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ON £-SHRINKING AND £-BOUNDEDLY
'COMPLETE BASIC SEQUENCES AND
QUASI-REFLEXIVE SPACES

L. STERNBACH

A Banach space X is called quasi-reflexive (of order =)
if codimy«a(X) < + oo (codimygwn(X) = n), where = denotes
the canonical embedding of X into its second conjugate X**,
R. Herman and R. Whitley have shown that every quasi-
reflexive space contains an infinite dimensional reflexive
subspace, In this paper this result is extended by showing
that if X is quasi-reflexive of order nand 0 <k <n then X
contains a subspace which is quasi-reflexive of order k.

1. Preliminaries. Throughout this paper X will denote a
Banach space, X* its first conjugate and X** its second conjugate.

The sequence {x;} in X is said to be basic if {x;} is a basis
for [x;] (where [z;] denotes the closed span of {x;})). The sequence of
functionals {f,} in [x;]* defined by f:(x;) = 6;; (where ; =1 if i =7
and 0;; = 0 if 7 j) are called the functionals biorthogonal to {x}.
We will write {x,, f;} is a basic sequence. It is well known [10] that
the sequence {v;} in X, 2, #0 (¢ =1,2,---), is basic if and only if
there exists K > 0 such that

(1) =K

m
> aw; ]
2=1

n
> o
1=1

for 1 <n <m < + < and any choice of scalars a,, Gy, *+*, Q.

If {x,} is a basic sequence we call the sequence {z,}, 2, # 0 (n =
1,2, --.), a block basic sequence [1] of {x;} if there exists a sequence
of scalars (a;) and 0 = p, < p, < --- such that z, = 3"j', aw,. By
(1), {z.} is a basic sequence.

If A and B are subspaces of X we will write A @ B to denote
the direct sum of 4 and B, when for each xze[A4, B] (where [A4, B]
denotes the closed span of A U B) there exists unique ae A, peB
such that » = a + B8, If X= A@ B and dim B = n (dim B = + )
we write codim,A4 =n (codim,4 = + ). We will also write
codim ;A = + <o if X has no subspace B such that X = A B.

LemmA 1.1. If X = [A, B] where A and B are closed subspaces
of X and if dim B=mn and ANB=0 then codim ;A =n and
X=A@B.

I. Singer has shown [8]:
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LEMMA 1.2. Let A be a closed subspace of X.

1° The intersection of every (n + 1l)-dimentional subspace of X
with A contains a nonzero element if and only if codim ;A < n.

2° There exists an n-dimensional subspace of X whose intersection
with A contains only the zero element if and only if codim yA = n.

2. k-shrinking and k-boundedly complete basic sequences.

DEFINITION. A basic sequence {x;, f;} is k-shrinking if codim, .[f;]=k
[8].

We note that a basic sequence is 0-shrinking if and only if it is
shrinking [3].

LEmMA 2.1. If {x;, fi} is a basic sequence and f €[x;]*, then
felfidl if and only if [|f|[%ss, Tuso+-]ll—>0 as m— o (where
F 1 [Tnsry Zuegy, + - -] denotes the functional f restricted to [®,11, Tpisy * = °])-

The proof is in [8].

LemMmA 2.2. If {z,, fi} 1s an n-shrinking basic sequence and {z;}
is a block basic sequence of {x;} then {z;} is k-shrinking for some k < n.

Proof. Let {h;} be the functionals biorthogonal to {z;}. Suppose
[z:.]* contains an (n + 1)-dimensional subspace, spanned by the linearly
independent elements g¢,, g,, **+0.+., Which intersects [%;] in only the
zero element. Let g; € [«,]* be such that ¢;|[2] =¢; ¢ =1,2,---n+1).
Then by Lemma 2.1 the (n -+ 1)-dimensional subspace of [x;]* spanned
by {9i:1 =<7 < n + 1} intersects [f;] in only the zero element. This
contradicts Lemma 1.2, 2°. Hence by Lemma 1.2, 1°, codim, <[] < 7.
This completes the proof.

THEOREM 2.3. If {x;, i} is an mn-shrinking basic sequence and
0=k <n then there is a k-shrinking block basic sequence of {x;}.

To prove this theorem we need two lemmas.
LemMmA 2.4, If {x;, fi} is a basic sequence and {g;:1 <1t < n} s

a linearly independent set in [x;]* such that [g:1 i< xn]Nn][f:]=0
then there is a 6 > 0 such that

(2) ’

0;1 (217w 0 (07 0) ” >

i

for m =1, 2, ...andj:]_’z, e, M.
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Proof. Without loss of generality let 5 = n. Let

Bm = [fly ey fm—l, Gy *°°y gn—1]L .

From the isometry between [2:]*/[g, 62 «**, Guesy f1y o =%y fus] and
B [9] we have

”gnleH = diSt’ (gny [gly gZy °c gn-1y fly fZ! M) fm—l])
g dlSt (gm [gly Goy * %y Onyy fl, f2’ "']) > 0 > 0

for m = 1,2, ... and for some ¢ since ¢, ¢ [g,, G, **+, Gu—s, S1, Fop =+ +].

LemMMA 2.5. Let {x;, f;} be a basic sequence and ||x;||>d >0
(t=1,2,++2) for some 6. If felx]* and 32, | f(x)] < + oo then
i[f![xn+19 xw'.—?, “']II—)O as n— .

Proof. Let K satisfy (1) for the sequence {z;}. Thus, since
[ fi@)] < 2 Ko™ where ||z]| <1,

sup{| £ ( 3 Fie)es|s 0 e o, a1, o] = 1

r=m-+

<2Ks 3 [f@)].
i=m+1
Proof of theorem. Since the basic sequence {z;, f;} is n-shrinking
there exists a linearly independet set {g;: 1 < ¢ < n} S [;]* such that
(3) [z]* =[f]Dlg:1l=t=mn].

By (2) in Lemma 2.4 we can construct a block basic sequence {y;}
of {x;} with the following properties:

(4) <yl <3i=1,2 .-+,

(5) 9:(Wnges)| >0 >0 for some §, for i=1,2 ---,m
and ¢ =1,2, ---, and

(6) 19:(Yuq-a) | < 1/27 for © =7 .

Let 1 <k < n and let {z,} be a subsequence of {y;} consisting of
the elements of the form y,,.; where ¢ =1, 2---kand ¢ = 1,2, +--. Let
{h;} be the sequence of functionals biorthogonal to {z;}. If fe[f]
then, by Lemma 2.1, f|[z;]e[h]. Let ¢; =g;/[z] (UG =12, -+ m).
Since every functional in [z,]* is the restriction of some functional in
[x;]* we conclude by (3) that

(7) [2]* = g1, 5 =+ = G0y By Py == +] -
From Lemmas 2.1 and 2.5 and (4), (6) above it follows that g; e [A;],
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k+1=<17=<mn. Assume there exist scalars a, a,, ---, «, and he[h;]
such that >  a,0; = h. Hence

k
a9 =h— > ag; .
1=2

But by (5) and (4), ||9[[Yupsr: p = m][| > 30 for m =1,2, ---. Also
by (4), (6) and Lemma 2.1, |[(h — 3., @) [[Ynps: 0 = m]|| — 0 as
m — co. Therefore o, = 0. Similarly o; = 0 for¢=2,3, ---, k. Thus
we have shown that the set {¢/: 1 < ¢ < k} is linearly independent and
[9:1=<¢=<Fkln[k]=0. Thus by (7) and Lemma 1.1 we have
codimy, ;. [k;] = k& and hence {z;} is k-shrinking.

The case k = 0 follows from [1, Thm. 3, p. 154] and the fact
that a quasi-reflexive space contains an infinite dimensional reflexive
subspace [5].

DEFINITION. Let {x;} be a basic sequence. We define two spaces.
of sequences B(x;) and C(x;) by

B(x,) = {(%%)3 SEP

n
>,
=1

<t e

and
Cx) = {(a,-xi): i ar,; exists} .

Define a norm on B(z) and C(z) by ll[(aw)ll| = sup, || - a:x]].
With this norm B(z;) and C(z;) are Banach spaces and B(z;) 2 C(x,).
We say {x;} is k-boundedly complete if codim, ,C(x;) = k [8].

We note that a basic sequence {x;} is 0-boundedly complete if and
only if {«;} is boundedly complete [3].

LemMA 2.6. If {x;} is an n-boundedly complete basic sequence and
{2;} is a block basic sequence of {x;} then {z;} is k-boundedly complete
for some k < m.

Proof. Assume B(z,) has an (n + 1)-dimensional subspace W which
intersects C(z;) in only the zero element. But then #(W) would be
an (n + 1)-dimensional subspace of B(x;) which intersects C(x;) in only
the zero element, where ¢ denotes the natural embedding of B(z;)
into B(x,) (i.e., ¢(a;z;) = (bx;) if for each n there is a m = n such
that >~ a2, = >, bx,). This contradicts Lemma 1.2.1°. By Lemma
1.2.1°, codimy,. , C(z)) < n.

THEOREM 2.7. Let {x;} be an n-boundedly complete basic sequence
for m = 1. Then for ke{0, 1} there is a block basic sequence {z;} of
{x;} which 1s k-boundedly complete.
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Proof. For the case k =1, it is clearly sufficient to show that
{z;} admits a m-boundedly complete block basic sequence for some m,
1 < m < n whenever n > 1. Since {x;} is not 0-boundedly complete
there is an element (a,x;) € B(x;) — C(x;). Hence there exists

=p, < p, < ---and ¢ > 0 such that if
Pp+1
Y = E a’ixiy HynH>5forn:192’.”'
i=p,+1
By Lemma 2.6 {y;} is m-boundedly complete for some m < n.
Assume m = n. Then there exists

{bry): 1=k =n— 1} = B(y,) — Cly,)

such that By) = Cly,) D [(bry): 1 =k =n — 1] D [(y)]- By (1) there
exists M > 0 such that i/b.v;/l < M and thus |b,| < Mo (1 =1,
2,+++,1<k=<mn-—1). Hence there is an increasing sequence of
positive integers (n;) and b, ---, b,_, such that lim; .. b, = b, and
by — by, | <1/2°(1=1,2, -+, 1=k =n—1). Let ¢;=0b,;—b; and
d.; = ¢,; — ci; where ¢;.; = ¢,; for je{n;} and ¢;; = 0 for j¢ {n;}. Then
(cty;) € C(y;) and

(8) B(y) =Cly) Bl(dwy): 1 =k =n— 1] P [(w)]

and d,; = 0 for je{n;}. Let {m;} be the sequence of positive integers
complementary to {n;}.

We will show that {y,]} is (n — 1)-boundedly complete. Let
(6w Yn,) € B(yn,). Therefore (e;y;) € B(y;) where e; = 0if j ¢ {m;}. Thus
by (8) there exist scalars «,, a,, ---, &, and (uy;) € C(y;) such that

(ey) = (wys) + glak(dkiyi) + a,(y,) .
Thus we obtain «, = 0 and u; = 0 for j ¢ m;. Hence

n—1
(emiym.i) = (?’(/m,/ymz) + ;ak(dkmzym) °

Thus by Lemma 1.1, {y,,.} is (» — 1)-boundedly complete.
The existence of a 0-boundedly complete block basic sequence
again follows from [1, Thm. 3, p. 54] and [5].

LEmMMA 2.8. Let the basic sequence {x;} be 1l-shrinking and
1-boundedly complete. Then there is a block basic sequence {z;} of {x;}
which 1s either 1-shrinking and 0-boundedly complete or 0-shrinking
and 1-boundedly complete.

Proof. Let {y;} be the block basic sequence constructed as in
‘Theorem 2.7. Then {y;} is 1-boundedly complete. If {y;} is 0-shrinking
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we are done. If not, then by Lemma 2.2, {y,} is 1l-shrinking. Thus:
by Lemma 2.1 there exists fe[y,]* and 0 =9, < q, < 0, < q, < «--
such that

(9) 1fllysp. =1 =q.]ll >0 >0, for some 6 and n =1,2, - .

As in the proof of Theorem 2.7, the subsequence {z;} of {y;}, formed
by those elements in [y;:p, =7=Z¢q,] (w=1,2, ---) is 0-boundedly
complete. But by (9) {z;} is l-shrinking.

For other results on k-shrinking and k-boundedly complete basic
sequences see [4].

3. Quasi-reflexive spaces. We will write Ord (X) = % to mean
X is quasi-reflexive of order .
Civin and Yood have shown [2]:

THEOREM 3.1. If Ord (X) =% and Y is a closed subspace of X
then Y and the quotient space X/Y are quasi-reflexive and Ord
(X)=0rd (Y) + Ord (X/Y)

I. Singer has shown [8]:

THEOREM 3.2. If {x;} is a basic sequence then Ord ([z;]) = n if
and only if there exist matural numbers k, and k, such that {x;} is
k,-shrinking and k-boundedly complete and n = k, + k,.

THEOREM 3.3. If {x;} is a basic sequence and Ord ([x]) =n > O
then there ewist block basic sequences {y;} and {z;} of {x;} such that Ord
(z.]) = 1 and Ord ([z]) = 0.

Proof. The existence of {z;} such that Ord ([z;]) = 0 again follows.
from [1] and [5].

By Theorem 2.3 and Lemma 2.6 there exists a block basic
sequence {y;} of {x;} which is 1-shrinking and Fk-boundedly complete
for some k< un. If k=0 then Ord ([y;]) =1 by Theorem 3.2. If
k> 0 there exists, by Lemma 2.6, a block basic sequence {y;} of {y;}
which is 1-boundedly complete. If {y;} is O-shrinking we are done.
If not then {y;} is 1-shrinking and we now apply Lemma 2.8 to
complete the proof.

THEOREM 3.4. Let Ord (X) =mn > 0. There exists separable
subspaces Y, Y, -+, Y, of X such that Ord (Y) =k and Y, S Vi
for k=0,1,-+-, n— 1.
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Proof. By [6, p. 546] a quasi-reflexive space of order % contains
a basic sequence {x;} which is #n-shrinking. Thus {x;} is 0-boundedly
complete. Let Y, = [#;]. Thus by Theorem 2.2, there is a block
basic sequence of {x;} which is (n — 1)-shrinking and 0-boundedly
complete. Hence there exists Y,_, such that Ord (Y,_,) =% — 1 and
Y,2Y,.,. We construct Y,_,, Y, ---, Y, similarly.

We note that we have also shown that each Y, has a basis.

The author would like to thank the referee for his helpful
suggestions.
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