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LIE ALGEBRAS OF GENUS ONE AND GENUS TWO

JAMES BOND

The genus of a finite dimensional algebra is the difference
between its dimension and the number of elements in a
minimal generating set for the algebra. In this paper the
classification of finite dimensional Lie algebras of genus one
and genus two is accomplished in four steps. First, it is
shown that every such algebra is either sclvable or contains
a simple subalgebra. Second, the algebras containing a
simple subalgebra are determined. Third, nonminimal genus
one and two Lie algebras are shown to have a one, two
dimensional ideal, J, respectively, with genus zero quotient.
Fourth, the different possible L module structures for J are
analyzed and completely determined except for the genus
two index two nilpotent algebras.

The purpose of this paper is to classify and solve the isomorphism
problem for finite dimensional Lie algebras of genus 1 and genus 2
over arbitrary fields. The classification problem was attacked for
Lie algebras with genus less than three in Bond [1]. The classifica-
tion obtained was somewhat unsatisfactory for genus 1 and genus 2
algebras because the results were presented by specifying different
possible multiplication tables in terms of minimal generating sets for
the algebras and therefore provided no ready access to the isomorphism
problems. Nevertheless, the classification of genus 1 algebras was
fairly short and had interesting consequences and therefore was made
the basis of a short paper, which because of the perceptive comments
of the referee grew into the present paper.

The concept of genus seems to have originated with Knebelman
[5]. He obtained among other results a valid classification of the
structure constants for genus 0 and 1 Lie algebras. His paper con-
tains errors, which have been documented in Patterson [8] and
Marshall [7]. Wallace [9] has obtained a classification of Lie algebras
of dimension four over the complex numbers. It should be remarked
that not unlike Wallace, who was unaware of Knebelman’s work,
the author was unaware of both Wallace’s and Knebelman’s work
until quite recently.

Patterson [8] establishes the most far reaching results. His
main theorem for algebras implies an interesting theorem about Lie
algebras, (Theorem 2, § 1) which seems to have gone unnoticed.

The author first became aware of the term “genus of a Lie
algebra” through [7]. The results obtained in [7] are indirectly
related to ours.
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Throughout this paper use is made of the results in [2]. It
should be pointed out that a minimal set of generators of a finite
dimensional algebra is always a weak minimal generating set (a
concept particular to [2]) for the algebra. The converse is false in
general. The results needed from [2] are proved under the hypothesis
of the existence of weak minimal generating sets with specific pro-
perties and hence hold under the stronger hypothesis of the existence
of a minimal generating set with the same properties.

The following notation will be in forece throughout the paper.
L will denote a finite dimensional Lie algebra over an arbitrary field
denoted by F. The elements of L will be denoted by small Roman
letters and the elements of F' by small Greek letters. J(a,b,¢) =0
will stand for the Jacobi identity (ab)c+ (be)a+(ca)b=0. <a,b,c, <)
will denote the subalgebra of an algebra A generated by the elements
a,be, - of A. (S, T,---,a,b, ---> will denote the subalgebra
generated by the subsets of elements S, T, .-+ of A and the elements
a, b, -+ of A.

1. The genus of an algebra. A subset S of elements of a
finite dimensional algebra A is said to minimally generate 4 if S
generates 4 as an algebra and no subset of A having fewer elements
than S generates A. A finite dimensional algebra A has genus k if
A has a minimal generating set with m elements and dim L=Fk+m.

ProrosiTiON 1. If B 1is a subalgebra of an algebra A then
genus B < genus A.

Proof. Let M be a minimal generating set of B consisting of
m elements. Let A = B4 C,C a subspace of A. Then for any
basis N of C, MU N generates A. Therefore

genus A = dim A — (dim C + m)
= dimA —dimC) — m
= dim B — m = genus B.

COROLLARY 1. If A has genus k then the dimension of a sub-
algebra generated by t elements of A is at most t + k.

ProrosiTiON 2. Let I be an ideal of an algebra A. Then either
A = B+ I, B a subalgebra of A or genus A/I < genus A.

Proof. Let @: A— A/I be a homomorphism with ker = I. Let
M be a set of elements of A with @(M) minimally generating A/I.
Let B be the subalgebra of A generated by M. Then genus A >
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genus B > genus A/I. If genus B = genus 4/I then dim B = dim A/I
and hence @ | B is an isomorphism.

THEOREM 1. Let L be a finite dimensional solvable genusk Lie
algebra over any field. Then L is at most (k + 2)-step solvable.

Proof. If k= 0 then A is metabelian by Theorem 1 of [2].

Suppose the theorem has been proved for all finite dimensional
Lie algebras of genus < k, k£ a positive integer.

Let L be of minimal dimension among the Lie algebras of genus k.
Then genus I? < genus L. Hence I? is at most (k& 4 1)-step solvable,
i.e., L is at most (k + 2)-step solvable.

Suppose the theorem has been proved for all genus k algebras of
dimension less than n. Let dimL = xn. Let I be a minimal non-
zero ideal of L. Then I is abelian since I® is also an ideal of L.

If genus L/I < genus L then L/I is at most (k + 1)-step solvable.
Hence L is at most (k + 2)-step solvable.

If genus /I = genus L. then the last proposition implies L =
S 4- I, S a subalgebra. Any minimal generating set of S extended
by any basis of I is a minimal generating set for L since genus S =
genus L. It follows that Proposition 1, [2] applies. Hence Theorem 2,
[2] applies with S= B and I= C. Consider K of Theorem 2, [2].
If K= S then KICKNI=0. Hence L*=S* and L is at most
(k + 2)-step solvable by the induction hypothesis applied to S. If K
is not S then K+ Fb= S, F the ground field, with KCc B and bs — s in
B. But, KCcI and bs — s in I, so that KC = 0 and bs = s. There-
fore from L = K4 Fb-} C it follows that L*= (K4 Fb4- C)*c K*PC.
Hence (I%)* = (K®»* and the theorem follows from the induction
hypothesis applied to K.

Note that no inequality bounding the genus & by the length of
the derived series is possible. Indeed, a metabelian Lie algebra can
have any genus greater than one. Let A4 be a cyclic F[x] module
with respect to a linear transformation T of A. Let L = A + Ft
and define t-a = T(a), t* =0, ab =0, for all ¢ and b in A. Then L
is 2-generated and hence has genus dim 4 — 1.

Recall that a Lie algebra L is said to be perfect if L*= L. The
remaining results of this section relate assumptions on the genus of
a Lie algebra to simplicity of the algebra.

ProrosITION 3. Let P be a proper perfect subalgebra of a Lie
algebra L over an infinite field F and x an element of L mnot in P.
Then genus{P, x) > genus P.
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Proof. Suppose (P, x) = P 4 Fx. If M minimally generates P
while M U {«} does not minimally generate (P, x> then genus {P, z)> >
genus P. If MU {#} minimally generates (P, x> apply Theorem 2,
[2] to <P, x> with B=P and C= Fz to conclude B= B*C K. Hence
P is an ideal in <P, 2>. Apply Theorem 4, [2] and derive a contradic-
tion to P perfect.

COROLLARY 2. Let S be a stmple subalgebra of a Lie algebra L
over an infinite field F. If genusS = genus L then S = L.

PROPOSITION 4. Let B be a subalgebra of a simple finite dimen-
storal Iie algebra S over any field F. If genus B = genus S then
B=S.

Proof. Suppose B+ S. Let S= B-+ C,C a subspace of S. If
dimension C is at least two by Theorem 2, [2] S has an ideal. If
dim C = 1 then B = K } F'b, otherwise K is an ideal, from which it
follows that S* = (K 4 Fb 4 Fc)*c K + Fbe # S, a contradiction.

COROLLARY 3. A simple Lie algebra of genusl over any field
has dimension 3.

Proof. There exist a, bin S generating a 3 dimensional subalgebra.
We state without proof Theorem 1, [8] by E. M. Patterson:

Let A be an algebra of genus %k and dimension = over an
arbitrary field F. If n = 3k + 3 there exist elements a, a,, ---, a;.,
of A, with s <2k such that the multiplication in A is given by
2y = ¢(y)x + @)y + Dk 6%(x, y)a;, where ¢ and + are linear func-
tions, 6* are bilinear functions, and a, ---,a, are generated by
@iy, **°y Qpise If F'is not the field GF(2) the theorem is also true
for n = 3k + 2.

If A is assumed to be a Lie algebra this result implies:

THEOREM 2. Let L be a Lie algebra of genus k and dimension
n over an arbitrary field F. If wm =3k 4+ 4 there exists an ideal J
with dim J < 2k such that genus L)J = 0. If F' is not the field GF(2),
the theorem s true also for n = 3k + 8.

Proof. The multiplication in L is given by zy = ¢(y)x + v (2)y +

ke gM(x, y)ay, s < 2k, ¢ and + linear functions, the ¢* bilinear funec-
tions, a,, ---, a;., fixed linearly independent elements of L. Suppose
further that the a* have been chosen so that the number of 6* = 0
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is minimal among all such multiplication rules for L.

If 2,y and the a; are linearly independent ay = —yx implies
#(x) = —+r(®). Then from ¢(x + a) = —y(z + a) and ¢(x) = —(x)
conclude by linearity ¢(a) = —+r(a). Hence ¢ = —+r. Take z, ¥,z

and the a, linearly independent elements of L. Then the identity
J(@,y,2) =0 implies 3% 0%z, y) é(a;) =0 (the coefficient of z).
Since this sum is zero for any =z, y linearly independent of the a’s
by bilinearity it is zero for all x and y in L.

Suppose for some g that ¢(a,) = 0. Define

b — {az — ¢(a,)"g(a)a, for A = p
’ a; for x = p.

Then zy = s(y)x — $(@)y = 21 , ' 0% (x, y)b, for all x and y in L. This

contradicts the choice of the al Hence for all X\, é(a;) = 0, i.e. the
a; span an ideal J. Obviously, genus L/J = 0.

COROLLARY 4. If L is a genusl Lie algebra over any field F
and dim L = 7 then L has a 1-dimenstonal tdeal with genus0 quotient.

Proof. By Patterson, Theorem 2, [8], the s occurring in the
last theorem can be taken equal to zero when &k = 1.

2. The structure of finite dimensional Lie algebras of genus
1 and 2

PROPOSITION 5. There are no perfect 4-dimensional Lie algebras
over any field F.

Proof. 1f genus L = 0 then L is not perfect by Theorem 1, [2].
If genusL =1 let L = B4 Fe, B a 2-generated subalgebra of L.
Apply Theorem 2, [2]. Either B= K and ¢ is not in L* or B =
K 4 Fb and I’ < K + Fbe.

It remains to show that a 2-generated 4-dimensional Lie algebra
cannot be perfect. Let a, b, ab, and a(ab) be a basis for L and
adjust b so that b(ab) is in Fa + Fb -+ Fab. Suppose a(a(ad)) =
«a + Bb + vab + da(ab) and b(ab) = a’a + B'b + v'ab. Then b(a(ab) =
Gab + Y'a(ab) and (ab)(a(ab)) = a(bla(ad))) — bla(a(ad))) = (a7’ —va)a +
BY — 78 + (a — 08 )ab + Falab) so that the whole multiplication
table is determined. Observe L is a Lie algebra if and only if the
parameters are so chosen that J(a, ab, a(ab)) =0 and .J(b, ab, a(ab)) = 0.
The first Jacobi identity is equivalent to (1) 2a — 68 =0, (2) 287 —
ad =0, 3) 288 —o(BY —7v8) =0, and (4) fa+ Ba’ — d(ay" —va'y = 0.
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Use 1) to rewrite the coefficient of ab in ab(a(ab)) as —a. Then find
that the second Jabobi identity is equivalent to (5) 28’y + &'d = 0,
6) ap' + &'+ 2v' (V'8 — ') =0, and (7) 2aa’ + 2vV'(Y'a — a'v) = 0.

First suppose o’ + 0. Replace ¢ by o = a’a + @b and obtain
with change of notation 5’ = 0. Then the equation (5) implies 6 = 0
and (4) that 8 = 0 and hence b is not in L.

Second suppose o’ = 0. First, we show if char F' = 2 then a = 0.
It would then follow that @ is not in L*. By (7) a7’ = 0 so that (4)
implies ag = 0, which implies by multiplication of (1) by « that
a = 0. Finally suppose a = 0. Then char FF =2 and (2) implies
0=0and 4) 8 =0. Here aa + Gb is the only linear combination
of @ and b to occur in IA.

THEOREM 3. Let L be a finite dimensional Lie algebra over awy
field F. Suppose genus L < 2. Then L is either solvable or contains
a simple subalgebra.

Proof. This theorem is proved by induction on the dimension of
L. Every Lie algebra of dimension less than 3 is solvable. Suppose
the theorem proved for all Lie algebras of genus k& of dimensions < #, k
fixed.

Let L be an (n -+ 1)-dimensional genus &k Lie algebra containing
no simple subalgebras. A minimal ideal I of L is solvable and hence
abelian. If L/I is solvable then L is solvable. Otherwise L/I contains
a simple subalgebra 7. Let S be the subalgebra generated by the
preimage of a minimal generating set of 7' under the natural map
of L onto L/I. S cannot be solvable for it has a nonsolvable homo-
morphic image. If S = L, S, and so L, would have a simple sub-
algebra. Hence S = L and so T = L/I.

Genus L/I < genus L since the preimage of a minimal generating
set of L/I is a generating set of L. Since all genus 0 Lie algebras
are solvable the theorem has been proved for £ =0,1. If k=2,
dim L/I = 3 by Proposition 2 and Corollary 3. Then dim L = 4 since
L is generated by two elements. Thus, by Proposition 5, L* = L so
that L* (and hence L) is solvable.

The very last argument fails for £ =3. For there is a 2-generated
5-dimensional perfect Lie algebra with a 3-dimensional simple quotient
algebra. For example: L = S+ A, with S the 2 by 2 matrices of
trace zero operating on the 2-dimensional underlying vector space of
the abelian ideal A.

THEOREM 4. If a finite dimensional genus 1 Lie algebra over
any field F contains a simple subalgebra S then S = L.



LIE ALGEBRAS OF GENUS ONE AND GENUS TWO 597

Proof. Suppose 0=+ in L — S. Then dimdS, > = 4. There-
fore (S, x)* = (S, ) by Proposition 5 and hence equals S.

Consider D, on L*. Let m(t) and c¢(t) denote its minimal and
characteristic polynomials, respectively. Then deg m(t) < 2, otherwise
L? would have a 2-generated subspace of dim > 2, contradicting
genus L = 1. The classical decomposition of L? into cyclic subspaces
for D, then contains a 1-dimension subspace. Therefore, a linear
factor, ¢ — A, which divides m(f). Hence c¢(t) = (¢t — N\)°. It follows
that I? has two eigenvectors for \, their product cannot be zero
since L? is perfect and 3-dimensional, hence corresponds to eigenvalue
2x. Thus N =0, x is central. The argument applies to x + a for
any a in L?, a contradiction.

LEMMA 1. A genus2 Lie algebra L over any field with dim L >5
contains a proper genus 2 subalgebra.

Proof. If a genus 2 Lie algebra L has more than six generators
then there exist a, b, ¢, d with dim<a, b, ¢, &> = 6.
Suppose a, b, ¢, d, ab, cd is a basis for A. Consider

ac = aa + Bb 4+ ve + od + pab + kcd .

If £t+0, a,b, and ¢ generate a genus 2 subalgebra. If £+0, a,d, ¢
generate a genus 2 subalgebra. Hence ac = aa + ve, or done.
Similarly, bc = 8,0+ v.¢, ad = a,a + d.d, bd = 8;b + d.d, or done. Then
a + e, b, and d generate a genus 2 subalgebra.

PropPoSITION 6. A 5-dimensional simple Lie algebra over any
field is 2-gemerated.

Proof. By Corollary 3 genus L =+ 1 and by earlier work genus
L = 0. There remains the possibility that L has genus 2, i.e., L is
minimally 3-generated. So suppose a, b, and ¢ minimally generate L.

If B is a 4-dimensional subalgebra of L then B has genus less
than 2 by Proposition 4.

Suppose «, b, ab are linearly independent. If ac and bz are both
in Fa + Fb+ Fe¢ + Fab then so also is (ab)e = a(be) — b(ac); for a(ab)
and b(ab) are in Fa + Fb + Fab. Therefore with a change of nota-
tion, if necessary, L has basis a, b, ¢, ab, cb.

If ac = aa + Bb + ve + oab + pcb replace a by a + ¢#b and ¢ by
¢ — 6b and find to avoid L being 2-generated that ac = a’a + 7'c.
By symmetry between a and ¢ it can be supposed that ac = ¢e¢c, ¢ =0
or 1.
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Let

a(ab) = aa + Bb + vab ¢(eb) = pe + 0b + kcb
b(ab) = a’a + B'b = Y'ab b(cb) = t'c + 0'b + K'cb
c(ab) = a”’a + B"b + ¥"ab + p’¢c + £"¢b .

Suppose ¢ = 0. To avoid ¢ in <a, b + ¢) from a(a(b + ¢)) conclude
B8 =0 and from (b + c)(a(d + ¢)) conclude £” =0. To avoid a in
{c, b+ ay from ¢(c(b + a)) conclude 6 = 0 and from (b + a)(c(b + a))
conclude v = 0. Then J(c, a, ab) = 0 implies g8’ = 0. Either 5’ = 0
or 0’ # 0 because b is in L? say g +# 0 without loss of generality.
Replace ¢ by ¢ — 8/~'0'a and find that it can be supposed that ¢’ =0,
hence ¢ =0. J(a, b, ab) = 0 implies « = ', vy =10, and v = 0. From
b((a + ¢)b) conclude %" = 0. Note c(ab) = a(ch). Calculate (cb)(ad)
using J{(e, b, ab) = 0 and using J(cb, a, b) = 0 find that g = —2¢", so
that char F'-# 2 and 2a” = 0; hence &’ = 0. Then the subalgebra
Fe¢ 4+ Fbe is an ideal of L because each generator carries it into
itself.

Suppose ¢ =1. From (b + ¢)(a(d + ¢)) conclude 7" = 1. Note
a(chb) = (ac)b + ¢(ab). Calculate the coefficient of ¢b in J(c, a, ab) = 0
and find that @+ v =1. Then ¢ is in <a,b + ¢) follows from
a(a(d + ¢)).

LeMmA 2. Let L be a 5-dimensional Lie algebra over any field
F. Let B be a proper ideal of L containing a proper simple sub-
algebra S. Then genus L = 3.

Proof. S must be genus 1 and 3-dimensional and hence B must
be 4-dimensional and have genus 2.

Let a, b, ab, and a(ab) be a basis for B. Some linear combination
of a and b is an element of B®:. Suppose b + \a is an element of B*
for some \ in F. If ac=a"a+p"b+7"ab+d"a(ab) set ¢’ =c—06"ab—"""b
and find that a¢’ = aa + gb. If 8+ 0 a and ¢’ generate L. If =10
let ¥ = b+ ¢'. Claim: a and b generate L. Since the multiplication
table of B is determined by the products b(ab) and a(a(ab)) b occurs
in one of these products. The algebra generated by a and & contains
ab and a(ab) because ab’ = ab + aa and a(adb’) = a(ad).

Suppose b + e is not an element of B* for any ) in F. Suppose
a, b, chosen so that b(ab) = a’a+7'ab and (x)a(a(ad)) = aa+vab+oa(ab).
Then S = Fa + Fab + Fa(ab).

Observe if s, t, and st are a basis of a simple Lie algebra L with
s(st) = as + Bt + st and i(st) = a’s + Bt +7'st then from J(s, t, st) = 0
it follows that v(a’s + £'t) + ¥'(as + Bt) = 0. This is a linear relation
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between the contributions of s(st) and #(st) to F's + Ft and therefore
v =0 and v’ = 0, otherwise S would not be perfect.

Therefore since a and ab generate S from (x) it follows that 6 =0
and from (ab)(a(ad)) = v'aa+v"vab+ (v'0 —7v")a(ab) that v'6 —~" = 0, which
implies v'=0. Hence (ab)(a(ab)) =0, contradicting the simplicity of S.

THEOREM 5. Let L be a finite dimensional genus 2 Lie algebra
over any field F. Suppose L contains a simple subalgebra. Then
dim L =4 and L*? is simple 3-dimensional, Furthermore, if char F =+ 2
then L = L* + Fz, Fz the center of L.

Proof. Lemma 1 and Proposition 4 imply a simple genus 2 Lie
algebra is at most 5-dimensional. Proposition 5 implies there are no
4-dimensional simple Lie algebras and Proposition 6 that there are
no genus 2 5-dimensional simple algebras. Therefore L must contain
a simple genus 1 Lie algebra S.

Suppose B is a 5-dimensional subalgebra of L containing S. Then
genus B < genus L and hence B is not simple. Let I be a proper
ideal of B of maximal dimension. By Lemma 2 and Proposition 1,
I cannot contain S so it follows that B =S 4+ I. S has dimension 3
so that if B=S@ I then S would be an ideal of larger dimension
than I. This means that I cannot be trivial as an S module and
hence I must be abelian since the other 2-dimensional Lie algebra
has a solvable derivation algebra. Since S* =S the elements of S
must operate on I as transformations of trace 0. Considering that
S has dimension 3 while I has dimension 2 we see that B is iso-
morphic to the semi-direct sum of a 2-dimensional abelian Lie algebra
V and the Lie algebra of transformation of trace 0 on V.

This being the case the characteristic of F' cannot be 2 since
then the 2 x 2 transformations of trace 0 are solvable.

Let V= Fe+ Ff and a = <(1) _(1)>, b= <88), and ¢ = (85) be a
basis for S. Then a + b and ¢ + 2¢ + f generate B. To see this
observe (a + b)(c + 2¢ + f) — (¢ + 2¢ + f) = ¢ — a. Therefore genus

B = 3, contradicting Proposition 1.

If char F'== 2 then S has a basis so that a(ab) = ab and b(ab) =
Ba (Jacobson, page 14, [4]). Let L =S+ Fr. Then za = d'a +
B'b+7'ab and xb=a"a+L"b+v"ab. Set z=z+7v'b—7"a+a'F'ab, then
za=a’a and zb=a"’a+pB"b. Thus z(ab)=(«'+5")ab. From J(z, a, ab)=
0 conclude & = 0 and «” = 0 and from J(z, b, ab) = 0 that 8" = 0.

3. A characterization of nonminimal genus 1 and 2 Lie
algebras. A Lie algebra L will be called a minimal genusk Lie
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algebra, if genus B = genus L, B a subalgebra of L, implies B = L.

Suppose L is a finite dimensional Lie algebra with a k-dimensional
ideal J with genus L/J = 0. Then genus L < k because if dimL — £k
elements were to generate L their cosets would generate L/J. It is
surprising that conversely nonminimal finite dimensional genus 1l and
2 Lie algebras always have ideals J of dimension 1 and 2, respectively,
with genus 0 quotients, except possibly for F' = GF(2).

There do exist solvable minimal genus1 and 2 Lie algebras over
some fields without such ideals. Indeed, the construction of metabelian
Lie algebras in section one of arbitrarily high genus, provide such
an example whenever A can be also taken as an irreducible F[x]-
module. This is equivalent to requiring that the characteristic poly-
nomial of T is irreducible.

It has been shown that a genus1 Lie algebra L, dim L = 7, had
a 1-dimensional ideal J with genus L/J = 0 (Corollary 4). The next
theorem shows this to be the case for dim L = 4, which is clearly
the best possible result, since there are 3-dimensional genusl simple
Lie algebras over every field.

THEOREM 6. Let L be a nonminimal finite dimensional genusl
Lie algebra over awy field F. Then L has a 1-dimensional ideal J
with genus LJJ = 0.

Proof. Let L =B+ C,C a subspace and B a 3-dimensional
subalgebra. Apply Theorem 2, [2] to conclude B =<a, by with (1)
ac — ¢, be in B for all ¢ in C, B*C Fb + Fab, or (2) BCc B. (1) If
ac=c+ da+ Bb+ Yab, ¢ in C, then ac’ =¢ + (8 + ¥')b, where
¢ =c¢c—7'b+aa, so that ac’ =¢', otherwise genus<a,c> > 1.
Therefore C can be taken so that ac = ¢ for all ¢ in C. Suppose
be = aa + Bb + vab. Then b(c + va) = aa + Bb and therefore a = 0,
otherwise genus <¢ + va, by > 1. Next (a + b){c + va) = (¢ + 7a) —
va + Bb so that g = —v, ie. bc = Qb — ab). If a(ab) = vb + oab
then set ¢/ =c¢+ab— (0 —1)b and conclude from ac¢’ =¢ + (v +d—1)b
that 6 =1 — 7.

Set J = F(b — ab). Then a(b — ab) = —v(b — ab) so that aJ CJ.
Next, (ab)c = —B1 +7)(b— ab) so that ¢J CJ. J(a, b, ab) = 0 implies
b(ab) = o’ab because a(ab) and b(ab) are in F'b 4 Fab. Then

@ + o) (ad + ¢)) = blab) + (b — ab)e

and must be in F(b+c)+ Fa-+ F(ab+ ¢) to avoid genus<b+e¢, a)>1.
Hence o' = 0. Therefore bJ —J and J is an ideal of L.

For ¢,d in C, e¢d is either an eigenvector for D, for the eigen-
value 2 or ¢cd =0. Note a is a candidate if char FF=2. If ed=10', b
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in B and not in Fb -+ Fab, then every term of the derived series of
L would contain C + Fa modulo Fb 4+ Fab, contradicting L solvable
by Theorem 4. If v+ —1, C+ Fa + F(ab + vb) + F(b — ab) is an
eigenspace decomposition of L for D, and e¢d must be in J since
a(ab + vb) = ab + vb. If v = —1 then Fb+ F(ab — b) is an inde-
composable eigenspace for D, (ab = b + (ab — b)). Again ¢d must be
in J. Thus genus L/J = 0. (2) Clearly C can be taken so that ac
and be are in Fa + Fb for all ¢ in C. Hence to avoid a genus?2
subalgebra, ac = aa and bc = ab. If a0 replace <a, by by {a+c¢, b>
reducing this case to (1). To avoid a genus 2 subalgebra from
(@ + ¢)((@ + ¢)b) and a(a(d + ¢)) conclude a(ab) is in Fab and from
b((a + ¢)b) and (b + c¢)(a(b + ¢)) that b(ab) is in Fab. Thus L’ = Fab.
Hence if dim C = 1 the proof is complete.

Suppose ¢, d are linearly independent elements of C with ¢d =
¢+ x, ¢ein C, x in <{a, b>. Note from (¢ + ¢)d one may suppose e is
in Fe, and from c(a + d) that e is in Fd, otherwise this case is
reduced to (1). Hence it may be supposed that e=0. If z=
aa + Bb + vab then (¢ — va)(d + b) = aa + Bb so that « == 0 would
imply genus <{¢ — va,d + b, by > 1 while g8+ 0 implies genus {¢ — 7a,
d+ b,ay>1. Thus J= L* = Fab.

The proof of Theorem 6 provides an excellent model for the
proof of the next theorem. It should be remarked that a simpler
proof would be possible for the next theorem if fields of char2 and
GF(3) were excluded. We were unable to handle the case when
F = GF(@2).

THEOREM 7. Let L be a nonminimal finite dimensional genus 2
Lie algebra over any field F, except GF(2), the field of two elements.
Then L has a 2-dimenstonal ideal J with genus L/J = 0.

Proof. 1. Suppose there exists a subalgebra B of L with
dim B = 4 and genus B = 2. Let C be a subspace complement of B
in L. Theorem 2, [2] can be applied. There are three cases to be
considered. There exists a basis a, b, ab, a(ab) of B such that for
every ¢ in C:

(1) ac and bc—c are in B, which b(ab) = d,a+d.ab and a(a(ab)) =
Yo + 7ab + v.a(ab).

(2) ac —c and bc are in B, B*C Fb + Fab + Fa(ab).

(8) ac and bc are in B.

(1) Let be = ¢ + a’a + Y'a(ad) and ac = aa + Bab + va(ab), where
¢ has been taken so that bec does not involve b or ab, while if ac
involved b then genus<a, ¢ — 8b — vab)y > 2.

Set ¢; =c¢— (v +NY)ab— (B + N7 +NY)1 —6))b. Then (a+ \b)c;
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can be expressed as a linear combination of ¢;, a + b, and b. The
coefficient of b must be zero, otherwise genus<a + b, ¢,> > 2. There-
fore (x) Mv'(1 4+ 06, — 0,)) + M’ + (1 + 6, — 6)) + (8 — «) =0 for all
nonzero \ in F.

The candidate for J is Fl(a + ab) + Fa(ab). To show that J is
an ideal with genus L/J = 0 it suffices to show (1) 6, =1+ d, and
(2) 7% = . This is because (1) implies b(a + ab) = d,(a + ab) and
always b(a(ab)) = 0,a(ab) by J(a, b, ab) = 0, while (2) implies a(a(ab))
is in J. Hence J is an ideal in B. Also, (1) implies «’=0 and a=2
from (x) because F == GF(2). Then bc — ¢ and ac are in J. The
Jacobi identities J(a, b, ¢) = 0, and J(a, ab, ¢) = 0 then imply (ab)e
and (a(ab))c are in J. Therefore J is anideal in L. If cd=e+ ra+
pb+J, ¢,dye in C,j in J, then conclude from J(b, ¢, d) = 0 that
¢d =7 + pb (calculate modulo J). Similarly J(a, ¢, d) =0 implies
¢ = 0. Thus genus L/J = 0.

J(a, b, a{ab)) = 0 implies (ab)(a(ad)) = (70, — 7d)a + Y.ab. From
the coefficient of a(ab) in J(a, ab, a(ab)) = 0 conclude 27, = 0. From
J(b, ab, a(ab))=0 conclude 7v,0,=0 and 2v,0,6,=0. Note, also J(a, b, ¢)=
0 implies (abyec = (@ — B3, + VY )a + (@ + B — B, + 7Y )ab + (v — v6, +
7.7 )a(ab).

Suppose bc = ¢ + &’a + Y'a(adb), v’ # 0, and ¢ cannot be chosen so
that v* = 0. Then §, = 1, otherwise take ¢’ =c¢ + (1 — 6,)7" Y'a(ab).
Note (1) holds unless F'=GF'(3) because of (x) and because F=GF(2)
has been excluded by hypothesis. Suppose for the moment that
d,# 0. Then v, =0, v, =0, and v, =0. From the coefficient of ab
in J{(a, ab, ¢) = 0 conclude « =0, and from the coefficient of a that
B = 0, contradicting (). To establish (2) calculate J(b, ab, ¢) = 0 and
find that 2a + v, = 0 and 2« + v,Y' = 0. Multiplication of the last
relation by 2 implies 2o = 0 since 2v, = 0. Therefore v, = v, = 0.

Suppose bc = ¢. The (x) implies &« = B. To avoid ¢ in <b, a +¢)
conclude from b((a+c)b) that (1) holds. Then (ab)c = (a—ad,)(a+ab)—
vé,a(ab). J(b, ab, ¢) = 0 implies 2a—ad, = 0. Use 7,0, = 0, ad, = 2«,
and 2v,=0 to find because of J(a, ab, ¢) = 0 that a(ab)c = —v(v,—7V:i0)a—
Y(Yo + 7,0,)ab — aalab). Set ¢ = a+xe. Then a'b = ab— e, a'(a'd) =
Naf{ab), where N = 1—\(y—73,), and a’(a’(a'd) = N (v, + MY (V,—7i00))a +
N (7 MY (Y, + 700))ab + N (v, + M@)a(ab). Finally, the discriminant
of a',b,a’b a(a'b), a'(a'(a'b))) with respect to a,b,ab, a(ab), ¢ is
NE[(7, — 7.) + 2\Y.0,], which must be zero for all A in F' to avoid
genus {a’, by = 8. This establishes (2) with the possible exception
of FF=GF(3). Here v,=0 and 7,00, = 0. Done unless ¢, =0, in
which case 6, = —1. Then N = 1—2a and v,—Y,+2\Y,0, = 7.(1—2)\)
so that there exists a choice of A so that v, = 7,.

The remaining cases are relatively easy.
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(2) Take C so that ac=c¢ and suppose bc=a.a-+B3,b+7.ab+4d.a(ab)
for all ¢ in C. Note if b(ab) = ;b + 0,ab + d,a(ab), with 4, = 0,
setting o = b — 0,0 reduces this case to (1). Hence suppose J, = 0.
Let a(a(ab)) = 7,0 + 7,.ab + 7.a(ab).

Set ¢ =¢ + alab) — (v, — D)ab — (v, + v, — 1)b. Then ac¢’ = ¢ +
Ve + v + 7, — 1)b. Therefore (1) v, =1 — 7, — 7.

Set ¢; = ¢ — Ad,ab — MO, + v, — A3, 0)b. Conclude from (a + Ab)e,
that 2) 8. +v. + 0, =0 and (3) «, + 06.(6, + 6,) = O.

Consider (b + ne¢)(a(b + ne)). Note to avoid ¢ in <a, b + Ac) the
sum of the coefficients of b, ab, and a(ab) in the linear expression of
the product under consideration must be zero. This implies (4)
0, + 0, = 0. Hence (5) a, = 0 follows from (3).

Set J = F(b — ab) + F(ab — a(ab)). Then (1) implies aJcJ and
(4) implies b(b — ab) is in J, from which it follows b{(ab — a(ab)) =
b(ab) —a(b(ab)) is in J. Next, be is in J because of (2) and (5). The
Jacobi identities J(a, b, ¢) = 0 and J(a, ab, ¢) = 0 then imply e¢JJ.
Thus J is an ideal in L.

Suppose ¢cd =e+va+pb+j,¢,d,e in C,j in J. The J(a, ¢, d) =
0 implies ¢ = 0 and ¢ = 0, while J(b, ¢, d) = 0 implies v = 0. There-
fore genus L/J = 0.

(8) Suppose b(ab) = d,a + 6,b + d,ab and ala(ad)) = v, + 7,0 +
7.0b + v.a(ab). Take C any complement of B so that ac = a,a and
bc = B.a + 7.0 + d.(ab) for all ¢ in C.

There exists a nonzero A in F so that o = a 4+ \¢, b, a’b, and
a’(a’b) are linearly independent because F = GF(2). Then «, =0
because a'c = a0’ — \a,d, otherwise this case would be reduced to
(1) or (2). Repeating this argument for ¢ = ¢ + a{ab) — v;ab — 7.
from ac¢’ conclude v, = 0 and v, = 0.

If v, = 0 replace b by b + ¢ to reduce this case to either (1) or
(2). From (b + ¢)(a(db + ¢)) it follows that 6, = 0. From the coefficient
of a(ab) in J(b, ab, ¢) = 0 conclude B, = 0.

Note Fa'b + Fa'(a’b) = Fab 4+ Fa(ab), @’ chosen as above. Then
from b(a’d) conclude o, = 0.

Set J = Fab 4+ Fa(ab). If dimC =1 the proof of this case is
complete. If not, suppose ¢ and d are linearly independent elements
of C, with ecd =¢+ ¥, ¢ in C, ¥ in B. Note dim<b + ¢, a)> and
dim<b + d, ay = 4. Then in order to avoid a reduction to a previous
case conclude from (b + ¢)d that e is in Fe and from (b + d)c that ¢
is in Fd. Hence ¢ is zero. If bc=.a(ab) then (a(ab))c=".a(al(a(ab))).
Therefore b(cd) = (be)d — c(bd) = 7.(a(ab))d — vi(a(ab))c = 0.  Clearly
a(cd) = 0. Thus ed is in the center of B.

Suppose = is a nonzero element of the center of B. Then z =
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va + b + £ab + na(ad), n + 0, otherwise ax = 0 and bxr = 0 imply
2 =0. From bxr =0 conclude 6, =0 and hence v =0. If ed =z,
¢+ 0 then (b + ¢)d = pe + "', b in <b + ¢, a), contradicting genus
L = 2. Therefore L’ = J.

II. Let L = B+ D, D a subspace, B a subalgebra with genus
B =2 and dimB =5. Suppose L has no genus 2 4-dimensional
subalgebras. Apply Theorem 2, [2] to conclude (1) for some generator
of B, say, b,bd — d is in B for all d in D, and for the remaining
generators a and ¢ of B ad and c¢d are always in B or (2) BD cC D.
In (1) a further normalization is desirable Either a, b, and ab or
b,c¢, and cb are linearly independent, say a,b and ab are linearly
independent. If ¢b depends on a, b, ab, ¢ replace b by b+ ¢ and
obtain with a change in notation that a, b, ¢, ab, cb span B. Note
B*C Fa + Fc+ Fab + Feb. (1) D can be taken so that bd = d for
all d in D. Suppose b(ab) = 7@ + v,ab. Conclude from b(d -+ ab —
(1 — v)a) that v, =1 + v,. An exactly analogous argument leads to
b(eb) = vie + (1 4+ v))eb. Then v, = v, = v because b((a + ¢)b) must be
a linear combination of @ + ¢, b, and ab + ¢b. Next a(ab) = d,adb
because a(ab) and b(ab) are in Fa -+ Fab by J(a, b, ab) = 0. Note
® + na)(ad + na) = blad) + ra(ab) = va + (L + v + A3)ab. Therefore
0, = 0 since there exists \ in F' such that a, b + \a, ¢, ab, ¢(b + \a)
are linearly independent. Analogously, c¢(cb) = 0.

Suppose ac = Ba + ve + dab + pech.  For any mnonzero A in
F(a + \d)c must be a linear combination of a + \d, ab — \d, b, ¢,
and bc. Therefore « = d. Analogously, v = ¢t. The same argument
applies to c¢((a + Ad)b). This implies c(ad) = &'(a + ab) + ¥'¢ + 'cb.
Analogously, a(ch) = a”a + g"ab + ¥"'(¢c + ¢b). Set J = F(a + ab) +
F(c + ¢b). Then bJ<J. Then J(a,b,¢) =0 implies v = ¢ and
o’ = g", i.e. ¢(ab) and a(cb) are in J. It is immediate that J is an
ideal in B.

Suppose ad = a,a + 8,0 + viec + 0,ab + peb and cd = aa + B.b +
7,¢ + 6,ab + t,cb. For any nonzero A\ in F such that 1 — Ay == 0 set
d, =d+ NI —=)e + 6, + VA — v))uaa. Then (b + ra)d, =
d; + 7Gb + Moy, — 6))a + My, — p)e.  Therefore v, = g, and AB, =
a, — 6,. Analogously, «, =0, and \G, = 7, — .. Hence ad and cd
are in J with the possible exception F = GF(3), F = GF(2) being
excluded by hypothesis. To handle this special case note first (ab)d =
ad + (ad)b by J(a, b, d) =0. Then J(a, ab,d) = 0 can be rewritten
as the relation 2(1 + v)ad + (2 + 7)(ad)b = b((ab)d). Here a b term
can occur only in 2(1 + v)ad. Done, unless 2(1 + v) = 0. The above
relation now simplifies to (ad)b = b((ab)d). Note b(ab) = —a, b(ch) =
—c¢. Calculate both sides of this last relation and find a, = v, =
0,=p, =0. Then B, =0, otherwise genus <a,d, ¢)> > 2. A similar
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argument implies ed is always in J. It follows that dJcJ. Hence
J is an ideal in L.

Ifde=f+aa+ pb+vc+34,d,e, fin D, j in J, then J(b, d, e) =
0 implies de = Bb + j. If B =+ 0 then L/J would not be solvable for
every term of its derived series would contain (D 4+ Fb)/J. Hence
de is in J. Therefore genus L/J = 0.

(2) Suppose @ and ¢ chosen so that ac is in Fa + Fe. Then
take D so that bd = \;b. If )\, # 0 this case reduces to last one
since there exists A in F' so that genus <b + \d, a, ¢> = 2. Suppose
bd =0 for all d in D. If blab) = 6,0 + 6,b + 6,ab then repeat this
argument for b and d + ab + d,a. Conclude b(ab) = d,ab. Likewise
b(ch) is in Fecb. Suppose ad = aa + Bb + v¢ + dab + pcb. Repeat
the argument for b + Aa and d + \oa + Ap¢e and conclude ad is in
J = Fab + Feb. Similarly, ¢d is in J. It now follows immediately
that ac = 0 from (a + d)c a linear combination of a + d, b, ab, ¢, ¢b
and a(c + d) a linear combination of a, b, ab, ¢ + d, ¢b. Thus (ab)c =
a(be) by J(a, b, c) = 0. Clearly genus<a, b, ¢ +dy>2 if a{bc) involved
¢, while genus<a, b, ¢ +d>>2 if a(bc) involved ¢, while genus<{a + d,
b, ¢> > 2 if (ab)c involved a. Therefore a(bc) and (ab)c are both in
J. J(a, b, ab) = 0 implies a(ab) = v,b + v,ab. Consider a(a(d + ¢)) to
conclude v, = 0. Likewise J(e, b, cb) = 0 and e¢(c(db + a)) forces c(cb)
to be in J. Suppose de = f + aa + 8b + ve + j,d, e, f in D, j in J.
Consider (a +xd)e. To avoid a previous case or genus L >2 conclude
f=0 and @«=0. It has been shown that ad is in B? hence (a+\d)e
is in {a + N\d, b, ¢)) = J. Therefore 5 =0 and v = 0. Thus J = L’

4. The classification of genus 1 and 2 Lie algebras.
PropoSITION 7. If L s wnilpotent then genus L = dim L2,

Proof. The result follows from the fact that the span of any
minimal set of generators intersects the derived algebra in zero.

PropPOSITION 8. Let L be milpotent with L* = Fz. Let pt be the
alternating bilinear form defined by xy = p(x, y)z for all © and y in
L. Then the isomorphism class of L 1s determined by the integers
dim L and rank p.

Proof. Suppose + is an isomorphism of L onto ++(L). Then if
y(#) is defined by @)y () = v ()Y (x), v(W)v() from (zy) =
oz, y)z) = p(z, y)9(z) it follows that g and +(x) are equivalent.

Conversely, suppose that V = W - Fz is a vector space over F
and that ¢ and f# are two equivalent bilinear forms on V x V, i.e.
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m(x, y) = f(T(x), T(y)) for a linear transformation 7' of V. Turn V
into an algebra (V, -) over F' by ay = ¢(x, y)z and an algebra (V, *)
by T(x)*T(y)=f(T(x), T(y))T(z). Then T is an isomorphism of (V, -)
onto (V, *) because T(xy) = T(tu(x, y)2) = 11(w, 1) T() = T(x), TW) T(2)=
T(x)*T(y).

ProrosiTION 9. A nonnilpotent Lie algebra with dim L* =1 1s
the direct sum of an abelian ideal and a 2-dimensional non-abelian
ideal.

Proof. Let L} = Fz. If Lz = 0 then L is nilpotent. Take x so
that 2z = 2. If xy = vz then 2(y — v2) = 0. Thus the inner deriva-
tion D, decomposes L into 1-dimensional eigenspaces all with eigen-
value 0 except for Fz corresponding to eigenvalue 1. The proposition
follows from the fact that the product of two eigenvectors is again
an eigenvector.

PROPOSITION 10. Let L be a genus 1 Lie algebra with a 1-
dimensional ideal J having monabelian genus 0 quotient. Then

(1) I? is abelian and either

(@ L=L1*+ F», L* =B+ Fa+ Fz with 2 =2, 2a =a + 2,
xb = b for all b in B. or

(by L=A+Fz+ Fx with xzz =22, %1, az=0 and za = a
for all a in A. or

(2) L is wmilpotent genus one, L* = A + Fz, L = L*+ Fx, with
xz = 22 and xa = a for all a 1n A.

In (b) « is characterized so that )\ determines the isomorphism
class of L, while in (2) L* determines the isomorphism class of L.
The algebras described in (a) and (b) are never isomorphic because
D, has an indecomposable 2-dimensional eigenspace in (a) and not
in (b).

Proof. Let L = A+ Fx + Fz, where 2z = \2, az = 5,2, za =
¢ + a2, and ob = ¢, ,2z for all a,b in A. For any a in A4, B3, =0,
because a is in L? modulo F% and therefore the trace of D, on F%
is zero. From J(x, a, b) = 0 conclude (2 — \)t,, = 0

If x =1 some «a, # 0 otherwise L has genus 0. Take a so that
a,=1. Then Fa+ F(xa—a) is an indecomposable eigenspace for D,.

If » = 1 replace a by a + (1 — \)"'a,z and find that za = a.

The algebra (1) (a) is obtained when » =1; (1) (b) when X =1
and ¢,, =0 for all ¢« and b in A, and (2) when N = 2 and some
Moy # 0.

The nonminimal genus 1 Lie algebras have been classified. A
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minimal genus 1 Lie algebra has dimension 8 and the classification
of all such algebras is discussed in [4], pages 11 through 14.

The next two propositions furnish the key to the classification
of the genus 2 Lie algebras.

PROPOSITION 11. Let M be a commutative associative algebra of
2 by 2 matrices over a field F. Then dim M < 2. If dim M= 2
then M has an identity.

Proof. Let E;; denote the 2 by 2 matrix with a 1 in the <th
jth spot and zeros elsewhere. The only two distinct E;; to commute
are K, and E,.. If dim M >2 no spot can always be zero. Hence

. _ (18 _(0g _(0B" '
M contains A = (07>, B = (1“/’>’ and C = (07,,>. If v %0 take
v =0 and v = 0 and it follows AB =+ BA, while if " =0, g7+ 0,
it follows by taking 8 =0 and & = 0 that BC = CB.
If dim M = 2 then dim<{M, I> = 2, since {M, I> is commutative.

Hence I is in M.

PROPOSITION 12. Let M be a 2-dimensional commutative associa-
tive algebra of 2 by 2 matrices over any field F.

If char F'# 2 then M has a basis [ and T with 7* = gI, 8 in
F. If char FF = 2 then if M has a basis I and T with T* =6T + BI,
0#0, then M contains no S with S*= g'I, and furthermore T may be
taken so that ¢ = 1.

If M; is such an algebra with basis I and T, T} = g8,1, t =1, 2.
Then M, and M, are isomorphic if and only if 8, = AG,, A a nonzero
element of F. If char =2 and T? =T, + B.I, 1 =1, 2, then M,
and M, are isomorphic if and only if there exists g in F with
#2+#+181+182:0'

Proof. If @: M,— M, is an onto isomorphism then I and T a
basis of M, go into I and ®(T) a basis for M, Therefore, T* =
oT + pI implies @(T) = op(T) + pI. If also (1) = 6,9(T) + B.1.
Then (0 — d)P(T) = (B, — B) implies 6 =4, and B = B,. Hence to
prove the proposition it is only necessary to find a canonical choice
for T within M.

Suppose T* =0T + pgI. Set S=\T + pI, »+ 0. Then S*=
o+ 208 + (BN — N — 1.

If char F =2 and 6 = 0 then B can be adjusted by squares as
in the char '+ 2 case. If 0+ 0 no allowable choice of A and g
gives a zero coefficient of S; hence choose A=6""'. Then the coefficient
of I becomes f# + ¢+ @67%. Here if I and T, and I and T, were
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basis for M with 6, and 6, nonzero then there would exist g, and g,
such that (2 +p, + 8 =24+t + B, ie. L2+ p+ 6+ 6 =0 for
on =t + Moo

A nilpotent algebra A is said to have index m if A" = 0 while
An—H — O.

A genus 2 index 2 nilpotent Lie algebra can only be decomposed
into two nonzero genus 1 Lie algebras. The only decomposition of
a genus 1 Lie algebra is the decomposition into its center and an
indecomposable genus 1 nilpotent algebra.

The classification and isomorphism of problems for genus 1
nilpotent Lie algebras are both solved by considering the bilinear
form introduced in Proposition 8. A generalization of this approach
to the genus 2 index 2 nilpotent Lie algebras leads to a solution of
the isomorphism problem over some fields, but never to a solution
of the classification problem. This point is clarified by introducing
the definition: L = L, + L,, L, and L, subalgebras of L, L, L,c I?
and [L, L] =0. If L =L + L, implies L < L* or L, < L* then L is
said to be (*) indecomposable. The only (*) indecomposable genus 1
nilpotent Lie algebras are Fa with « in L — I* and a 3-dimensional
genus 1 nilpotent Lie algebra (L = Fa + Fy + Fz with [=, y] = 2).
The number of 3-dimensional summands in L is counted by one-half
the rank of g (as introduced in Proposition 8). The situation for
the genus 2 index 2 case appears to be quite different. We are
unable to describe the (*) indecomposable Lie algebras in this case.

Let g, + L* «+-, pt, + L? be a basis for L/L*. If L= 0 then
the multiplication in L can be specified by an » by » skew symmetric
matrix M = (uy;), u; in L* and defined by [z, ;] = w;;. A change
in basis for L/L* leads to the replacing of M by DMD! D a non-
singular matrix with entries in F.

Ordinary decomposition of M is equivalent to (*) decomposition of
L. The classification problem for the genus 2 index 2 nilpotent Lie
algebras reduces to finding a canonical form for the matrix M. An

1 -1 1
r
1 .
to-1
1

FIGURE 1
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infinite number of reasonable candidates for (*) indecomposable algebras
are described by matrices of Figure 1 with Fu 4 Fv = L% k=1,
r=1.

We have not found a calculable property of M invariant under
M— DMD!, D a nonsingular matrix with elements in F, which
would distinguish indecomposable from decomposable M.

The classical theory of regular pencils of skew symmetric matrices
leads to a partial solution of the isomorphism problem for genus 2
index 2 nilpotent Lie algebras. We associate to M the regular
pencil of symmetric matrices 4 = A + B, where M = v,A + v,B and
the notation and terminology is that of Gantmacher [3]. Theorem 6
and its corollary, p. 91 and p. 92, vol. II [3], when applicable to F,
give a criterion in terms of the elementary divisors of 4. A change
in the choice of a basis v, v, of L* is equivalent to substituting
ax + By for x and vx + oy for y, with ad — By =0, a, B, 7,0 in F.
Once the elementary divisors associated to L by writing M =
1A + v,B and the elementary divisors associated to L’ by writing
M’ = v}A + v,B have been calculated, the isomorphism question for
L reduces to calculating whether there exists a substitution replacing
x by 2 + v and y by % + y carrying the elementary divisors associated
with L into those associated with L'.

PROPOSITION 13. Let L be a nilpotent genus 2 Lie algebra over
any field F. Then either the index of L is 2 or L= C+ Fa-+Fb+ L2,
with I} = Fu + Fv, C+Fu a genus 1 nilpotent subalgebra, C(Fa +
Fo+I1»=0,au=0, av = u, ba = v, bu = 0, and bv = 0. The iso-
morphism class of L is determined by dim L and that of C + Fu.

Proof. Let L* = Fu + Fv, which is possible by Proposition 7.

Let M{(%B), xu = au + Yv, xv = Bu + ov for some x in L}. Then M
is a commutative associative algebra which must consist of nilpotent

transformations and hence dim M <1 (Proposition 12). Therefore

M = (0) and index L=2 or M= F(g%) for u, v a suitably chosen

basis of LA,

If index L > 2 there is an element a of L determined up to L?
by requiring au = 0 and av = u. Note if b} =0 and ¢L’* = 0 then
J(a, b, ¢) = 0 implies bc is in Fu. Therefore there must exist b in
L such that »L* = 0 and ®a = v + \u, otherwise v would not be in
L. Set b="b"+ v and find ba =v. Let C be a complement of
L* + Fa + Fb in L such that C(L* + Fa) = 0. Note b is also deter-
mined up to C and C is determined up to L?, and hence the iso-
morphism class of L is determined by rank g, where ¢ is defined as
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in the statement of Proposition 8.

The following situation arises a number of times in the proposi-
tions to follow. Therefore it seems best to determine the suitable
invariants once and for all.

Let A be an n-dimensional subspace of a Lie algebra L over a
field F such that A®c Fz for some z in L. Suppose A = B+ Fa.
Let p: A x A— F denote the alternating bilinear from defined by
cd = p(e, d)z for all ¢ and d in A. Choose any basis of B and any
complementary vector of B in A and associate to # a matrix C in
the usual way. It is easy to see that a canonical form for C is:

~ 1 ... 13
K e

FIGURE 2

where K = (g _$> Let is (B, A) denote the triplet of integers

(r, s, n). Note the integer r is the rank of p restricted to B, while
s is dim {d in the radical of p restricted to B |ad =+ 0}.

If A=C+ Fa+ Fb and the allowable basis for A must be of
the form a basis of C and elements of the form a + ¢, b + d, ¢ and
d in C then the canonical form of z becomes:

|
—

FIGURE 3

In this case let is (C, a, b) = (1, s, t, n).
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PROPOSITION 14. Let L be « monnilpotent genus 2 Lie algebra
‘with a 2-dimensional abelian derived algebra. Let o denote the adjoint
representation of L on L*. Then either (1) o(L) contains a non-
singular transformation and the kernmel of p is the center of L, with

the isomorphism class of L determined by the isomorphism class of

the associative algebra o(L), or (2) p(l) = F(é 8) Here L =

B+ Fa+ Fu+ Fv, au =u, av=20, bu =0, bv =0 for all b in B,
and B+ Fa+ Fv is mnilpotent genus 1. Here is(B, a) determines
the isomorphism class of L.

Proof. (1) Let p(a) be a nonsingular. Let B = {b — o(a)~'ab|bd
in L}. Then p(B) =0. From J(a,b, ¢) =0, if either o(b) =0 or
o(e) = 0 it follows that bc = 0.

(2) Let au =wu, av=0. Note if ad’ = u + v then ab = v for
b=0b —u. Hence B can be taken so that L = B 4+ Fa + Fu + Fu,
with B(Fu 4+ Fv) =0 and aBc Fv. From J(a, b, ¢) = 0 conclude bc
in Fv for b and ¢ in B. Thus B+ Fa + Fv is a nilpotent genus 1
algebra. It cannot be abelian for then » would not be in L?. Note
regardless of the choice of C with B=C + D as in the statement
.of the proposition that a can be taken so that ac = 0, while dim {d
in D|ad # 0} is independent of the choice of a.

ProOPOSITION 15. Let L be a genus 2 Lie algebra with a 2-
dimensional nonabelian ideal J with genus 0 quotient. Then there
exists an ideal A, which is non-abelian genus 0, such that L = APJ.

Proof. Let L= B+ J, B a subspace of L. Suppose uv = v, U
and v a basis for J. Since the derived algebra of an ideal is an
ideal bu = au + vv and bv = Bv, b in B. Then J(b, u, v) = 0 implies
a=0. Set ¥ =b— vw+ Bu and find that ¥» = 0 and b'v = 0. Let
A be spanned by the ¥, b in B. Suppose ab=c + k, ¢ in A, k in J.
‘"Then J(u, a, b) = 0 and J(v, a, b) = 0 imply ab =¢. Hence L = APJ,
A genus 0. If A were abelian then genus L = 0.

LEMMA 3. Let L be a genus 2 Lie algebra over a field F with a
2-dimensional abelian ideal J having a non-abelian genus 0 quotient.
Let o denote the adjoint representation of L on J. If dim o(L) > 1
then J has a basts so that

(1) pl@ = (3 ) and o) = (§ 5 £ 1) or
(ii) Char F =2, @) p(@) = (] 3) v 0, ) = (o9 1)
() p(@) = (5 1) end o) = (
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Proof. Let L =A + Fz + J, with 2a — a and ab in J for all ¢
and b in A. Then (*): p(x)po(a) — p(@)o(x) = p(a), for all a in A.
dim o(A4) = 2 implies some p(a) = I, contradicting (*).

Suppose p(a) # 0 and its eigenvalues are not in F. Then there
exists a basis of J such that p(a) = <2 3), since trace p(a) = 0

because of (*). If o(a) has zero as its only eigenvalue then there
exists a basis of J such that o(a) = <(1) 8) In either case it may be:
supposed that p(x) = <6“ 5'8) Then (*) implies (i) or (ii) a.

If o(a) has nonzero eigenvalues in F, @ may be taken so that 1
and —1 are its eigenvalues. Choose a basis for J so that p(e) =

(é __61>, e=0 orl, e=1 only if char FF = 2. Take p(x) = (g{ g)
Then (*) implies ii (b).

PROPOSITION 16. A non-minimal genus 2 Lie algebra over a
field F', with char F + 2, has a wnilpotent derived algebra.

Proof. If J and L/J are abelian then the desired result is clear..
If J is abelian and L/J is non-abelian genus 0 the result follows.
immediately from Lemma 3. If J is non-abelian and L/J is genus O
the result is clear from Proposition 15.

The solution of the problem of extending an abelian 2-dimensional
algebra J by a non-abelian genus 0 algebra is quite complicated. In
the next proposition, accordingly, the description of the different
algebras which arise is less explicit than those given in Proposition
10. Nevertheless, it is not difficult to derive a similarly explicit list
of Lie algebras from the information given in the next proposition.

PROPOSITION 17. Let L be a genus 2 Lie algebra over a field F'
having a 2-dimensional abelian ideal J with non-abelian genus 0
quotient. Suppose L* is nilpotent. Then

(1) L=J+ A+ Fx, with xa=a for all a in A. Here (A+J)*C
KcJ, where (o(x) — 2I)K = 0. If AJ =0, to avoid genus L <2 it
is mecessary that o(x) + ((1) g), x in F, for any basts of J. The
isomorphism class of L is determined when AJ = 0 by the equivalence
class of p(x) and the isomorphism class of the milpotent subalgebra
A+ J, which as of mow 1is undetermined, and when p(a) = 0 by is
(ker p, a).

2 L=J+ B+ Fa+ Fx, with ab=>5b for all b in B, za — a
a monzero element of J. If (B-+ Fa)J =0 then either o(x) = 1 1)

01
and J -+ B+ Fa is abelian or o(x) = <§ 2) and J+ B+ Fa is nilpotent:
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with isomorphism class determined by is (B, a). If (B4 Fa)J # 0
then J = Fu + Fv, xu =\u, 2v =0, v # 1, xa = a + v, with etther
B = kerp,» and is(B, a) determining the isomorphism class of L,
or ker o= C+ Fa with bu = v, bv =0, and s(C, a, b) determining
the isomorphism class, or bu =0, bv=u, N#2 ab=1/(2 — Nu,
with aC = 0 and bC = 0.

38 L=J4+C+ Fa+ Fb+ Fz, with xzc =c¢ for all ¢ in C,
xa — a b — b linearly independent elements of J. Here p(x) = I,
AJ =0, and C + Fa + Fb is abelian.

Proof. (1) Suppose @ and A chosen so that L = J+ A4 Fx with
xza = a for all @ in A. From J(z, a,b) =0 it follows that x(ab) =
2ab. Hence (A + J)y* < K J with (o{x) — 2J)K = 0.

If o(x) = I then genus L =0 and if ofx) = ((1) Q) » = 1 with
respect to basis u, v of J then Fw has genus 0 quotient and hence
genus L = 1.

If dim o(c) = 1 then choose basis {b;} for A and basis «, v for J
and write b;b; = a,;u + Biv with is ((a)), (8:;)) determining multipli-
cation in A + J.

If dim p(c) = 2, the hypothesis of L* nilpotent implies the struc-
ture of case (3) Lemma 3. Thus au =v, av =0 and zu = au.
v = (o + Dw. Thus dim K <1 and the invariant s(ker o, a) deter-
mines the multiplication in A + J.

(2) Suppose z and A chosen so that L = J+ B+ Fa + Fa with
b = b for all b in B and xa — a a nonzero element of J, and x and
B -+ Fa cannot be taken so that xa = a, xb = b for all b in B.

If D, — I were non-singular and za =a + k', k' in J, set o' =
a+ k, where (D, — Dk =k, and find za' = a'. It follows that

KO), A= 0, or

D, — I is nonzero and singular. Thus o(x) — I = (O 0

o) = 1= (7 g)-

If (B+ Fa)J =0 then J(x, a, b) = 0 implies (B+ Fa +J)cCc KcC
J, K as in (1).

Suppose (B+ Fa)J + 0 then by Lemma 3, (i) o(x) has two distinct
eigenvalues, hence also p(x) — I, and therefore p(x) = <(7; (1)>

If B=kerp then au =v, av =0 or au = 0, av = u. In either
case J(x, a, b)) = 0 implies ab in K, K as in (1).

Suppose B + ker p then since a can be modified by multiples of
b and dim (B+ Fa)J = 1, by Lemma 3 a can be taken so that aJ =0
and then normalized so that za =a + gv, B # 0. Let bJ 0 and
C+ Fa = ker p. Then J(z, a, b) = 0 implies x(ab) = 2ab + B'bv. Either
dbu =v, bv=0 and 1is(C, a,b) determines the multiplication of
B+ Fa+J or bu =0 and bv = u. In the latter case let ab = au + Bv
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and conclude =0 and a(» —2) + 8 =0. Hence X #2 and it
follows that aC =0 and 8C = 0 from J(z, a,¢) =0 and J(z,b,¢) =0
for ¢ in C.

(8) Suppose L =J+ C+ Fa+ Fb+ Fxz, with x¢ =¢ for all ¢
in C, xa — a, xb — b linearly independent elements of J, and it is.
possible to choose A and « so that xa = a for all elements of A.
Then p(x) = I, for p(x) — I nonsingular was ruled out in the last
case, while if o(x) — I has rank 1, then the argument there employed
can be used to show that every a can be chosen so that xza — a is
in Fw, v any fixed element of J not in the range of p(x)—I. Lemma
3, (i) gives (C+ Fa+ FbJ =0 and J(z,¢,d) =0, for any ¢, d in
C -+ Fa 4 F'b, then implies c¢d = 0.

PROPOSITION 18. Let L be a genus 2 Lie algebra over a field F
having a 2-dimensional abelian ideal J with mon-abelian genus 0
quotient. Suppose L* is not nilpotent. Then char F=2, L = L*+ K+
Fz, dimo(L) =2 and either L} = J+A with xa =a for all a in A
or I* =J + kero + Fa, xb = b for all b in ker p, xa = a a nonzero
element of J. In every case (ker o + Fa)* is contained in a l-dimen-
stonal subspace of J so that the tisomorphism class of o(L) and is
(ker o, a) determine the isomorphism class of L.

Proof. If L* is not nilpotent then dim o(LL) = 2. Then char F' =
2 and L* cJ by Lemma 3. But, A modulo J is in L? hence L =
L? + Fu.

Suppose L = J 4+ A 4 Fx, va = a for all a in A. Here x(ab) = 0
and p(x) as in Lemma 3, (ii) cannot have two identical eigenvalues.
Therefore it must have rank 1, which excludes (ii) 6 of Lemma 3.
If ker p = B then (B + Fa + J)* is contained in a 1-dimensional sub-
space of J and is (B, a) is the appropriate invariant. If kerp = B
then we can take a in ker p, since p(x) — I has rank 1, a = 0,1 in
(ii) @ of Lemma 3. Here J(x, a, b) = 0 leads to a contradiction.

PROPOSITION 19. Let L be a solvable minimal genus 2 Lie algebra
without a 2-dimensional ideal with genus 0 quotient. Then L belongs
to the same isomorphism class as one of the following algebras:

(1) L=1L1*+ Fz, I} a 3-dimensional abelian ideal without a 2-
dimenstonal tnvariant subspace for D.. The equivalence class of D,
determines the isomorphism class of L.

(2) L= L*+ Fz, L* 3-dimensional wilpotent with (L*)* = Fx + 0
and D, irreducible on L*/Fz. Here the equivalence class of D, deter-
mines the isomorphism class of L.

8) L = L*+ Fx, L* 4-dvmensional abelian, with the characteristic
polynomial of D, on L of the form p(y) = y(@())?, q(y) irreducible.
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Two such algebras are isomorphic if and only if the corresponding
py) and P'(y) are projectively equivalent, i.e. there exist monzero
element N of F such that p(\y) = p'(y).

Proof. (1,2) dimL =4 and L = L?+ Fx. If L? is abelian then
(1). If not let L*= Fa+ Fb+ Fab. If (L** were 2-dimensional then
its quotient would be genus 0. Hence (L*)* = Fab is a 1-dimensional
ideal and therefore annihilated by L?. The multiplication table of L
is determined by D, acting on L?/Fab since x is specified only up to
the addition of elements of L*. This gives (2).

8) dimL =5. L does not have a 1-dimensional ideal ..
Otherwise, genus L/J = 2 implies J complemented by a genus 2
subalgebra by Proposition 2; genus L/J = 0 implies genus L = 1;
genus L/J =1 implies L/J has a 1-dimensional ideal with genus 0
quotient (hence L has a 2-dimensional ideal with genus 0 quotient).

Suppose L has a maximal abelian ideal J of dimension 2. Then
genus L/J = 1. Let 2 and y be preimages of two generators of L/J
under the natural map L onto L/J. Then « and y generate a 3-
dimensional subalgebra S. If dim S*=1 take x and y so that x(xy) =
0; if dim S* = 2 with « in S? then J(z, ¥, 2y) = 0 implies x(xy) = 0.
It follows (x(x(y + @)) = x(xa) =0 for all ¢ in I to avoid <{z,y + a>
containing a nonzero element of I and thus having dimension = 4.
If D, =0 then [D,, D,] =0 and I+ S*is an abelian ideal. There-
fore there exist ¢ and b spanning [ with xa = b and 2b = 0. Take
y so that ya = va. Then (zy)a = x(ya) + (xa)y = vb + by and there-
fore (x + a)((x + a)y) = —by = 0 to avoid dim<x + a, y> = 4. There-
fore F'b is an ideal in L, a contradiction.

Suppose L has a maximal abelian ideal J of dimension 3. Note
dim L* = 3, for genus L = 2 implies dim [’ = 2 and if dim L* = 2
then genus L/L?=0. If J= L’ then dim (J N L)) =2 to avoid JNIL*
a 1-dimensional ideal. Write L = J N L* + Fa 4+ Fy + Fz, with z in
L% y in J, and conclude from 2xz = ax + a and yz = By + b with a
and b in JN L* that genus L/JNIL)=0. If J=1"1let L=1*+
Fx + Fy. Then zy = 0 implies Fay is a 1-dimensional ideal because
x(vy) and y(xy) are in L* N (Fx 4 Fy + Fury) = Fay. Therefore ay =
0 for all z and y in I?, i.e. (v + a)y =0 and 2(y + a) =0 for all a
in I2, a contradiction. If J& L? let L = J + Fx + Fy with & in L?
and y chosen so that xy =« + @, a in J, which is possible because
¢ is in I? If a# 0 then from =z(zy) = za and y(xy) =  + a + ya
in I? and Fx + Fy + Fay conclude za and ya are in Fa so that Fa
is an ideal. It follows from x(y + b) and (x + b)y that xb = 0 and
yb = 0 for all b in J, a contradiction.

Suppose L has a maximal abelian ideal J of dimension 4. Then
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there exist and b in J such that «, za, xb, a, and b span L. To
avoid a 2-generated 4-dimensional subalgebra z(za) = aa + Bra and
(xb) = a’b + xb with o = & and @ = B’ necessary for z(x(a + b))
to be in F(a + b) + Fx(a + b). The characteristic polynomial of D,
on I*is (y*— By + a)®. If y* — By + a were not irreducible L would
contain a 2-dimensional ideal with genus 0 quotient.
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