• , 1) when there is no danger of
confusion.

Given aeZΐ we define the class Φ(a) £ £?(E9 E) as follows;
A e Φ{a) if and only if it is continuous, everywhere defined and

(3.1) lim-^-A% = 0
ά(aj)\

for all ueE, r > 0. As it will be immediately seen, Φ(a) depends
only on | a \ = a, + + an.

LEMMA 4.1. For every aeZ", Φ{a) = Φ(\a\).

Proof. Clearly
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thus

Φ(a)QΦ(\a\)

for any aeZl. On the other hand, according to Stirling's asymptotic
formula ([10], formula 8.327),

(aj)\ = Π Γ(akj + 1) = (2π)n'2 f[ (akj)^+ιl2e
(3.2) k=1 k=ι

( y l 2 j l l j ' 2 l j ( (l))

as j —> oo. Another application of Stirling's formula yields

(3.3) (I a \j)l = I a \jΓ(\ a \j) = (2π)1/2(| a \j

as .? > oo. Combining (3.2) and (3.3) we see that there exists a con-
stant p > 0 such that

for y large enough, which proves that

thus ending the demonstration of the lemma.
We remark that, if 0 < a < β(a, βe Z+),

Φ{a) S Φ(/3) .

The reverse inclusion is in general false, as the example in [6],
§5 shows. If E is a Banach space, however, we plainly have Φ(a) =

, E) for any a e Z$.

THEOREM 3.2. Let aeZ%, \a\^S. Then θ(a) = Φ(a) (in
particular, θ(a) g Jzf{E, E)). Moreover, Sa—the solution in
^'(Rn; ^{E, D(A))f of

(3.4) (D«- A)Sa = δ®I

commuting with A and with support in R\—coincides there with a
, E)-valued entire function.

Proof. Assume A e Φ(\ a |) = Φ(a). It is a consequence of (3.1)
that, for any r > 0 the set {r'((aj)l)~1Aiu, j = 1, 2, •} is bounded in
E for any ue E. But then it follows from the equi-continuity prin-
ciple in §2 that {r''((aj)l)-1A'',j = 1, 2, •••} is bounded in ^(E, E).
Due to the arbitrariness of r this means that
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(3.5) lim -^-Aj = 0
i (03)!

in the topology of £f(E, E). After some simple manipulations we
see that (3.5) implies that the series

(3.6) ^
i=o (aj + oί — 1)1

is convergent in <^f(E, E), uniformly for ζ on compact subsets of C,
thus it defines an entire function B(ζ) with values in £f(E, E).

Let now t = (tl9 , tn) e Rn; for β e Zl write tβ = £f^ if-.
Define Sα(ί) = ta-ιB{ta) if £ e S ; , = 0 elsewhere. Making use of the
distributions Yp (see preceding section) it is clear that Sa, as an
element of &'(Rn; £?(E, E)) can be written

(3.7) sa = g (γ a ι i ® ® yβ n i) ® A^

where the series, by virtue of the comments following (3.6) is con-
vergent in Sf\Rn\ Jzf(E, E)) and can thus be differentiated term by
term any number of times. Doing this, using formula (2.23) and
the possibility of writing 8 = δx ® (g) ̂  (π times), δx the Dirac
measure in i?, we obtain after a simple computation

(3.8) (Da - A)Sa = δ ® J .

On the other hand it is plain from (3.7) that Sa and A commute.
Thus

(3.9) Φ(a) C θ(α)

(observe that (3.8) has actually been proved for all aeZl, a result
of some interest for | a \ < 3 as well). We now proceed to the proof
of the reverse inclusion for | a \ ̂  3. Let T be a distribution in some
&'(Rn] F) (F as in § 2 an arbitrary quasi-complete locally convex
linear topological space) with support in some R'Ί(a). We shall obtain
by means of T a new distribution fe^(R F)—which might be
called the "autoconvolution" of T—as follows. Let φ e £^{R) and
define

(3.10) T(φ) = Tβφ)

where

Φ{t» ••-,«•) = 9>(ίi+ ••• + tn)

and 1 is any function in 3j{Rn) which equals 1 in R\{a) Π supp (φ).
Exactly in the same way as in the definition of convolution in § 2 it
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can be shown that (3.10) is independent of the particular X used,
that f belongs in fact to &i{R; F) and that, for any p e Z+,
φ e

(3.11) DlPlf(φ) = DpT(Xφ) .

Observe that in the case T coincides with a (say, continuous) func-
tion in X sk < b then T is as well a continuous function in t < b
given by the formula

s *

(3.12) T{t) = * \ T(s)dσ

where dσ is the element of (hyper) area of the hyperplane
Assume then that Aeθ(a). Let Sa be the distribution in

^r'(Rn; £f{E, D(A)) satisfying (3.8) and commuting with A and let
Slal = Sa. Plainly Slal e &'(R; £f(E, D(A)), commutes with A and
its support is contained in t ^ 0. Moreover, it follows easily from
its definition that Slal is locally of finite order if Sa is. Applying
the (evidently linear) transformation ~ to both sides of the equality
(3.8) and making use of the simple fact that δ = δt we obtain

(D^ -A)Slal = ^ 0 7 .

This shows t h a t Aeθ(\a\); in general,

(3.13) θ(a)Sθ(\a\)

(observe again that (3.13) has been established for all aeZl; an
application for \a\ = 2 will be found in § 5). Returning to the case
\a\ Ξ> 3 note that (3.13) and Theorem 2.1 imply that the Goursat (or
Cauchy) problem for

(D iα | -A)U=T

is well set. Making use of the results in [6] (specifically, of Theorem
4.1), we readily obtain that Aeθ(\a\), which ends the proof of
Theorem 3.2.

REMARK 3.3. It should be noted that some of the results in this
section admit of extensions to differential operators more general than
the monomial Da. We limit ourselves to sketch one of them. Let
m ^ 3 be an integer, P a homogenous differential polynomial of
degree m, that is

P — V π Ώa



66 H. 0. FATTORINI

where the (complex) coefficients aa are constant and

Σl«l=»αα =£ 0 .

Assume that there exists a solution Se ^r'(Rn; S^{E, D{A))f of the
equation

(P - A)S = 8 (g) I

with support in Rn

+ and commuting with A. Then A e Φ{m). The
proof, as the one for the particular case P = Da is based on formula
(3.11).

REMARK 3.4. The Goursat problem (for partial differential opera-
tors) was studied by A. Friedman in [7], §6 and [8], Chapter 7.
Specifically, he considers the problem of existence and uniqueness of
solutions u — u(t, x) = u(tl9 , tm, xl9 , xm) of the partial differential
equation

(3.14) DIM*, t) = P(iDktX)u(t, x)

(P a polinomial with constant coefficients, 1 = (1, 1, •••, 1)) in R\ or,
more generally, in a subset of R\9 the values of u having been
prescribed in the boundary of R+, that is

(3.15) u«tk» = ηk{{t)k) ,

where we have set <ίΛ> = (tu •••, tk_u 0, tk+1, •••, tn), (tk) =
(t1? , tk-l9 ίfc+i, , tn), 1 ^ k ^ n and ^ , , ηn are given in advance
(see the next § 4 for the relation between this type of problem and
the abstract Goursat problem). Here u—as a "function" of x—is a
distribution in a Wf space (see definitions in [7], especially §1). An
abstract version of (3.14) is also considered, although the definition
of solution is different from ours. There is a result in [7], however,
that is related to Theorem 3.2. In fact, a condition that insures
solvability of (3.14), (3.15) ([7], condition 6.19) is seen not to hold,
except for trivial cases when n, the number of variables, is >̂ 3; on
the other hand, uniqueness of solutions of (3.14), (3.15) and continuous
dependence on the ηk's are established under conditions more general
than the ones demanded for existence. (See the remarks in [7], p.
885.)

4* The strong Goursat problem. We relate in this section the
preceding results with the "usual" Goursat problem, i.e., that of
solving the homogenous equation Dau(t) = Au(t) in R+, the values of
all derivatives Dβu with βk^ak — l, l^k^n having been prescribed
at the boundary of R\.
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A few more definitions and notations will now be necessary. If
β = (βl9 , βn)i 7 = (Ti, , 7») are elements of Z+ we write β ^ 7
if /9i ^ 7χ, , yβπ ^ 7n. As in the previous section, 1 = (1, 1, , 1)
when there is no danger of confusion. Finally, for any given aeZ+,
F as in §§2 and 3, C{a)(Rl; F) denotes the space of all F-valued
functions u( ) defined in R\ and having there continuous partial
derivatives Dβu(t) for 0 ^ β ^ a (we note that, at the boundary of
R+ the derivatives involving the "perpendicular" variable are one-
sided).

Let ae Z+. The operator A is said to belong to the class Ξ(a)
if it belongs to Θ(a) and, in addition, the solution of

(4.1) (D« - A)Sa = δ <g) I

commuting with A and with support in R\ coincides there with a
£?{E, i?)-valued function t —>Sa(t) such that, for each ueE Sa(-)ue
C{a~l)(Rl) E) (note that we do not assume Sa( ) to belong to

, E))). Clearly

(4.2) Ξ(a) s θ(a)

for all aeZΐ. On the other hand, it was shown in § 3 that, when
| α | ^ 3 any solution of (4.1) in &'v{Rn\ Sf(E,D(A))f commuting
with A and with support in Rn

r must of necessity be an Jzf{E, un-
valued holomorphic function there. Accordingly,

Ξ{a) = θ(a)

for I a I Ξ> 3. Thus the previous definition of Ξ(a) introduces some-
thing new only in the three cases a = 1, 2, (1, 1). The first two
cases (one variable) correspond to the Cauchy problem and can
essentially be read off from the results in [4], [5], thus will not be
treated here, As for the case | a \ >̂ 3—as pointed out in § 3—the
class Ξ(a) = θ(a) is perhaps too restricted to include (say, differential)
operators of interest in practice. Nevertheless a sketch of the
available results is included at the end of the present section, after
the case a = (1, 1) has been treated in detail and then applied to a
problem considered by Friedman in [7] and [8].

We begin by stating a well-known result which will be applied
in the sequel.

LEMMA 4.0. Let Q be a closed operate?* in E ivίth domain

D(Q),/(•) a function defined in the domain J in R'\ vjith values in

Ό(Q) and such that /(•)> Qf{ ) are continuous and integrahle in J .

Then f = \ f(t)dt e D(Q) and
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Qf = ^Qf(t)dt .

The proof can be immediately achieved by approximating the two
integrals involved by Riemann sums and using the closedness of Q.

Let ηu rj2 be two functions defined in R+. We shall say that
the pair {ηu rj2} is compatible if

(4.3) 77,(0) = ηt(0)

THEOREM 4.1. Assume AeΞ((l, 1)).
(a) Let {>?!, κ]2} be a compatible pair of functions in Ca)(R\.; E)

such that ftfo), r][(tx), r]2(t2), η'2{t2) belong to D{A) for all tl9 t2 :> 0.
Assume, moreover, that Aη[( ), Arjf

2( ) are continuous in R+. Then
there exists a strong solution u(t) = u(tu t2) of

(4.4) AA^(ί) - Au(t) = 0

(that is, a ue Ci{ί>1)](R2

+; E) such that u(t)eD(A) and satisfying (4.4)
everywhere in R%) such that

(4.5) u(tly 0) = ηfa) , u(0, t2) = η2{t2)

for tu t2 ^ 0.
(b) Let {%„(•)} &e a generalized sequence of strong solutions of

(4.4) such that uv( , 0), A^v( , 0), u»(0, •), D2uv(0, •)—>0 uniformly on
compacts of Ri. Then uu( )—+0 uniformly on compacts of R\.

Proof. Let {φn} be a "<5-sequence" in &{Rn), that is a sequence

such that φn >̂ 0, \φnds = 1, diam supp(^ % )-^0 and let (φn)t(s) ~

Φn(t — s). Since Sα—as a distribution—commutes with A we have,
for any teRn

+, ueD(A)

A\{φn)tSauds =

Letting now n —> co and using the smoothness of Sα and the closed-
ness of A we obtain that Sα( )—which will be called simply *S( )
from now on—commutes with A as a function, i.e., S(t)ueD(A) for
ueD(A), teRn

+ and

(4.6) AS(ί)w = S(t)Au .

Equality (4.6) can actually be extended for all teRl, again because
of the facts that S( ) e C{{0>0))(R2

+; E) and that A is closed.
We need now to compute the values of S at the boundary of

R\. To this end, we write the equation



THE ABSTRACT GOURSAT PROBLEM 69

D.D.Su - ASu = (δ1 0 δθ 0 %

satisfied by Su (u an element of D(A), δt the 1-dimensional Dirac
measure) in the form

(4.7) D&JLSu - (h 0 h) * ASu] = (8, 0 δt) 0 u ,

where /& is the Heaviside function. Convoluting both sides of (4.7)
by h 0 A = Yί 0 Yγ and making use of (2.23) we obtain

(4.8) Su - (h(g)h)* ASu = (h 0 jt) 0 % .

Now, since both sides of (4.8) are continuous functions of t in R\—
the left-hand side because of (4.6) and preceding comments—the
equality must hold pointwise, which clearly implies S(tu 0)u = S(0, t2)u =
u; since D{A) is dense in E,

(4.9) S(tί9 0) = S(0, t2) - I

for tl9 U ^ 0.
We define a function u in R\ by the formula

n(tu t2) = S(ίL,

(4.10)

It is easy to show that u{ ) is continuous in R2

+; equality (4.9) and
the compatibility condition (4.3) imply that u( ) satisfies the initial
conditions (4.5). Observe next that making use of (4.10) and of
Lemma 4.0 we obtain that u(t) e D(A) for all teR% and Au( ) is
continuous in R%.

It is plain that u is none other than the convolution of S by
the distribution

(4.11) T=fr® δj 0 97,(0) + η[ 0 ^ + 5 , 0 ^ 6 ^\R\ E)f

(where we have identified η[, η'2 with the distributions they define)
and, consequently, u—extended to the complement of R\ by setting it
equal to zero there—satisfies

(4.12) (AA - A)u = T

in the sense of distributions. A reasoning rather similar to the one
yielding (4.7) applies now to show that

u = (h(g)h) * (Au) + (h
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which immediately shows that u( ) e 'CU1Λ))(R2+; E). Since supp(T) is
contained in the boundary of R\, u must satisfy (4.4) in R\—thus
in R\ which ends the proof of (a) in Theorem 4.1. We shall prove
(b) by showing that the formula (4.10) is valid for any strong
solution v( ) of (4.4)—with η^Q = v(tu 0), rj2(t2) = v(0, t2)—even if the
assumptions on 7]u Ύ]z in (a) are not satisfied. Let then v be a strong
solution of (4.4). Extend it to the complement of R2

+ as being zero
there. A short computation shows that v satisfies (4.12) in the
sense of distributions, with T given by (4.11). But it has been
shown during the proof of (a) that u—defined by (4.10) in R\ and
extended in the same way as v to R2—satisfies the same equation,
also in the sense of distributions. By uniqueness of solutions of the
Goursat problem (Theorem 2.1) u = v as distributions; since both u
and v are continuous functions in Ri, u(t) = v(t) for all teR%.
Clearly, formula (4.10) yields (b), which ends the proof of Theorem 4.1.

REMARK 4.2. Let A be a closed operator in E such that R(X; A) =
(XI — A)"1 exists and is continuous for some XeC. Assume (a), (b)
in Theorem 4.1 are satisfied. Then it is possible to show that
A e Ξ((l, 1)), which is a sort of converse of that theorem. The
proof—long but simple—runs much like the one for the Cauchy
problem (n = 1) given in [11] and is therefore omitted. We only
note that the propagator S( ) is constructed as follows: for ueD(A),
t e R\ define

S(t)u = u{t)

where u( ) is the solution of (4.4) with u{tu 0) = w(0, t2) = u and
extend S( ) to all of E by continuity.

REMARK 4.3. The results for the case a = (1, 1) can be extended
to any a = (alf •••, an), \a\ ^ 3. This extension, however, seems of
limited interest, since for these values of a the classes Ξ{a) = Θ(a) =
Φ(a) are probably too restricted to include any (say, differential)
operator of interest in applications. The "initial values" of a solution
are now a family Φ = {yjβfk} of functions defined in Rl~\ 0^β^a— 1,
1 ^ k ^ n (the family Φ consists of n J\l=ιθίk functions); we try to
solve

(4.13) Dau(t) - Au(t) = 0

in Rv

+1 with initial conditions

(4.14) D>M<t>k) - Vβ.u((t)k)

for teRl, O^β^a—1, w h e r e we h a v e set, for a n y t = (t1, t2, •••, tn)e
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R \ φ k = (f l f . . . , t]c_u 0, tk+1, , t n ) , (t)k = (tlf , tk-l9 tk+lr • • • , « , ) €
Rn~ι and where u(-)eC{a)(Rl; E), (the condition w(ί) e D(A) is void
since D(A) = E). We shall assume that Φ — {ηβ>k\ is such that there
exists a ueCia)(Rl; E) satisfying (4.14). This can be assured by
means of intrinsic conditions on the family Φ that reduce to differ-
entiability requirements and to the compatibility condition (4.3) when
a = (1,1). (For instance, when a — (1, 1, , 1) Φ consists of n
functions ηXi η2, -*-,r)n defined in Rl~u, then the assumption above
reduces to ηk e C ( 1 ) (βΓ 1 ; E) for 1 ^ k ^ n,

(4.15) %«(*)*>,-) = %«(ί)i>*-i)

for 1 ^ j < k ^ n). Let v denote the extension of v to all of Rn

r

(v(t) = 0 if ί g ί ϊ ί ) , and let Dav be Dαi; similarly extended. Finally,
let T e 3?'{Rn\ E) be the distribution—with support in the boundary
of Rl—defined by

T = Dav - D^v .

Then it is easy to see that T depends only on the functions in Φ—
and their derivatives—and not on v. Define now

(4.16) u(t) = (Sa * T)(t)

teRX A simple computation basically similar to the one for the
case a = (l, 1) shows that u{ ) is a solution of (4.13)-(4.14). Unique-
ness and continuous dependence on initial conditions follow also in
the same way; part (b) of Theorem 4.1 reads now

(b') Let {%„(•)} b e a generalized sequence of strong solutions of
(4.11) such that

uniformly on compacts of Rχ~ι for β ^ a — e3, j = 1, 2, , n. Then
uu(*)-+0 uniformly on compacts of Rn

+.
The proof of (b') is based, as it was the case for (b), on formula

(4.16), which can directly be shown to hold for any solution of (4.13)-
(4.14).

Note, finally, that an analogous of Remark 4.2 holds as well for
the case | a \ ̂  3.

5* The case \a\ = 2. The only possible choices for a are here
a — (1, 1) (n — 2) or a = 2 (n = 1). The main result in this [section is

THEOREM 5.1. <9((1, 1)) - θ(2), Ξ((l, 1)) a Ξ(2).
The proof is a consequence of the following
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AUXILIARY LEMMA 5.2. Let /(•) be an F-valued function, defined
and twice continuously differentiable in [ — a, a], a > 0. Define

(5.1) u(t19 t2) = A (
7Γ J-i

u is defined and has continuous partial derivatives D^u, D2u,
DJD2u in

(5.2) H{a) = {(tl9 t2) 6 R\\ ίA < α2/4}

m particular,

(5.3) AA"(«i, ««) - - Γ (1 - vYll2f"(2(tJ2y
l2V)dV

Proof. Let (ίx, £2) € iϊ(α) and assume in addition that ίA > 0.
Differentiating (5.1) under the integral sign—which is permissible—
we obtain

DMtu to - - ( T Ϊ T ί1 -
π \ tx / J -i

(5-4)
= i£i (1 _ Vψ

7Γ J-i

where we have used the fact that [(1 - ^2)1/2]' = - ( 1 - rf)-ιl2η and
integrated by parts the first integral. Since u is symmetric in tu t2,
D2u{tx, t2) can be obtained by interchanging these variables in (5.4).
Differentiating now the first integral in (5.4) with respect to t2,
integrating by parts one of the integrals in the same way as before
and using the equality (1 - η2)-112 = (1 - τ?2)1/2 + (1 - rf)-^2η2 we obtain
(5.3). It is clear from (5.3) and from the second integral in (5.4)
that Όγu, D2u, DxD2u exist and are continuous even when tγt2 = 0,
as claimed.

REMARK 5.3. It should be pointed out that Lemma 5.2 remains
valid if the assumption of continuity of / " is replaced by piecewise
continuity. The proof is essentially the same. This will be used
later in the proof of the inclusion Ξ(2) £ Ξ((l, 1)).

Proof of Theorem 5.1. It was proved in § 3 (see (3.13)) that
Θ(a) S θ(| α I) for any ae Z+; in particular

1, 1)) s

To prove the reverse inclusion, let A e (9(2) and let
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be a solution of

(5.5) S2" - AS2 = δ, <g) I

commuting with A and with support in t ;> 0. Let now /»(•)>
n — 1, 2, be continuous £f(E, Z)(A))-valued functions defined (say)
in ( — %, w) and such that

(5.6) S2 = /*<*»

in ( — n, ri) for some p(n)eZ+, n — 1, 2, (the existence of such a
sequence is assured by the fact that S2 is of finite order locally).
By integrating fn—and thus raising p(ri)—we may plainly suppose
that fn is twice continuously differentiate in ( — n,n), that p(l) ^
p(2) ^ and that each p(n) is odd. By Theorem 2.0 we may also
assume that fn(t) = 0 for t < 0 for all n.

Consider now the equation (5.5) in ( — n, ri). Integrating both
sides p(n) times—that is, convoluting with Yp(n)—we obtain

(5.7) mt) - Afn(t) =
(p(n) - 1)1

in the sense of distributions and, a fortiori, in the ordinary sense
(all the functions involved in (5.7) are continuous). Let now un(tu ί2),
n = 1,2, ••• be the function defined in H{n) by (5.1) (with / = fn)
and extended to its complement by setting un = 0 there. For

define

(5.8) S(φ) = (Dr]D^

where the derivatives are understood in the sense of distributions, n
is such that

(5.9) supp (φ) Π R% S H{n)

and q(n) = l/2(p(n) + 1). To see that the prescription (5.8) is in-
dependent of n, let m, n (say, m > n) both satisfy (5.6). Since

£>2 — Jn — Jm

in ( — n, ri),

f(3) _ f

where j = p(m) — p(n) is an even number, j = 2k. Consequently, in
view of the definition of un, um and of Lemma 5.2 (applied repeatedly
if necessary)

(5.10) Ώ\Ό\um - u
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in H{n) U C<^R\ in the sense of distributions ( ^ indicates complement).
Applying Dlin)Dlin) to both sides of (5.10) we obtain

Dl{n)Dl{n)un = D\{m)Dl{m)um

in H(n) (j ^i2+ as desired. It is evident from the definition of
the topology of gϊ(R2) that S—as defined by (5.8)—belongs to
3ί\R2\ £f{E, D(A)); it is also plain that it has support in .β2

+, com-
mutes with A and is locally of finite order. Finally, we go back to
(5.7), to the definition of un and to Lemma 5.2. According to them

(5.11) A A % - Aun =

in H(n) U ̂ R% where

- 1 ) !

π(p(n) - 1)! V2 2 / ((q(n) - I)!)2

(see [10], formulas 4 and 5 in 8.384). Consequently, (5.11) can be
written

( A A - A)un = (Yqin) ® rff(n)) (8)/.

Differentiating q(n) times with respect to each variable and using
(5.8) we see that S satisfies

(5.12) (AA - A)S = (δ, (8) δj 0 I

in H(n) U ̂ R\\ as n is arbitrary (5.12) holds in R2, which shows
that A e <9((1, 1)).

The proof that Ξ(2) g Ξ((l, 1)) runs much along the same lines:
in fact, let S2 in (5.5) be a ^f(E, jE)-valued function such that
S2(-)ueCM(R+;E) for all ueE. Then one can choose p(n) in (5.6)
to be equal to 1 for all n, f(t) = [tS2(s)ds for ί ^ 0, f(t) = 0 for

Jo

t < 0. Accordingly, formula (5.8) can be written
9 fl

= AA- ( I -
7Γ J-i

2U 1 ί 2 ) l/2 J ?

Applying the preceding formula to an u e E, taking advantage of
the fact that S2(*)ueC{ί) and of Lemma 5.2 (see also Remark 5.3)
we obtain

S(tlf Qu = A T (1 _ ηt
Ίί J-i

for any tl9 t2 ^ 0; therefore S is strongly continuous there and
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A e Ξ((l, 1)). This ends the proof of Theorem 5.1.

REMARK 5.4. It is not in general true—except for obvious
exceptional cases like άimE < co—that Ξ((l, 1)) = Ξ(2). To examine
this question we study in detail the case where E — H is a Hubert
space and A is a normal, possibly unbounded operator in H. We
shall make some use in what follows of the functional calculus for
these operators; although only the self adjoint case is examined in
detail in [12] the results to be used can be extended easily to normal
operators.

For any ^ 0 we define

ιc{η) = κ(η; A) = ess. sup {| I0(ηX) |; λ2 e σ(A)}

where the essential supremum is taken with respect to the spectral
resolution {P( )l of A and Io is the Bessel function

(5.13) 0 ( ) Σ 7 ^ i (

([10], formula 8.447.1); since no assumption is made for the time
being on σ(A), we admit the value +co for /c. Some information
about how o(A) must be to insure finiteness of tc can be obtained
from asymptotic developments for 70(λ). In fact, it follows from [10],
formula 8.451.1 that, as | X | —> oo

(5.14) I0(X) = (2πX)-ιl2(eλ ± ie~λ){l + o(l))

where the +( —) sign is to be used in the upper (lower) half-plane
and the branch of the square root is the one discontinuous in the
negative real axis. According to (5.14), there exist positive constants
Kl9 K2, Kz such that

for, say, | ^λ | ;> 1. Then, if we define

Z{7]) = ess. sup {| λ I^/V^ 1 ; λ2 e σ(A), \ λ | ^

for Ύ] ^ 0 we have

KMV) ^ y]-ιί2ϋ{v) ̂  KMv) + K*

for η ^ 1. Since, on the other hand,

for Ύ] ^ rf we see that /c( ) is bounded on compacts of rj ^ 0 if and
only if κ(rj) < +oo for all rj ^ 0.
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THEOREM 5.5. Let H, A be as above. Then A e Ξ((l, 1)) if and
only if

(5.15) ϋ{η)< +oo

for all η^O.

Proof. Assume (5.15) holds. For tu t2 ^ 0 let

f(tu u, λ) - io(2(t1t2χyη

where, by virtue of the definition (5.13) of Io the choice of branch
of the square root is immaterial. Define

(5.16) S(tl9 t2) - f(tu t2i A) = \ f(tly t2i λ)P(dλ) .

By virtue of (5.15) and [12], Chapter IX, §128 S(tl9 t2) is a bounded
operator in H; more precisely,

(5.17) I S(tu t2) I - ess. sup {\f{tu t2; λ) |; λ e σ(A)} = Ar(2(ixg
i/2) .

The second equality in (5.17), the facts that tc is bounded on compacts
of Ύj ^ 0 and that / is continuous in R2

+ for λ fixed yield, by a
simple application of the Lebesgue dominated convergence theorem
that £(•) is strongly continuous in R\.

We apply now the results of § 3 (in E = R) to the function /.
According to them,

(5.18) (AA-λ)/( ,λ) = δ

where δ is the Dirac measure in R2 (here we have set / = 0 outside
of R\). But then we obtain by applying (5.18) to an arbitrary test
function φe^(Rn), integrating the result with respect to P( ) and
making use of Fubini's theorem that S—extended to the outside of
R\ by setting S = 0 there—satisfies

(5.19) ( A A - A)S = δ (8) I .

We have thus shown that A 6 Ξ((l, 1)) (the fact S commutes with A
is trivial). Conversely, assume AeΞ((l, 1)) and let S be the strongly
continuous, J*f(E, i£)-valued function with support in R2

+, commuting
with A and satisfying (5.19). We can still define S(tu t2) for tu t2^0
by means of (5.16); this time, S(tu t2) will only be a closed, densely
defined operator ([12], Chapter IX, § 127); for every ίlf t2^ 0 D(S(tu t2))
contains the subspace F generated by all elements of the form

P{e)u ,
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where e is any bounded Borel set in the complex plane, u any
element of H. Now, since for ue F the domain of integration in
(5.16) is bounded, it can be proved with arguments similar to the
ones used above that if ueF then S( )ue-C((M))(J?+; H) and satisfies

(AA - A)Su = δ <g) u .

By uniqueness of solutions of the Goursat problem (Theorem 2.1) we
must have

(5.20) Su = Su

as distributions, and a fortiori pointwise in R2

+ for any ueF. But
F is dense in H, thus (5.20) implies that S(tly t2) is bounded for all
(tut2)eR2

+. Applying the results in [12], Chapter IX, § 128 combined
with the second equality in (5.17) we see that tc(η)—thus £{η)—is
finite for all ^ ^ 0 which ends the proof of Theorem 5.5.

To give now an example of an operator that belongs to Ξ((l, 1))
but not to 5(2) is simple. In fact, let A be, say, any normal operator
whose spectrum σ(A) consists of the region

(5.21) Ω = {λ; I ReX1121 ^ max (0, log log | λ |1/2)}

(we may take, for instance, H = U(Ω) with respect to ordinary
Lebesgue measure in the plane, A the operator of "multiplication by
the variable"). Then, if η ^ 0,

κ(η) ^ sup {(log ( λ \r I λ |-1/2; | λ | ^ 1} < oo

which shows that Ae5((l, 1)). Assume now AeΞ(2). According to
[4]i Remark 5.7 and Theorem 5.9 o(A) must be contained in a region
of the form

{λ; I ReX1121 ^ ω]

for some ω < oo. But Ω cannot be described in this way, thus
A$Ξ(2).

It might be pointed out that in some cases of interest the
implication A e 5((1, 1)) => A e 5(2) holds. For instance, assume that
A is an everywhere defined and continuous member of Θ((l, 1)), (see
§ 1 for comments on this) and let S e &\R\ J^J(E, E))f be the
solution of (5.19) with support in R2

Γ. Finally, let / be a continuous,
J^(E, i?)-valued function defined in, say, | tk \ < α, a > 0, and satisfying
there

S = DpDpf

for some p = (Pi, p2) £ Z$. By Theorem 2.0 we may assume that
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/ = 0 in ̂ R\, the complement of R\. Reasoning as in the comments
preceding and following (5.7) we see that we may assume / to
belong to C ( ( M ) ) in \tk\ < a and that we must then have

(5.22) AA/(*) = AM
2 - 1)1

in I tk I < α. But since A e Sf(E, E), (5.22) implies that D.DJe C{{1>ί])

in the intersection of Rt and \tk\ < α; reasoning in this way repeatedly
we see that / has continuous partials of any order there, and thus
the same is true of S. Since one can argue likewise for any a > 0,
S has continuous partials of any order in all of R% (in particular, A
belongs to Ξ((l, 1))). We now go back to § 3; according to the
results there, if S is the distribution defined from S by the formula
(3.11) then S e 3ί\R\ £?(E, E)), has its support in t ̂  0 and satisfies

§"-AS=δ1®I.

But, according to the comments following (3.11) if S is a function, S
is given by the formula (3.12) which in our case takes the form

S(t) = \*S(t - s, s)ds , t ̂  0 .
Jo

This clearly shows that AeΞ(2).

6* The Banach space case* The method used here is merely
an adaptation of the one used by Chazarain in [3] for the case of
one variable. Recall that a logarithmic region A — Λ(σ, τ, ω) in the
complex plane C is any subset of C defined by an inequality of the
type

ReX ^ max (σ log | ImX \ + r, ω)

where σ, τ, OJ are real constants, σ > 0.

THEOREM 6.1. Let ae Z+, and assume that E is a Banach space.
Then Aeθ(a) if and only if R(λla]; A) = (Xla]I - A)-1 exists for X in
some logarithmic region A and

(6.1)

there, where p( ) is a polynomial.

Before proceeding to the proof a few comments may be useful.
Observe first that if m > 2 the set {λm; X e A}, A any logarithmic
region contains a neighborhood of ©o, thus the conclusion of Theorem
6.1 simply means that A is hounded—which is, of course, in accordance
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with Theorem 3.2. Second, the condition that Sa should be of finite
order locally in the definition of the class Θ(a) is now void; in fact,
since E—thus D(A)—is a Banach space, so is Jzf(E, D(A)); then,
according to [13], Corollaire 2, p. 85 every distribution with values
in £f{E, D(A)) is of finite order locally. Finally, Theorem 6.1 could
be fairly easily read out from the results in the preceding section
and those in [3]; however, to deduce them anew seems justified not
only by the importance of the particular case considered but also
because substantial simplifications become available.

Proof of Theorem 6.1. Assume Aeθ(a); let Sae
, D(A)) be the solution of

(6.2) (Da - A)Sa = 8(g)I

commuting with A and with support in R%. Given aeRl let / be
a continuous function in | tk | < akf pe Z+ such that

(6.3) Sa = D*f

in I tk I < ak. Applying Theorem 2.0 we may suppose that / = 0 in
^R\. Let now φe^(Rn) with support in \tk\ <ak and such that
φ(t) = 1 in \tk\^bk, 0 < bk < ak, 1 ^ k ^ n. Define

φλ(t) = e-^φ(t)

where λ = (λL, , Xn) is an element of Cn, ^-dimensional unitary
space and (λ, t) = XA + + XJn. Plainly φλ e &{Rn) for all λ e C\
Now define

(6.4) R{X) = S(φλ) .

Then R(X) e £f{E, D(A)) and commutes with A. Observe next that
we have

(6.5) D«φλ(t) = Σ Kβ(D3e-^)(Drφ)(t) = Σ Kβ(-xye-^(&φ)(t)

where the summation is extended over all /9, 7 e Z'l such that β + 7 =
ice \ ίa \

a, and Kβ = ( J-) ( *) (in the second sum we have used the

notation μβ for the product μl1 //£», ^ = (ft, " , f t ) e C \ Con-
sequently (and on the basis of (6.2)) R{X) satisfies

(6.6) (XaI - A)R(X) = I - M(X)

where now

(6.7) M(X) = S(ψ?) , ψλ(t) = D«φλ{t) - {-Xfφ{t) .

Observe now that, by virtue of (6.3) we can write (after some
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integrations by parts)

M(X)= \[(-

The partial Dpψλ can be explicitly computed by using an expression
of the type of (6.5); the result will be a sum each of whose terms
will have the form

(6.8) KX^e-^DMt)

where β, yeZ+, β + 7 = a + p. Note that in the expression (6.7)
for ψλ—developed by means of (6.5)—we always have 7 Φ 0; there-
fore the same is true of each of the terms (6.8), which means that
D*ψλ{t) = 0 for I tk I < bk. Accordingly, if | ReXk | ^ ε > 0

(6.9) I Λf(λ) I ̂  K'[\
J

Xk

for appropriate constants K', K". Now let p be any positive number
less than 1. Some simple manipulations show that there exists a
logarithmic region A such that if XkeA, 1 <: k ̂  n, then the right-
hand side of (6.9) does not surpass p. Accordingly, | M(X) \ ̂  p for
Xke A. But this implies that / — M(X) has a bounded inverse
(/ - M(X))-1 = Σΐ=oM(xy there. Since M(X) commutes with A (im-
mediate consequence of the corresponding property for Sa and of the
definition of M(X), so does (/ — Mix))"1. Post multiplying (6.6) by it
we obtain

(XaI - A)R(X)(I - Mix))-1 = I

which, together with the commutativity property just mentioned
implies R(X)(1 - M(X))~ι = R(Xa; A) for Xk e A. Observe now that

(6.10) I (/ - Mix))-11 ^ (1 - p)-1

for XkeA. As for R(X), a bound for its norm can be obtained much
in the same way as (6.9) was obtained. In fact, combining (6.3) and
(6.4) we can write

RiX)= ^i-l)^

Developing now Dvφλ according to (6.5) we obtain

\RiX)\ ^κf[\Xk\^
fc = l

for a suitable constant K. Combining this with (6.10) we see that
for Xke A, X = (xl9 , λΛ), RiXa; A) exists and



THE ABSTRACT GOURSAT PROBLEM 81

I R(X«; A) \£K(l- p)-
1
 Π

fc = l

Pk

If we now take λx = = χn = xe Λ, the conclusion of Theorem 6.1
follows.

Assume now that A is such that R(Xlal; A) exists for λ in a
logarithmic region Λ and satisfies (6.1) there. If | a \ > 2 it was
already observed that A must belong to ^f(E, E) = Φ{a), thus
Theorem 3.2 applies to show that Ae θ(a). Let then \a\ ^ 2 ; there
are only three such cases, namely a — 1, a = 2, a = (1, 1). Since
the first two cases correspond to the Cauchy problem (and are, besides,
treated in detail in [3]) we only consider the last. It was proved in
[3] that if R(X2; A) exists for λ in a logarithmic region Λ and (6.1)
holds, then A e Θ(2). According then to the results in §5—in particular,
Theorem 5.1—A belongs as well to <9((1, 1)). This ends the proof of
Theorem 2.1.

REMARK 6.2. It is possible to give a fairly explicit expression
for Sa(φ), φe^(Rn) in the present case. We do it in detail only
for a = (1, 1), the extension to other values of a being simple.

Assume A e θ((l, 1)). It was proved during the course of the
demonstration of Theorem 6.1 that there exists a logarithmic region
Λ — Λ(σ, τ, ω) such that, if λu λ2 e Λ then RiX^', A) exists and
satisfies there

(6.11) \R(X1X2;A)\^P(\\\, |λ 2 | )

p( , •) a polynomial in two variables. Let φe^(R) and denote by
Φ(X), XeC2 its Laplace transform

φ(χ) = f ea>t}φ(t)dt .
J/22

Integrating by parts repeatedly we obtain, for any β = (&, βz)eZl,

φ(χ) = {

Accordingly there exists for any such β a constant K = K{β) such
that

(6.12) I φ{\) I ̂  K Π (1 + I \k D-^β **"*

where a = (a^) is such that supp(^) S — 5+( —α). Let now / \ be
(say) the contours ReXk = max (cr log | ImXk \ + τ', ω'), fc = 1, 2 with
τf > τ, ω' > ω and define
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(6.13) S(φ) = ί-Bίλ^; A)φ(X)dX1dX2

the integral over Γx x Γ2, Γk oriented clockwise with respect to A.
With the help of (6.11) and (6.12)—for convenient β—it is easy to
see that the prescription (6.13) defines a distribution in &'(Rn; £?(E, E))
commuting with A. Moreover, if supp(<p) c ^R\, we can write
Ψ = Ψ\ + ΦΪ where ψγ has support in tλ < 0, φ2 in t2 < 0. This means
that we can choose αL < 0 in the estimates (6.12) for φι and then,
"sliding towards + oo" the contour Γ, in (6.13), S ^ ) = 0. In the
same way, S(φ2) = 0, thus S(φ) = 0.

Accordingly, supp (S) S R\. Finally, it follows from the formulas

2; A) = I + Ai2(λ1λ2; A)

and from some elementary manipulations with (6.12) that S belongs
in fact to ^r'(R2; £f(E, D(A)) and that it is a (and then the unique)
solution of

(AA - A)S = δ <g> I.

The author is indebted to the referee for several improvements
in the presentation of this paper.
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