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ON ^-SHRINKING AND £-BOUNDEDLY
COMPLETE BASIC SEQUENCES AND

QUASI-REFLEXIVE SPACES

L. STERNBACH

A Banach space X is called quasi-reflexive (of order n)
if codimχ**τr(X) < + oo (codim *̂* π(X) = n), where π denotes
the canonical embedding of X into its second conjugate X**.
R. Herman and R. Whitley have shown that every quasi-
reflexive space contains an infinite dimensional reflexive
subspace. In this paper this result is extended by showing
that if X is quasi-reflexive of order n and 0 ^ k ^ n then X
contains a subspace which is quasi-reflexive of order h.

1* Preliminaries* Throughout this paper X will denote a
Banach space, X* its first conjugate and X** its second conjugate.

The sequence {x^ in X is said to be basic if {x^ is a basis
for [x{] (where [#J denotes the closed span of {x{}). The sequence of
functionals {/f} in [αj* defined by ft(xd) = δid (where δid = 1 if i = j
and δid = 0 if ΐ Φ j) are called the functionals biorthogonal to {αjj.
We will write {̂ , / J is a basic sequence. It is well known [10] that
the sequence {̂ } in X,xtΦθ (i = 1, 2, •••), is basic if and only if
there exists K > 0 such that

( 1 )

for 1 <g % <Ξ m < -f c>o and any choice of scalars aL1 a2, , αTO.
If {xj is a basic sequence we call the sequence {zn}, zn Φ 0 (^ =

1,2, •••)» a block basic sequence [1] of {xj if there exists a sequence
of scalars (aτ) and 0 = p, < p2 < such that sn = Σi=%+i α*̂ * β y
(1), {£%} is a basic sequence.

If A and £ are subspaces of X we will write A φ ΰ to denote
the direct sum of A and 5, when for each x e [A, B] (where [A, B]
denotes the closed span of A[JB) there exists unique aeA, βeB
such that x = a + β. If I = i 0 J S and dim B = n (dim B = + oo)
we write codimA-Λ = π (codimxA = + oo). We will also write
codim XA = + oo if x has no subspace 5 such that X = A®B.

LEMMA 1.1. If X = [A, B] where A and B are closed subspaces
of X and if dim B = n and A Γ) B = 0 then codim XA — n and

I. Singer has shown [8]:
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LEMMA 1.2. Let A be a closed subspace of X.

1° The intersection of every (n + l)-dimentional subspace of X
with A contains a nonzero element if and only if codim XA ^ n.

2° There exists an n-dimensional subspace of X whose intersection
with A contains only the zero element if and only if codim XA ^ n.

2. ϊc-shrinking and ϊc-boundedly complete basic sequences*

DEFINITION. A basic sequence {x{1 f^ is λ -shrinking if codim[x Afi\ = &

[8].
We note that a basic sequence is O-shrinking if and only if it is

shrinking [3].

LEMMA 2.1. If {#»-,/*} is a basic sequence and / e [#*]*, then
fe[fi] if and only if \\f\ [xn+ly xn+2 . . •] || -> 0 as n->oo (where

f\ [xn+1, xn+2, •] denotes the functional / restricted to [xn+1, xn+2, •••])•

The proof is in [8] .

LEMMA 2.2. If {xif ft} is an n-shrinking basic sequence and {z^
is a block basic sequence of {x^ then {z^ is k-shrinking for some k ^ n.

Proof. Let {h^ be the functional biorthogonal to fo}. Suppose
[ZiY contains an (n + l)-dimensional subspace, spanned by the linearly
independent elements gl9 g2, •• flfn+1, which intersects [hi] in only the
zero element. Let g\ e [ajj* be such that g\ \ fe] = g{ (i = 1,2, n + 1).
Then by Lemma 2.1 the (n + 1)-dimensional subspace of [#J* spanned
by {g[: 1 ^ i ^ n + 1} intersects [ft] in only the zero element. This
contradicts Lemma 1.2, 2°. Hence by Lemma 1.2, 1°, codim[z.]* [hi] ίg n.
This completes the proof.

THEOREM 2.3. If {xίy / J is α% n-shrinking basic sequence and
Q ^ k ^ n then there is a k-shrinking block basic sequence of {Xi}.

To prove this theorem we need two lemmas.

LEMMA 2.4. // {xi9 / J is a basic sequence and {̂ : 1 ^ i ^ n) is
a linearly independent set in [#<]* such that [g{: 1 <^ i ^ n] f) [/*] = 0

ί/̂ erβ is a d > 0 such that

( 2 ) Γ=m Π Π ^ Γ l ( 0 ) >

f o r m = 1 , 2 , emcZ j = 1,2, •••,%.
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Proof. Without loss of generality let j = n. Let

F r o m the isometry between [Xi]*/[gl9 g2, •••, 0*-i, Λ , / 2 , •• ,/m-i] and
-Bm [9] we have

11 gn I Bm ί I = dist (grΛ, [&, &, , gn_u fl9 f2, , / m _ J )

^ dist ferΛ, [&, &, , gn_u fu f2, -]) > δ > 0

for m = 1, 2, and for some <3 since #n ί [gu g2, , g^! , fu f2, . . . ] .

LEMMA 2.5. Le£ {.τ, , /^} 6e α basic sequence and \\Xi\\ > δ > 0
•(i = 1, 2, •••) /or some o. If / e f α J * αwd ΣΠ=i 1/(^)1 < + °° ί^βw
! ( / ! K + i , a?Λ+2, •] || -> 0 as n-* oo.

Proof. Let iΓ satisfy (1) for the sequence {#J. Thus, since
\fi(x)\ < 2Kδ~ιwhere \\x\\ < 1,

sup <̂  I / V ~ !

-1 Σ

a e

Proo/ 0/ theorem. Since the basic sequence {a?̂  / J is ^-shrinking
there exists a linearly independet set {̂ : 1 ^ i < n] ^ [ccj* such that

( 3 ) [a J* - [Λ] θ [flf*: 1 ^ ΐ ^ w] .

By (2) in Lemma 2.4 we can construct a block basic sequence {y%)
of {scj with the following properties:

•(4) i< | | 2 / ί ϊ l < f , i = l ,2, ••• ,

( 5 ) \gi(yng+i) \ > S > 0 for some δ, for i = 1, 2, , π

and g = 1, 2, , and

( β ) l l / i f U K ^ for i ^ i .

Let 1 ^ fc ^ n and let {zj be a subsequence of {y^ consisting of
the elements of the form ynq,ri where i = 1, 2 •& and g = 1, 2, » . Let
{fei} be the sequence of functional biorthogonal to {̂ }. If / € [ / < ]
then, by Lemma 2.1, / 1 [^] e [hi]. Let ^ = ^ | [z{] (j = 1, 2, . . . w).
Since every functional in [^]* is the restriction of some functional in
[Xi]* we conclude by (3) that

From Lemmas 2.1 and 2.5 and (4), (6) above it follows that #
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k + 1 < i ^ n. Assume there exist scalars al9 a2, , ak and h e [h$

such that Σί=i ai9i = ^ Hence

*ig[ = h- Σ ^ .

But by (5) and (4), \\g[\[ynp+ι: p ^ m] || > |Γ a for m = 1, 2, . . . Also
by (4), (6) and Lemma 2.1, \\(h — Σ ί U < ^ ) I [2/nP+i p ^ m] || -+ 0 as
m -» co. Therefore α : = 0. Similarly aζ = 0 for ΐ = 2, 3, •••,&. Thus
we have shown t h a t the set {gl'Λ ^ i ^ k} is linearly independent and
Wi'Ί ^ ί ^ k] f] [hi] = 0. Thus by (7) and Lemma 1.1 we have
codim[z.r[hi] = k and hence {z^ is k-shτinking.

The case fc = 0 follows from [1, Thm. 3, p. 154] and the fact
that a quasi-reflexive space contains an infinite dimensional reflexive
subspace [5].

DEFINITION. Let {x^ be a basic sequence. We define two spaces
of sequences B(x^ and C(x{) by

{ n Λ

(diXi): sup Σ aiχi < + °°f
and

C(Xi) = UdiXi): Σ Q>iχi exists > .

Define a norm on ί?(X ) and C(Xi) by 111 (α^i) 111 — sup% 11 Σ?=i aiχί 11
With this norm B{xj) and C(Xi) are Banach spaces and B(Xi) a C(a?ί).
We say {x̂ } is fc-boundedly complete if codimB[x%)C(Xi) — k [8].

We note that a basic sequence {Xi} is 0-boundedly complete if and
only if {̂ } is boundedly complete [3].

LEMMA 2.6. If {x^ is an n-boundedly complete basic sequence and
{Zi} is a block basic sequence of {«τj then {z^ is k-boundedly complete
for some k ^ n.

Proof. Assume B(z%) has an (n + l)-dimensional subspace W which
intersects C(z^) in only the zero element. But then φ(W) would be
an (n -f 1)-dimensional subspace of B(Xi) which intersects C(Xi) in only
the zero element, where φ denotes the natural embedding of B(Zi)
into B(xt) (i.e., 0(α^ t ) = (6^) if for each n there is a m ^ n such
that Σ?=i α A = Σ ^ i Mt) This contradicts Lemma 1.2.1°. By Lemma
1.2.1°, codim*^) C{zτ) ^ n.

THEOREM 2.7. Lei {x̂ } 6e an n-boundedly complete basic sequence
for n ^ 1. Γfee^ for k e {0, 1} there is a block basic sequence {z^\ of
{xt} which is k-boundedly complete.
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Proof. For the case k = 1, it is clearly sufficient to show that
•{Xi} admits a m-boundedly complete block basic sequence for some m,
1 ^ m < n whenever n > 1. Since {Xi} is not O-boundedly complete
there is an element (a^i) e B(xi) — C(Xi). Hence there exists
•0 = Pi < Ί>2 < and δ > 0 such that if

Pn+l

yn = Σ α^i, Il2/»ll > δ for w = 1, 2, .

By Lemma 2.6 {?/;} is m-boundedly complete for some m ̂  w.
Assume m = n. Then there exists

{ ( b k i y i ) : l^Jc^n-l}S B{y%) - C W

s u c h t h a t B(Vi) = C(y%) 0 [{bkiyτ) l^k^n-l]® [(?/,)]. B y (1) t h e r e
exists J l f > 0 such that j|&7,^|| < ikf and thus | 6 H | ̂  MS"1 (i = 1,
2, , 1 ̂  /c ̂  7t — 1). Hence there is an increasing sequence of
positive integers (^) and bu •• ,ίv_1 such that lim^oo δΛΛi = 6Λ and
ίδ* - KJ < 1/2* (i = 1, 2, . . . , 1 £ k ^ n - 1). Let cki = bki - h and
•djti = cki - cU where ckj = ckj for j e {n%} and c^ = 0 for j $ {n{}. Then

and

( 8 ) B{y%) = C { V i ) 0 [ ( d k i y i ) : l ^ k ^ n -

and dkj = 0 for i e { ^ J . Let {mj be the sequence of positive integers
complementary to {n^.

We will show that {ym.) is (n — l)-boundedly complete. Let
(emiym) e B(ym.). Therefore (e^i) e B(y^} where e3- = 0 if j £ {m }̂. Thus
by (8) there exist scalars au a2, * ,an and (u^y^ &C{y%) such t h a t

n~ 1

(βiVi) = (î ii/i) + Σ ak(dkiyi) + ^(i/i) .

Thus we obtain 6r% = 0 and u3- = 0 for j $ m{. Hence

(em,{ym) = (umiym) + Σ ak(dkmym.) .

Thus by Lemma 1.1, {ym.} is (n — l)-boundedly complete.
The existence of a O-boundedly complete block basic sequence

again follows from [1, Thm. 3, p. 54] and [5].

LEMMA 2.8. Let the basic sequence {x%) be 1-shrinking and
1-boundedly complete. Then there is a block basic sequence {z^ of {x^
which is either 1-shrinking and O-boundedly complete or 0-shrinking
and 1-boundedly complete.

Proof. Let {?/;} be the block basic sequence constructed as in
Theorem 2.7. Then {y,) is 1-boundedly complete. If {y^ is 0-shrinking
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we are done. If not, then by Lemma 2.2, {y^ is 1-shrinking. Thus>
by Lemma 2.1 there exists / e [T/J* and 0 — pι < qx < p2 < q2 <
such that

( 9 ) W f l l V i i P n ^ i ^ Q n ] \ \ > o > 0 , f o r s o m e δ a n d n = 1 , 2 , ••• .

As in the proof of Theorem 2.7, the subsequence {z,) of {?/,•}, formed
by those elements in [yt: pn ^ ί fg qn] (n = 1, 2, •) is 0-boundedly
complete. But by (9) {2;} is 1-shr inking.

For other results on ft-shrinking and ft-boundedly complete basic
sequences see [4].

3* Quasi-reflexive spaces* We will write Ord (X) = n to mean
X is quasi-reflexive of order n.

Civin and Yood have shown [2]:

THEOREM 3.1. If Ord (X) = n and Y is a closed subspace of X
then Y and the quotient space X/Y are quasi-reflexive and Ord
(X) = Ord (Y) + Ord (X/Y)

I. Singer has shown [8]:

THEOREM 3.2. If {Xi} is a basic sequence then Ord ([Xi]) = n if
and only if there exist natural numbers kt and k2 such that {x^ is-
^-shrinking and k2-boundedly complete and n = kι + k2.

THEOREM 3.3. If {x^ is a basic sequence and Ord ([Xi]) = n > 0
then there exist block basic sequences {y^} and {z{} of {α̂ } such that Ord

- 1 and Ord ([sj) - 0.

Proof. The existence of {Zi} such that Ord ([Zi]) = 0 again follows
from [1] and [5].

By Theorem 2.3 and Lemma 2.6 there exists a block basic
sequence {y^ of {x^ which is 1-shrinking and fc-boundedly complete
for some k ^ n. If ft = 0 then Ord {[y^) = 1 by Theorem 3.2. If
ft > 0 there exists, by Lemma 2.6, a block basic sequence {y[} of {y%}
which is 1-boundedly complete. If {y\} is 0-shrinking we are done.
If not then {?/•} is 1-shrinking and we now apply Lemma 2.8 to
complete the proof.

THEOREM 3.4. Let Ord (X) = n > 0. There exists separable
subspaces YQ, Yl9 •••, Yn of X such that Ord (Yk) = k and Yk gΞ Yk+h

for ft = 0, 1, , n — 1.
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Proof. By [6, p. 546] a quasi-reflexive space of order n contains
a basic sequence {xt} which is ^-shrinking. Thus {αjj is O-boundedly
complete. Let Yn = [#J. Thus by Theorem 2.2, there is a block
basic sequence of {xt} which is (n — l)-shrinking and O-boundedly
complete. Hence there exists Yn^ such that Ord (Y»_i) = n — 1 and
Yn 3 Yn-i We construct Γ%_2, F%_3, •••, Fo similarly.

We note that we have also shown that each Yk has a basis.
The author would like to thank the referee for his helpful

suggestions.
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