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BV-FUNCTIONS ON SEMILATTICES

J. KisT AND P. H. MASERICK

It has been shown that the cone C of completely monotonic
functions on a commutative semigroup G with identity induces
a vector lattice ordering on the vector space F=C—C
spanned by C. An intrinsic characterization of the absolute
value of the functions in FE is desirable. In the present
work we offer such a characterization when each member of
G is idempotent, i.e. G is a semilattice, A notion of varia-
tion and bounded variation (BV) of arbitrary functions on G
is introduced. We show that F is precisely the family of
BV-functions and that if f< E, then our concept of variation
of f agrees with the usual absolute value as given by

F v (=f).

In case the natural order on G is linear, then C is the cone of
nonnegative, nondecreasing functions and our notions of variation
and bounded variation reduce to the classical concepts. More generally,
we show that our variation reduces (not trivially) to the variation
defined by Birkhoff [2] for BV-valuations on a distributive lattice
with largest element.

1. Completely monotonic functions on semilattices. In order
to set the stage for our investigations, it will be necessary for us
to recall [cf. 1] how the integral representation of a completely
monotonic function simplifies when the underlying semigroup is a
semilattice.

If fis a real-valued function defined on a commutative semi-
group G with identity 1, then the difference operators 4,, for n a
nonnegative integer, are defined inductively by 4,f(a) = f(a), and
dofla; by, «oe,b,) = 4, fla; by ooy b)) — 4, f(ab,; by, +++,b,,). The
function f is said to be completely monotonic if 4,f(a; b, «++,5,) =0
for all choices of a,b, --+,b,€G. Let C = C(G) denote the family
of all completely monotonic functions on G and C, = {feC: f(1) = 1}.
Then C is a convex cone with base [9] C,, in the linear space R”
of all real valued functions on G. If we equip R® with the topology
of pointwise convergence, then the span, £ = C — C, of C becomes
a locally convex linear topological space and C, is compact. From
[5] we see that C, is an »r-simplex, i.e. every f¢c C, admits a unique
representing measure which is supported by the extremal points
(ext C)) of C,, and ext C, is closed. A nontrivial homomorphism from
G into the multiplicative semigroup of real numbers in the closed
unit interval is called an exponential. The set of exponentials on G
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is denoted by exp G. It is known [ef. 1 or 5] that ext C, = expG.
It follows that every fe E admits a unique representing measure z,
supported by exp G. Thus the map f— g, is an isomorphism between
FE and the vector lattice of all regular Borel measures on exp (G).
In particular E is a vector lattice with positive cone C.

In the present work we will always assume G is an idempotent
semigroup, i.e. a semilattice. If we define a < b whenever a = ab
then “<” induces a natural ordering on G. A nonvoid subsemigroup
F of G whose complement F'’ is an ideal is called a filter, or
equivalently F', is a nonvoid subsemigroup of G such that be F
whenever a€ F' and a <b. A routine check reveals that the ex-
ponentials are just the characteristic functions of the filters. Let
. denote the set of all filters in G, and & (a) = {(F e &% |ac 7 }.
Then & (ab) = &7 (@) N 7 (b) (in fact the map a — & (a) is a semi-
lattice isomorphism). The map X, — F' is then a bijection of exp G
onto .. If we impose on & the topology induced by this latter
map then sets of the form .&# (a) and .# (a)’ form a subbase for .#.
Note & is a zero dimensional compact Hausdorff space. Let fe
and g be its representing measure. If we transfer g to & then
we have

f@ = | st@dp = plig e exp G| o(a) = 1)) = (5 (a)
and more generally,

4@ by e b) = | @)L= 90) -+ (L (b))

= p({geexpG|lg(a) = 1, 4(b,) = +-+ = 4(b,) = 0})
=mMF (N FB) N -+ NF (b)) .

This last formula will be used in § 2.
2. Variation and bounded variation.
DEFINITION 2.1. (a) The tuples (a;c,, =<+, ¢,) and (B;Cpery o *yCron)

are sald to be related if c,ab = ab, i.e., if ¢; = ab for some 7 =

1, .-, m+ n.
(b) Let f be a real-valued function defined on G. The variation
| f], and positive variation f* of f at a point @ in G are defined by

k
| £ (@) = Sup 3| 4y, f@bigi b, + -+, b |

and
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k
SH(a) = sup X [4,, f(abie; by + =+, 050)] VO,

where the suprema are taken over all finite sets of mutually related
tuples {(b;,0; i,y + -, biy'ni)}i'c=1'

(¢) The function f defined on G is said to be of bounded variation
(a BV-function) if | f|(1) is finite.

Observe that for a given family of tuples as in (b), it is possible
that n, = 0 for some % with 1 <7< k. But since the tuples are
pairwise related, we can have n; = 0 for at most one such index 1.

The main result of §2 is Theorem 2.2 where we characterize F
as the BV-functions on G. The following three propositions are
necessary for our proof of this theorem.

PropoSITION 2.2. The tuples (a; ¢y, <+, ¢,) and (b; Cpiyy ** ) Cosn)
are related if and only if the sets F (@) N .F (c)' N +++ N.T (¢n)
and 7 (b)) N F (Cne) N oo NF (Curn) are disjoint.

Proof. Suppose & (ab) N F (¢.)' N +++ N (Cnin) = ¢. Let F =
{reG:ab < x} then F is a filter on G, F'e & (ab), and so Fe & (c;)
for some index ¢. Therefore, ab < ¢;, so the tuples are related.

Conversely, if the tuples are related then ab < ¢; for some index
1. Hence if F' is a filter on G such that F'e & (ab), then Fe 7 (c;),
i.e., # (ab) & .Z (c;), and so

j(ab)ﬂﬁ—(cl)’m e 07(0m+n)':¢~

Recall that a semialgebra on a set X is a family .o of subsets
of X such that

(i) if S, and S, are members of .<4, then S, N S, is a member
of .&; (ii) if S e . then there is a finite subfamily of pairwise disjoint
members of & whose union is S’; and (iii) Xe.%”. An algebra on
X is a nonempty family of subsets of X which is closed under the
operations of forming finite unions and taking complements. It is
easy to verify that the algebra generated by a semialgebra .&¥
consists of those sets which can be expressed as the union of a finite
subfamily of pairwise disjoint members of &~

The proof of the next result is straightforward, so will be
omitted.

PROPOSITION 2.3. The family & of sets F (a) N F (a) N -+ N
Z (a,), where the tuple (a, -+-,a,) ranges over all finite subsets of
the semilattice G, 1s a semialgebra on the set # of all filters on G.
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The algebra on & generated by the semialgebra & will be
denoted by .o7.

ProrosITION 2.4. If f is a real-valued function defined on the
semilattice G, then the function p defined by

ﬂf(ﬁ‘<ao) n j—(a’l), NN y‘(an)’) = Anf(ao; Qyy *o°, an)

can be extended to a finitely additive regular set function on .o7.

Proof. For each element a in G, let @ denote the characteristic
function of the set .# (a). We claim that the family {@: a € G} of real-
valued functions on & is linearly independent. To see this, suppose
ad, + +++ + «a,d, = 0, where the «a; are real numbers. When given
the relative order of G, the set {a, ---, @,}] must have a maximal
element. Assume without loss of generality that a, is such an
element, and put F = {x€G:a, < x}. Then F is a filter on G with
a,€F, but a;e F for ¢ <mn, ie., Fe ¥ (a,), but Fe¢ & (a;) for
2 < m. Therefore, (a@, + +++ + ,8,)(F) = o, = 0. Continuing in
this way, we conclude that o, = -+ = a0, = 0.

We define a linear functional f on the linear subspace of R™
generated by {@:aeG} by putting f(S ad;) = 3 a;f(a;). Since the
family {@: a € G} is linearly independent, and since the mapping a — @&
is one-to-one, the function f is well-defined.

Now let {F (a:;) N.F (@) N =+« NF (a;,,)'}-, be a family of
pairwise disjoint members of & whose union is

J&/—(ao,o) n y(ao,x)' NN f(ao,w)’ .
The characteristic function of the 4th such set, where 0 <+ < £k, is
6i,o(l - a:i,l) ce (1 - 645,1”) ’
and therefore,
13
E;; a:zo(l - (i“) ttc (1 - dtm) = a:0,0(1 - 6’:0,1) e (1 - d(),no) .

When the function f is applied to both sides of the last equation we
obtain

k
21] Anif(ai,(); Qiy =00y a/z'n,t) = An(‘f(CLOyO; Qo,15 =%y a'o,na) ’

and hence
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S F (@) N F (@) N e 0 (@)
= UAF (@0,0) N F (@)’ N ==+ N y‘(ao,no)’) .

It follows that the set function g, on . has a well-defined and
unique finitely additive extension to .%7. This extension is also
denoted by z;.

The regularity of g, on .o is a consequence of the fact that
the elements of the semialgebra . and hence the elements of the
algebra .o are open-and-closed.

The following is the main result of the section. The symbol |v|
is used to denote the variation of the measure v [4]. Recall that F
is the vector lattice spanned by the completely monotonic functions.

THEOREM 2.5. Let f be a real valued function defined on the
semilattice G with identity. Then f 1is a member of E if and only
if it is of bounded variation on G. Moreover, if f is a BV-function
and if v; 18 the regular Borel measure which represents f, then

[f @) =]y, (F (a),
(@) = v (F (a) for each acG .

Findlly | f|=FV (=f) and f*=fVO0.

Proof. For each feC, let ¢, be the finitely additive set function
on .7 defined in Proposition 2.4 by

(i)  p(F@nF )N -+ NF(0)) = 4S50y, + -+, by)

then the map f— y, is an isomorphism of the cone C onto the cone
of all nonnegative finitely additive set functions on .2/, This map
therefore admits a unique extension to an isomorphism of E onto
the vector lattice of all finitely additive BV-set functions on .%7.
Therefore, this extension is order preserving and necessarily assumes
the form (i). The definition of variation of a set function [4], Pro-
position 2.2 and (i) above imply:

(FV = Na) = 1 (F (a)

(ii) = sup 3. | ¢#(F (abso) N F (b;)' N ++e NF (bin)) |
= sup D) [ da, f(abi; by + ooy bin,) |
= [ f (@)

where the first supremum is taken over all finite collections of
mutually disjoint members of .& and the second is taken over all
finite collections of mutually related tuples. Since a similar argument
shows that
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(iii) (f Vv 0)(@) = f*(a)

for all fe E, the first and last assertions of the theorem are
established.

To establish the intermediate formulas, let g be a nonnegative
finitely additive set function on .7 and let f be defined by f(a) =
#(Z (a)). Then feC, so there exists a unique nonnegative regular
Borel measure v, such that v represents f. It follows that v is an
extension, and in fact the only extension, of #. Thus the map p—v
defines an isomorphism of the cone of finitely additive set functions
on &% onto the nonnegative regular Borel measures. It now follows
that every finitely additive BV-measure g admits a unique extension
v, namely the unique representing measure for the BV-function f
defined by f(a) = #( (a)). Since this extension is order preserving
we must have |[p¢|(A) = |v|(4A) and g (4) = v*(4A) for all Ae. o7
The desired formulas now follow from (ii) and (iii).

3. Valuations. Recall [2] that a valuation on a lattice L =
(L; YV, A) is a real-valued function f defined on L which satisfies
the identity

(@) + f(b) = fla VvV b) + fla A D) .

Now assume that L is a distributive lattice with largest element
1. Denote by V = V(L) the set of all nonnegative, nondecreasing
valuations on L and let V, = {fe V: f1) = 1}.

Throughout this section, the symbol G will denote the semilattice
(L; A), and C = C(G) will denote the cone of all completely mono-
tonic functions defined on G.

ProrosiTiON 3.1. It f ts a valuation on a distributive lattice L,
then

A, fla; by, +++,b,) = 4,fla; b, \/ +++ \/ b,)

for each integer n = 1.

Proof. The assertion is obviously true if » = 1. If » = 2, then

4,f(a; by, b)) = fla) — fla A b) — flanby) + fla A\ b, A\ by)
= fla) — flla A b) V (@ A b))
= fla) — fla A\ (b, V b))
= 4,f(a; b, VV by) .

Assume that the result is true for n = k& = 2; then
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B f(@; by ooy biry) = 4 f(@; by« ooy b)) — 4if(@ A byis; by, = o0, by)
=4 (@;0,V - Vb)) — d(@ N b0,V oo+ \V by)
= 4f(a; b,V o+ V by, biyy)
= Alf(a/;bl Voeee V by o

PROPOSITION 3.2. The set V s a closed extremal [4] subset of C.

Proof. It is immediate that V. is closed in C,. (Recall that C,
carries the topology of pointwise convergence.)

Note that if f is an element of C, then 0 < 4,f(a V b;a,b) =
fla v b) — fla) — f(b) + fla Ab) and so fla) + f(b) < flaV b) + fla A\ b)
for each pair of elements a, b in L.

Now let f be a valuation on L, and suppose that f= af, + (1 — a)f,
with f, and f, elements of C, and 0 < a < 1. If for some pair a, b
in L we have f;(a) + f;(0) < fi(a v b) + fi(a A b) for j =1 or 2, then

fa) + fb) = afi(a) + (1 — a)fy(a) + afi(b) + (1 — a)f:(b)
< alfie vV b) + fila A D] + (1 — @)[fula V b) + fila A b)]
=flaVvb) + fla AND),

which is a contradiction. Thus, the cone V is an extremal subset
of the cone C.

In particular this implies that the vector space V — V is a sub-
lattice of E = C — C. Thus by Theorem 2.5, if fe¢ V then, the
absolute value of f with respect to the vector lattice V — V agrees
with the variation |f| of f defined in 2.1. In summary we may
state:

THEOREM 3.3. The wvector space V — V 1is a wvector lattice which
consists of all wvaluations of bounded wvariation. Its positive cone is

the cone of all monmegative nondecreasing valuations on L and |f| =
NV A(=f) for all feV — V.

From Proposition 3.1, if f is a valuation and a € L then
k
| fl@) = sup 3. [ 4ifla A b e | + [fla A D)

where the arguments of the summands range over all finite sets of
mutually related pairs {a A (b;¢,)}; such that c¢; A (@ A b Ab) =
aNbAb.

It is not hard to see that this notion of variation agrees with
the classical concept of variation of real valued functions on linearly
ordered lattices. Birkhoff [2] has also generalized the classical
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concept of variation to valuations on a lattice. We will distinguish
his definition from ours by referring to his as linear variation.

DerINITION 3.4. (Birkhoff [2]). Let f be a valuation on a
distributive lattice L. Then the linear variation |f|, is defined by

|£l@) = sup 3% | f@:.) = flw) | + |fia)|
and the limear positive variation (f); is defined by

() = sup 3% [f@:) — F@)] V0 + LAV 05

A

where the suprema are taken over all ascending chains o, < 2, < -+
%, = a.

In [2], using methods different from ours, Birkhoff essentially
shows that Theorem 3.3 is valid when “variation” is replaced by
linear variation.” Hence it follows that |f| = |f|, whenever either
[f1(Q) < e or |fl(1) < «=. We will now prove a series of algebraic
lemmas which will lead to an alternate proof of this fact; in this
approach we use Theorem 3.3 rather than Birkhoff’s results.

LEMMA 3.5. If f is a valuation on L then |f|, < |f].

Proof. Let 2, <2, < «-« <2,=a be a chain in L. Then

S @) = flw) | + )| = 51 Ak w) |+ 1£w) |-

If n+1>9>jthenx, =2, =2,., Aw;sothat {(z;.;2)]1=1,2, -+, n}
is a mutually related set of ordered pairs.

For the remainder of this section we find it convenient to let
N(m,n) (n = m) be the class of all strictly increasing functions
al{1,2,++,m}—A{1,2, «+-, n}.

LemMmA 3.6. If f is a valuation on L and a,, @, +++, a,., € L then
for a fixed n: 0 < n<k

SIV{(@any A @y o+ N Quinin) e N(n + 1, k)}]
+ fIV(@aiy A Gay =+ 0 Aoy A ag1)) | e N(n, k)}]
= fIV{(@aiy A oy *++ A Genin) [ae N(n + 1, k& + 1)}]
+ FIV{(@ewy A Gamy =2+ A Qainiy A @ri|@€ N(n + 1, k)}] -

Proof. 1If we let @ and b the respective arguments of f in the
first and second terms to the left of the equality, then,
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a Vb= V{ay N Cuz +++ A Quasny lae N(n + 1, k + 1)} .
Moreover, the generalized distributive law implies,

aAb=V{(@ux A Qaizy *** A Qaininy A Cpy A\ Qaigy =0 A Qpmy N\ Cpg)
lae N + 1, k), 8¢ N(n, &)}

so that
aNb= v{a’a(l) A\ Quezy *** N Qg (n+1) A a’k+1) I [24S N(n + 1’ k)} .

The assertion now follows since f(a) + f(b) = f(a \V b) + f(a A b).
Lemma 3.7. If f is valuation on L and if a, @, ++-, a, € L then

3 F(@) = 3 FIV i A Gay =+ A ) | ae NG, )] -

Proof. The assertion is clearly valid if k= 1. If we assume
its validity for k& then

S 7@) = S @) + fla)
STV ey A Guy =+ A s | @ NG, )] + F(@a-)

f[z lai] + f(@rs)

Il

{l

&

+ IV @ A sy ==+ A G| e NG, )]

Applying Lemma 3.6 to the first term of the above expression with
n=0and k=1 yields

+ gf[v{aa(l) /\ aanz) e /\ a/a(i) | ac N('Z:’ k)}] .

Reapplying Lemma 3.6 to the second term to the right of equality
and the first term of the summation with » = 1 and k& = k yields

Sif(@) = ] Va| + FIVi@ew A dus |ae NE, &+ D))
+ FIV{(@ay N oy A @i | € N(2, E)}]
+ 3 STV (@ A Guy -+ ey | e NG, DY

Successively repeating this process proves the assertion for & + 1.
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Lemma 3.8. If {(a;,b)|2=1,2,--+,k} and (a,.,) are k+1
mutually related tuples such that b; < a; for each 1 =1,2, -++, k then

v{(ba(l) A ba(2) oo A ba(n) | ae N(ny k)}
= V{(@ay A Qazy +++ A Quiuiny |x€ N(n 4 1, k 4 1)}

Proof. Let a = (Guu) A Gue *++ A Qupnryy) for some e N(n+1, k+1).

Case 1. a(n +1)#k+ 1. We may assume the existence of
Jj(7=1,2,.--,n) such that b,;, 2a. Then b,;, Z Gui;, \ Caq) = @ for any
1=1,2,-+-,n + 1. Therefore if 5 # | the mutual relatedness implies

baty = Quijy N\ Ay = a, so that lé\j by = @ .
Case 2. a(n + 1) = k + 1. Then by mutual relatedness,
bati) = Qaiweny N Gaiiy = @5 SO that ,Z\ baiiy = @
The assertion easily follows from these two cases.

LEMMA 38.9. If f ts a valuation on L then
(fi) = f+.

Proof. Consider the sum >, 4,f(a; b)) + f(@e).

Without loss of generality we make the following assumptions:
(i) Each term in the summand is strictly positive.

(ii) b;<a;=<a for each¢=1,2, -+, k and q,., < a.

(iii) The set {(a; b)) [t =1,2, «-+, k} U {a,.,} is mutually related.
From Lemma 3.7 we have

k

2. 4 f (@i b) + flaws)

= 2 (FIV{@ao) A Gay =+ A aey) [ € NG, B+ D)

=

- f[V{(bau) N ba @t A ba(i) | ace N(’i, k)}])
Ffla A @ Aty -

Lemma 3.8 and assumption (ii) above imply that the arguments of
the terms in the above expression form a decreasing sequence. The
assertion easily follows.

THEOREM 3.10. If f s a wvaluation on a distributive lattice L
then f+ = (f)i. Moreover f is of bounded wvariation (|f| < o) if
and only if f is of bounded linear variation (| f |, < <o), in this case,

(1= 1S 1o
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Proof. The first assertion follows from Lemmas 3.5 and 3.9.
Lemma 8.5 also implies that |f], < - whenever |f| < «. Con-
versely if f is of bounded linear variation then (f);(1) < o> and
(—f)i(@) < o= so that

A1) =771 + (=1 = (@) + (=i @) < oo

In view of Lemma 3.5, to complete the proof we need only
verify that | f| < |f], if |f], < co. Given ¢ > 0, there exists a chain
x, <<% < - <2, =a in L such that

(i@ < 5 F @) = F@ITV 0+ f@) V0 + /2.
But it follows from Theorem 3.3 that |f|(a) = 2f*(a) — f(a). Therefore

Fll@) = 2(0)i @) — fl@) £ 23 [F (@) — F@)] V0
+2(f@) V 0) - f@) + ¢
= 23 [F@) — f@)] V 0 + 2(F () V 0)

= S @) — f@)f @) + e
= |flo+e. Hence [f]|=[f].

Let fe V— V. We turn our attention to constructing the re-

presenting measure for f. To this end we will define a filter on G

to be prime if a \V be G implies either a € G or be G. The following
proposition is essentially contained in [3].

Il

S A — f@) | + @) | + ¢

ProposrTioN 3.11. A function feV, is an extreme point of V,
if and only if it is the characteristic function of a prime filter (i.e.
a zero-one lattice homomorphism).

Proof. A routine check reveals that the zero-one lattice homo-
morphisms agree with the characteristic functions of the prime
filters. Clearly they are all extremal elements of V. To prove the
converse, observe that Lemma 3.2 implies that V, is an extremal
subset of C,. The assertion follows since each extremal point must
be an exponential (or the characteristic function of a filter) as well
as a valuation.

If we let P denote the set of all prime filters and P(a) = P N F(a)
then .Z#(1) is a compact zero dimensional subspace of & (1). But if
feV — V then its representing measure is supported by the extreme
points of V), or in our setting, by °(1). Therefore Theorem 2.5
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implies the first part of the following.

THEOREM 3.12. If f is a wvaluation of bounded wvariation, then
there exists a unique regular Borel measure v, on (1) such that

fll@) = [y, [(&(a)
fHa) = vi(F () .

Moreover the map a — F7(a) is a lattice isomorphism while the map
f— v, im a vector lattice isomorphism.

Proof. The only assertion which we have not proved is that the
map a — .Z°(a) is biunique. But this is a known result from lattice
theory. In fact it can be shown that every filter is the intersection
of prime filters.

Acknowledgements. The results of this paper are an outgrowth
of a seminar which was conducted by the second named author at
the Pennsylvania State University in 1967. The authors wish to
thank Professors F. R. Deutsch, N. J. Fine and P. D. Morris who
participated and offered valuable suggestions.

It has come to our attention that S. E. Newman has recently
announced results [7], [8] which are related to the work in §2. In
particular, using combinatorial technique, he has introduced a formally
different notion of BV-functions on a semilattice. His emphasis is
not, as is ours, on the lattice theoretic properties of the BV-
functions (eg. he has not announced a concept of variation as such)
but rather on the multiplicative structure of these functions. Some
of his work carries over to our setting quite naturally. For example
his theorem that the product of two BV-functions is again a BV
function follows for BV-functions in our sense from [5, Cor. 1.6].
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