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LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS

C. ROBERT MIERS

A mapping φ: M-+N between *-algebras M, N which is
*-linear, and which preserves the Lie bracket [X, Y] = XY —
YX of elements X, Y in M is called a Lie *-homomorphism
or just a Lie homomorphism. The main result of this paper
states that if φ: A —> B is a uniformly continuous Lie *-homo-
morphism of the C*-algebra A onto the C*-algebra B then
there exists a central projection D in the weak closure of B
such that modulo a center-valued *-linear map which anni-
hilates brackets, Ώφ is a *-homomorphism and (/ — D)φ is the
negative of a *anti-homomorphism.

Previously we showed that if M is a factor then so is JV and in
this case φ = σ + λ where σ is a ^-isomorphism or the negative of a
*-anti-isomorphism of M onto N and λ is a *-linear functional which
annihilates brackets in M. This result parallels the algebraic theorems
of L. Hua and W. S. Martindale.

The main techniques used in this paper are the algebraic techni-
ques of Martindale [8], [9], and Herstein [3]. Adaptations of them
allow us to characterize Lie ^isomorphisms between von Neumann
algebras and also ultra-weakly (= UW) closed Lie *-ideals which
contain the center. For a complete exposition concerning Lie struc-
tures on associative algebras we recommend Herstein [4]. We wish
to thank Professor H. A. Dye for many invaluable conversations
during the preparation of this paper.

1* Preliminaries and notation* We denote by ^f(H) the ring
of all linear operators T: H-* H, Ha complex Hubert space with inner
product (. , .), which are bounded in the norm | |Γ | | = supMa.||S11| Tx\\.
With this norm, £f(H) is a Banach algebra with identity the identity
operator 7. In addition to the uniform topology on Sfijβ) we shall
be concerned with (1) the weakest topology making the linear func-
tionals T—*(Tx,y) continuous for all x, y e H, called the weak (operator)
topology and (2) the weakest topology making the linear functionals
ϊ7—>Σ~=i (TxH, yn) continuous for all sequences {xn} {yn} such that
Σ"=i II& IIS Σϊ=i \\Vn\\2 < °° called the ultra-weak (operator) topology.

To each operator TeJ*f(H) there corresponds an operator T* e
£f{H), called the adjoint of Γ, defined by {Tx, y) = (x, T*y) for all
x,yeH. If T = T*9 T is called self-adjoint; if T is self ad joint and
T = T2, T is called a projection; if TT* = T*T = I, T is called unitary.

A C*-algebra, M, is a subalgebra of £f(H) which is closed in the
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uniform topology and closed under the operation of taking adjoints.
A von Neumann algebra is a weakly closed *-subalgebra of J*?(H)
which contains /. It is a fact that if M is a von Neumann algebra
then M is the smallest weakly closed linear subspace of L(H) con-
taining the set {P|P a projection in M). The set ZM = {SeM\ST =
TS for all TeM) is called the center of M. If P is a projection in
M then MP = {PAP\ Ae M).

Any associative algebra M can be made into a Lie algebra by
defining a new multiplication of elements A, Be M to be the com-
mutator [Ay B] = AB — BA where AB is the associative product.
For notation let [M, M] be the linear span of all such commutators,
A Lie ideal of M is a linear subspace which is an ideal with respect
to the multiplication [A, B]. Any associative ideal is a Lie ideal,
[M, M] is a Lie ideal, and any linear subspace of ZM is a Lie ideal.

We use Dixmier [1], [2] as general references.

2* General results*

DEFINITION. Let M be a von Neumann algebra with center ZM.
For each self-adjoint operator Ae M we define the core of A, denoted
by A, to be the LUB [SeZM\S self adjoint, S ^ A]. One has A -
A^O. Further, if Se ZM and A - A ^ S ^ 0 then S = 0. If P is
a projection it is clear that P is the largest central projection <̂  P.
We call a projection core-free if P = 0.

The following theorem is a generalization of a result of L. Hua
[5] and its proof is due to H. A. Dye.

THEOREM 1. Let M be a von Neumann algebra on the Hilbert
space H. If A is a self-adjoint operator in M satisfying the identity
[[[X, A], A] = [X, A] for all Xe M, then A — A is a projection.

Proof. The identity is true for A — A as well so we can assume
A = 0 and A ^ 0. In particular, for each nonzero central projection
C, 0 lies in the spectrum of CA (considered as an operator on CH)
(otherwise there exists ε > 0 such that A ^ εC).

Suppose σ(A) Φ {0,1}. We can then choose μeσ(A) such that
d{μ, {0,1}) > 2ε > 0 where d(a, S) — distance from a to the set S.
Let δ > 0 be such that \f - t\ < δ implies d(t, {0,1}) < ε. By the
spectral theorem there exists an operator B, commuting with A, of
the form B = Σ?=iVPi where the λ< are distinct and ^ 0, the P{ are
mutually _L projections of sum J, 0 ^ B ^ A, and || A — B\\ is so small
that ||A - B|| < ε and

(1) || [[[X, B], B], B] - [X, B ] | | < ί for all X in M such that
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Furthermore, 0 occurs among the λ{ and Pi — I (if P is a pro-
jection P is the central carrier of P) for i = 1, , n. Finally, since
\\A — B\\ < ε, one of the λ, , say λ2, will be at distance > ε from {0,1}.

Now we consider the mapping ψu{S) = USU"1 where Z7 is unitary
in M. Taking X = U in (1) and rewriting this relation in terms of
ψu we have

(2) \\ψu(Bγ - Wψu(B)2 + W2ψu(B) -B*-if(B) + B\\<3

Pi = I implies the existence of nonzero projections ζh ̂  Pu Q2 ̂  P2

such that Q: ~ Q2. We choose a unitary operator U such that ψu has
order 2, fu{Q^) = Q2 and ψu is the identity off QL + Q2. For this Z7,
(2) reduces to \\{X\ - X2)Q, + (λ3

2 - X^Q.W < δ. In particular, |λ* -
λj| < σ so that d(λ2, {0,1}) < ε which is a contradiction. Hence σ(A) £
{0,1} and A is a projection.

LEMMA 1. Let P and Q be commuting core-free projections in M.
Then P + Q eZM implies P ± Q, and P — Q e ZM implies P = Q.

Proof. If P + Q e ZM then (P + Q)2 - (P + Q) = 2PQ e ZM. But
in this case PQ ^ P = 0. If P - Q e Zm then (P - Qf + (P - Q) =
2(P - PQ) G ^ . But P - PQ ^ P = 0 so that P = PQ. By symmetry
Q = PQ.

DEFINITION. TWO projections P and Q are called parallel (P||Q)
if PQ = 0.

LEMMA 2. P\\Q implies [[P, X],Q] = 0. Conversely, if P and
Q are commuting core-free projections such that [[P, X], Q] = 0 /or αίi
α eikf £fc<m P | | Q .

Proof. The first statement is clear from the definition of central
carrier.

For the other part, multiplying the relation [[P, X],Q] = 0 on
the left by PQ gives PQX(I - P)(I - Q) - 0 for all Xeikf so that
P # || (J - P ) ( I - Q). Multiplying the relation on the left by P and
on the right by Q gives P(I - Q)XQ(I - P) = 0 for all Xeikf so_that
P ( / - Q)1IQ(/- P). The first parallelism statement implies PQ s
PU Q. Thus T(Γ::rQ)PQ lies in P u Q , is orthogonal to Q, and hence
is in P. Since P =J3 this implies P(l - Q)PQ = 0. Likewise Q ( / -
PJPQ =0, forcing PQ = PQ so that PQ = 0. Thus P = P(I - Q) and
Q = Q(I- P) which implies P| |Q.

LEMMA 3. Lei P cmd Q be commuting projections in M such that
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[[[[X, P], Q], P], Q] + [[Γ, P], Q] = 0 /or αM l e J I ί . Then there exists
a projection Ce ZM such that PQ(I - C) = 0, ( I - P){I - Q)C = 0.

Proof. Multiplying the bracket identity on the left by PQ gives
PQXiJ- P)(I- Q) = 0 for all X so that PQ\\(I- P){I- Q). Let
C = PQ.

LEMMA 4. If the von Neumann algebra M has no summands of
type Iι ( = central abelian projection) then each nonzero central pro-
jection C e M is the carrier of a core-free projection in M.

Proof. Nonzero core-free projections exist in M since if P is a
noncentral projection, P — P is core-free. By Zorn, let {Pa} be a
maximal collection of || core-free projections and let P— ΣPa. Note
that P = I. For, otherwise there is a central projection C Φ 0 ortho-
gonal to all the Pa, and this C would dominate a nonzero core-free
projection thus contradicting maximality. Moreover P is core-free.
If C is a central projection and C ̂  P, then PaC <£ Pα so that PaC —
0. Finally ~CP - CP = C for any projection

LEMMA 5. Let M be any von Neumann algebra, P and Q pro-
jections in M with P = Q ^ 0 . If AeM commutes with PXQ and
QXP for all XeM, then A commutes with PXP and QXQ for all
XeM.

Proof. Since P Q Φ 0 there exist nonzero projections P1 <̂  P,
Qx ̂  Q such that Px- Q1# Let F ^ i l ί b e such that F,*V1 = P» F,F* =
Qlβ Since PiX?! = PPiXFfQxQF^P we have that A commutes with
P.XP, for all X. If Pλ Φ P, then P - PλQ Φ 0 so there exist projections
P2^ Pi~ Pi, Q 2 ^ O with P2 - Q2. Let V2 e M be such that F* F2 =
Pa, F 2 F* = Q2. As before P2XP2 = PP2XV!Q2QVZP2P so that A
commutes with P2XP2 for all XeM. Moreover, since PιXP2 =
PP1XV^QV2P2P1 A commutes with P,XP2 (and similarly with P2XP,)
for all XeM.

By Zorn, choose a maximal collection {Pa} of non-zero mutually
orthogonal projections such that {%) Pa <; P, (ii) A commutes with
P^XP^ for all a, β and all XeM. By maximality ΣPa = P. Thus
PXP - (2Tα) X (JPJ and so A commutes with PXP. A similar
statement holds for QXQ.

LEMMA 6. Let M be a C*-algebra of operators on H. If X, Ye
M with Y self-adjoint, and if [X, Y] e ZM then [X, Y] — 0.

Proof. By (Singer [13] p. 242), if X, Y skew adjoint, then [[X,
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Γ], Y] = 0 implies [X, Y] = 0. The same statement holds for X, Y
self adjoint since then iX and ίY are skew-adjoint.

Now suppose Y self-ad joint. Then [X,Y]eZM implies [—X*,
Y] e ZM and hence [X - X*, Y] e ZM. By the above [X - X*, Y] = 0.
Moreover — [ — X*, Y] e ZM so [X + X*, Y] e ZM and is therefore zero.
Finally [X, Y] = 0.

3* Near-isomorphisms of von Neumann algebras*

DEFINITION. A mapping φ: M—> N between von Neumann algebras
M and N which is *-linear and which preserves the Lie bracket of
operators in M is called a Lie *-homomorphism (or just Lie homomor-
phism). If hM(X) = X + ZM is the natural Lie homomorphism of M
onto M/ZM we call φ L-onto if hNoφ maps M onto N/ZN. This implies
Φ(ZM) g ZN. Thus φ (if L-onto) induces a Lie homomorphism of M/ZM

onto N/ZN. If this induced homomorphism is a Lie isomorphism call
φ a near-isomorphism.

If φ:M—>N is a L-onto Lie homomorphism, and PeM then by
Theorem 1 and Lemma 1 there exists a unique core-free projection
Θ(P) e N and a central element λ(P) ( = £(P)) such that φ(P) = 0(P) +
λ(P). If we write θr{P) = 0(Pj - 0(P), then 0'(P) is core-free, 0(P)
= - Θ'{P) +_V(P) + λ'(P) (λ'(P) G 2^) and this representation is unique.
Note that θ{Pj = ΘΊj5) and that PeZM implies Θ(P) = 0. We assume
from now on that φ is a near-isomorphism between the von Neumann
algebras M and N.

LEMMA 7. If Q is a core-free projection in N, then there exists
a core-free projection PeM such that Θ(P) = Q.

Proof. [[[Y,Q]Q]Q] - [Y,Q] = 0 for all YeN. Let PeM be
such that φ(P') -QeZN. Then φ([[[X, Pr]Pr\Pf] - [X, Pf\) = 0 for all
XeM so that [[[X, P']P']P'] - [X, P'] € ker ^ s ZM. By Lemma 6
this bracket expression is zero. Hence, by Theorem 1, Pr — P = P
a core-free projection. φ{Pr) = ί(P) + λ(P) + ^(P') = Q + Z, z e ZM and
HP) + (̂ZO e ^y. Hence by Lemma 1, ί(P) = Q.

L E M M A 8. Let P and Q be core-free projections in M. Then P\\Q

if and only if Θ(P)\\Θ(Q) and P = Q if and only if Θ(P) =

Proo/. P\\Q implies [[P, X], Q] - 0 for all XeM. If YeN let
XeikΓ be such that ψ(X) - 7 G ^ . Then φ([[P, X], Q) = [[0(P), Γ],
^(Q)] = 0. Hence Θ(P)\\Θ{Q). On the other hand if Θ(P)\\Θ(Q) then
[[P, X], Q] G ker ? S ^ for all X G M. By Lemma 6, [[P, X]Q] - 0
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for all X. _
For the other part, if P = Q but Θ{P) Φ Θ{Q) then there exists a

projection Ce ZN such that CΘ{Q) = 0, Cθ{P) Φ 0. There exists a core-
free projection R in M such that 0(i2) = CΘ(P). Hence 0(iί)||0(Q)
which implies Jδ||Q. But Θ{R)\\Θ{P) so that Jβ | |P a contradiction.
Similarly Θ(F) = 0(Q) implies Q = P.

LEMMA 9. θ and θr are additive on parallel core-free projections.

Proof. Let P x, . , P % be parallel core-free projections in M. By
Lemma 8 the Θ(P^, , θ(Pn) are parallel (and core-free) so that
Θ(PJ + + θ(Pn) is a projection. It is also core-free by parallelism.
One has

θ(Pλ+ . . . + Pn) - Σ θ(Pd = Σ
l < 1

Σ
t = l

By Lemma 1

«) = Σ ^(P.) (and
/ *=i \

A similar argument gives the result for θ\

LEMMA 10. If M and N have no central summands of type Ix

then there exists a unique ^-isomorphism ψ of ZM onto ZN such that
Θ{CP) = ψ{C)θ(P) for all projections P and all central projections C.
One has ψ{P) — Θ(P). A similar statement holds with θ replaced by θf.

Proof. We first define ψ for central projections. For each central
projection C, choose a core-free projection P such that P = C (Lemma
4). Define ψ(C) = Θ(P). If Q is any other core-free projection such
that Q = C then Θ(Q) = Θ(P) by Lemma 8 so that the mapping is well
defined. If D is a central projection in N, choose a core-free projec-
tion ReN such that R = D. There exists a core-free projection P e
N such that Θ(P) = R so that ψ(P) = Θ(F) = R = D. Hence ψ is onto.
If ψ{P) = ψ(Q) for core-free projections P and Q then Θ(F)= Θ{Q) and
by Lemma 8, P = Q, If C and D are central projections in M with
CD = 0 let P and Q be core-free projections in M with P = C, Q = D.
Then CD = 0 iff PQ = 0 iff P\\Q iff β(P)||β(Q) iff ί(P)«(Q) = 0 iff
ψ(C)ψ(D) — 0. Thus f is a projection orthoisomorphism of ZM on ZN

and as such is implemented by a unique *-isomorphism (also called ψ)
of ZM on ̂ r .

To show Θ(CP) — ψ(C)θ(P) choose a core-free projection Q such
that Q = C(I - P). Then PC + Q has carrier C, and ̂ (C) = ^(PC + Q)

PC + W) by Lemma 9. Now Θ{P) = ^(PC) + ^{P(/ - Q) and
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both terms on the right are orthogonal to Θ(Q). Multiplying the
two relations together we have ψ(C)θ(P) = 0(CP).

Finally we show that Θ{CP) = ψ{C)θ{P) impliesjK-P) = θljP). Put
C = P to get Θ{P) = ir{P)θ{P) or Θ{P)_£ ψiP^ So Θ{P) ^ ψ(P). Now
if P + R = J and P 1 Ϊ2 we have 0(F) + Θ{R) = 1.

DEFINITION, TWO projections P, Q are called co-orthogonal (co ±)
if P- PLQ-Q.

LEMMA 11. Let Plf"*,Pn be commuting core-free projections,
each pair of which satisfy the identity of Lemma 3. Then there exists
a central projection C such that the Pi are orthogonal on C, co-orthogonal
on I- C.

Proof. For each pair Pif Ps (i Φ j) there exists a central projec-
tion C{j such that PiPjCij = 0 and (J - P,)(/ - P5){I - Ci5) = 0 Let
& be the boolean algebra generated by the C<y. If C is an atom
in &? then P.Pfi = 0 o r ( 7 - P,)(/ - P3) C = 0 (i Φ j).

Index so that PxCy , PmC are the non-zero terms of the form
PiC (we can leave 0 out since it is both 1 and co 1 to all projections).
We claim that these projections are either l o r c o l . It suffices to
take m ^ 3. If P^C = 0 then all the P£ are mutually _L. For
if, say, P,PZC Φ 0 then (/ - P^{I - P3) C = 0 so that (/ - P,) C ^ P3.
The two relations give P2C ^ P3. Now if CP2P3 = 0 we have P2C =
0 a contradiction. If (J - P2)(I - P5)C = 0 then C(/ - P2) ^ P3 so
that C S P$ contradicting the fact that P 3 = 0. The same argument
shows PtPiC — 0 for i ^ 3. Applying this reasoning to each P{C in
turn gives their mutual perpendicularity.

In a similar way if, say, (/ — Pi)(/ — P2) C = 0 then all the (/ —
Pi)C ate mutually orthogonal. If, for example, PJP^G — 0 then (/ —
Pi)C^ P2 and we have P3C ̂  P2CP2P3 = 0 implies P3 = 0 and (/- P2) x
(J — P3)C = 0 implies C ^ P2, both contradictions.

COROLLARY. Let M and N be von Neumann algebra with no
central summands of type I19 and let Px, « ,P % be a collection of
mutually 1 projections in M. There exists a projection D e ZM such
that the PόD have JL image under θ, the P^I — D) have ± image under
θ'.

Proof. Apply the above to the #(P;) and get the projection Ce
ZN. One has C = f{D) for some DeZM and θ(DPi) = C 0(P<), θ(DPi) =
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LEMMA 12. Let P19 •• , Pn be projections in M with Pio — 7, De
ZM such that (i) P{O are mutually 1, (ii) ΣPJ) e ZM, then Σ?=i PiD = D.

Proof. Say ΣPJ) = CeZM. Then PioD = PioCD so that D = CD.
Hence D ^ C. Obviously C ^ D.

LEMMA 13. Let Pιf « ,P» αraZ D as w Corollary to Lemma 11
wiίλ P ί o = 7.
ψ(I-D).

Proof. φ(D) = Σ?=i θiPtD) + Σ?=i HPiD) e ZN. Hence ΣJU
θ{Pi)ψ{D) e ZN and the θ(P^ψ(D) are mutually J_. By Lemma 12,
ΣJU θ{Pi)ψ{D) = α/r(D). A similar argument works for 0' and 7 - D.

LEMMA 14. If M is any von Neumann algebra and P a core-free
projection in M, then MP (= {PAP\ Ae M}) Π ZM = {0}.

Proof. Suppose PAP e ZM where A is self-adjoint and A ^ 7.
Then ((P - PAP)α;, α?) = ((7 - A)Px, Px) ^ 0 so that P ^ PAP. Since
P =z 0 we have PAP = 0. In general, if A = At + iA2 where AL, A2 are
(nonzero) self-adjoint and PAP e ZM then PAP + PA*P = 2PAXP e ZM.
Therefore Pίl/HAJI) A,PeZM so that PAXP = 0 by the first part of the
argument. Similarly PA2P = 0.

4* The decomposition theorem* The following arguments are,
in part, adaptations of those of Martindale [8], [9] These adaptations
are of sufficient technical complexity to merit their entire conclusion.

We consider first the case where φ: M-+N is a near isomorphism
of M to N, and M is a type 72 von Neumann algebra. Let P19 P2 be
equivalent, orthogonal, abelian projections of sum 7 in M. We have
that & = 0, Pi = 7 for i = 1, 2, and that Θ(P1)Θ(P2) = 0 since

G ̂ . Moreover, 7 = ^(1) - Ψ(?i) = Θ(PX) ^ Θ(PJ + Θ(P2) = Θ{PX) +
^ 7 and so 0(PX) + ^(P2) = 7. Notice that 6>(PX) - 0'(P2) and Θ{P2) =

For notation let Mi5 = {PiAPj \ A e Af}, i\ΓΐV - {ίίP^ilίίPy) | A e N}.

LEMMA 15. Φ'^Nu + i\Γ22) = Mn + ikΓ22.

Proof. If X e Λfu let Y = ^(X). Since [X, P2] = 0 w e have 0 =
[F, ^(P2)] or Γ^(P2) = Θ(P2)Y. This implies Θ(PJYΘ(PJ = Θ(P^YΘ{P^ -
0 which in turn implies YeNn + i\Γ22. Similarly if Xeikf22.

Suppose YeNn and XeM is such that φ(X) — YeZN. Then
[Γ, 6>(P2)] = 0 so that [X, P2] e ker ^ S Z^ which implies [X, P2] = 0
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by Lemma 6.

LEMMA 16. Φ~ι(Niό) = Mi5 (i Φ j).

Proof. For example, suppose i = l,j = 2 and let XeM12. X —
ίθi, [X, QJ] - i d , X]. Hence φ(X) = ^ ( P J , fe(X), 0(P2)]] - 0(P^(X)

θ(P1)φ(X)θ{Pι) = θiPWiPJ, φ(X)]θ(P2) + Θ{P2)[Θ{P.), Φ(X)]θ(Pi) =
- θ{P2)φ{X)θ(Pι) since ^(PJ ± 0(P2). Therefore ^(X) =

φ{X) Θ(P2). So ^(ilf12) £ N12.
If ΓeiV12, then Γ = [Θ{P^ Y] = [φ(PJ, Y] and also Y= [Θ(PJ,

[Y,Θ(P2)]] = [^(PO, [Γ, ̂ (P2)]]. Let X G M be such that φ(X) - Ye
ZN. Then [Ply X] — [Ply [X, PJ] e ker φ and so equals zero, or PγX —
XPγ = PXXP2 + P2XPX. T h i s g i v e s P2XPX = 0 . N o w φ(X) = ΦiP.XP,) +
Φ(P1XP2) + Φ(P2XP2) so t h a t ΦiP.XP,) + Φ(P1XP2) + Φ{P*XP2) - Z=Y
for some Z e ^ . By the first part of the argument we then have
ΦiP.XPd + φ{P2XPz) - ZeN12. By Lemma 15, ΦiP.XP,) + ΦiPzXPz) =
Θ(PJSΘ(PJ + Θ{P2)TΘ{P2). Hence Θ(P^SΘ(P^ + Θ{P2)TΘ{P2) - Z =
Θ(P,)WΘ(P2) for some TFeiNΓ. Multiplying on the left and right by
flfPO gives θ(Py)SΘ(P0 - ZΘ{P,) - 0. Similarly Θ(P2)TΘ(P2) - ZΘ{P2) =
0. Hence θiPJSΘiPJ + Θ{P2)TΘ{P2) - Z = 0. This implies ΦiP.XP,) -
Γ.

COROLLARY. ^ is cmίo.

LEMMA 17. ^(Λf«) £ iVί{ + ^ .

Proof. Mn and ilf22 are abelian von Neumann algebras in their
own right and so, therefore are Mn + M22 (= Λfu 0 M22) and by Lemma
15, Nn + iV22 ( = Nn 0 iSΓ22). The latter implies that Nlί9 N22 are abelian.

Let Xe Mn and Y = Φ(X). Then YeNn + N22 £ ^ n + ̂ 2 2 , (since
Nn + iV22 abelian) = ZNn + Z M - Z t f ( P l ) + Zβ{Pi). Thus Γ = S ^(Px) +
TΘ(P2) where S,TeZN. But θiP,) = I - Θ(P2) so that Γ = ( S -
^^(P,) + T.

We define mappings σ:M-+N and X:M-~^ZN in the following
manner: if A e Mi3 (i Φ j) then σ(A) = ̂ (A), and if 4̂ e Λf« by Lemma 17,
Φ(A) = α(A) + ̂  where σ(A) e JV« and Ze ZN. Extend σ to all of M by
linearity and define λ(A) = Φ(A) — σ(A). σ and λ are well defined,
for if At + Zt = Az + Z2 where A< 6 Niif Z{ e ̂  then Λ ~ A2 e Nu Γ)
ZN = {0}.

LEMMA 18. σ and λ are linear mappings.

Proof. We show σ(aA + βB) = mj(A) + /Sσ(J5) for A, Be M and
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a, βeC. It suffices to assume A, Be Mu. Then σ(aA + βB) —
aσ{A) - βσ(B) = - X(aA + βB) + aX(A) + β\(B) e JV<« Π ZN = {0}.

LEMMA 19. <7 and λ preserve adjoints.

Proof. Again assume AeΛf«. Then σ(A*) - σ(A)* = λ(A)* -

LEMMA 20. // A G Mii9 BeMiά (i Φ j) then σ{AB) = <7(A)σ(£).

Proo/. In this case, σ(AB) = Φ{AB) = φ(AB - BA) =
=σ(A)σ(B).

LEMMA 21. // A,BeMiά then σ{AB) = σ(A)σ{B).

Proof. Let S e Mi3- (i Φ j). Then σ(AB)σ(S) = σ(
= cτ(A)σ(5)σ(S). Hence, [σ(AB) - σ(A)σ(B)]σ(S) = σ(S)σ(AB) -
[σ(A)σ{B)\ = 0. Specifically, σ{AB) - σ(A)σ(B) commutes with Niά.
Similarly σ(AB) — σ(A)σ(B) commutes with NH. Applying Lemma 5,
σ(AB) — σ(A)σ(ΰ) commutes with Nu and ΛΓ̂  , so that, σ{AB) —

LEMMA 22. If As Mi5, Be M5i (i Φ j) then σ(AB) = σ(A)σ(B).

Proof. Applying φ to the identity [[A, J5],A] =2ABA we have
Φ(ABA) = φ(A)φ(B)φ(A). But since φ = σ on MiS (i Φ j) we have
σ(ABA) = σ(A)σ(B)σ(A). Moreover, φ[A, B] = [φ(A), Φ(B)] = [σ(A),
σ(B)]2Lndφ[A, B] = φ(AB) - φ(BA) = σ(AB) + X(AB) - σ(BA) - λ(J5A)
so that (1) σ{A)σ{B) - σ{AB) + σ(BA) - σ(B)σ(A) = CeZN. Multiply-
ing this last relation on the right by σ(A) we get Cσ(A) =
σ(A)σ(B)σ(A) - σ(AB)σ(A) = σ(A)σ{B)σ{A) - σ(ABA) = 0. Similarly
Cσ(B) = 0. Multiplying (1) by C, and using the preceding, we have
(2) C(σ(BA) - σ(AB)) = C\ Hence C3 = C2(σ(BA) - σ{AB)) = C(σ(BA) -
σ(AB))2 = C(σ(BA)σ(BA) - σ{AB)σ{AB)). Multiplying (1) by Θ{P) gives
Cθ(P) = σ(A)σ(B) - σ(AB), and by I - Θ(F) gives C5(l - P) = σ(BA) -
<7(£)σ(A). Hence C3 - C((cτ(B)c7(A) + C(I - ^(P)))2 - (σ(A)σ(B) -
CΘ(P)f) = C(σ(B)σ(A)σ(B)σ(A) + C\I - Θ(P)) ~ (σ(A)σ{B)σ(A)σ{B) +
C2Θ{P))) = C3(l - 0(P)) - C36>(P) = σ - 2CSΘ(P). Thus ^ ( P ) = 0. In
particular the set NC2Θ(P)N = {XC2Θ(P) Y\X, Ye N} is a nilpotent
ideal in M so that C2 Θ(P) = 0. By the same reasoning CΘ{P) = 0.

LEMMA 23. σ is a ""-isomorphism of M onto N.
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Proof, (i) 1 - 1 : If σ(A) = 0 then φ(AB) = σ{AB) + X(AB) =
X(AB) e ZN for all Be M. Thus, by the near one-one-ness of φ, ABe
ZM for all Be M. Thus A, AP19 and AP2 all are in ZM. This implies
APi eZMΠ Mu (i = 1, 2) so that A = APX + AP2 = 0.

(ii) onto: σ = ψ on M"ΐy (i Φ j) and ^(Λ/^ ) — Mi3 . Let 7 G JW11#

There exists XeMn + M22 such that Φ(X) = Y. Hence X = SPX +
TP2 = (S - Γ)PX + Γ where S, T e £ * . Thus Y - ^(P^S - ^ Λ + T)
= σiP^S - T)PX) + xiP^S - T)PX) + φ(T) so that Y - σiP^S - TjP,) e
Nn nzN = {0}.

2THEOREM 2. Let φ: M—>N be a near-isomorphism of the type I2

von Neumann algebra M onto the von Neumann algebra No Then (i) φ
is onto, and (ii) φ = σ + X where σ is a *-isomorphism of M onto N
and X is a *-linear mapping of M into ZN which annihilates brackets.
N is then of type I2 with θ(Pί), Θ(P2) equivalent, orthogonal, abelian
projections of sum I.

In what follows we assume M and JV have no summands of type
Ji We now turn our attention to the case when M is not of type
I2 but has a summand of type I2. Choose non-zero orthogonal projections
P19 P 2, P 3 such that Σ?=i Pi = h PX — P2 — I,I—PZ is the I2 summand,
I — P3 <= Pt + P2, and PL — PtP^ P 2 — P2P3 are the equivalent abelian
projections comprising / — P 3. There exists a central projection D
such that θ(PiD) are mutually 1, and Θf(Pi(I — D)) are mutually 1 .
For notation, let Qt = PJ), R, = Pi(I-D), T{ = Q^, T[ = R^ all for
i = 1, 2, 3, and let St = Qi(I- P8), SI = JB^I- P3) for i - 1,2. Further-
more let Mid = ]

LEMMA 24. S ,̂ S2 are equivalent abelian projections. A similar
statement is true for S[, S'2.

Proof. PJX - P3) - P2(l - P3) and are abelian. Hence S, =
P3) - ΰ P 2 ( / - P3) - St. Moreover SMS, £ i\(l - P3) MPX(1 - P3)
which is abelian.

LEMMA 25. The Si9 SI, Tj, T i = 1, 2, i = 1, 2, 3 are mutually 1,
core-free projections. A similar statement is true for θ(Si),
ΘκTό),θ'{T]). Moreover

v^ ηπ 7~i τ> >C T*' / T T~)\ T> \

= Ψ(D), Σ P(Sl) + Σ '̂(Γi) =

Finally <?(£?,) = Θ(S%), Θ{T<) - ^(Γ,), (9'(S;) = Θ'(S'Z), θ'iT,) = <?'(ry).
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Proof. θ(Sd = θiQdΨil ~ Pz), Θ{S>) = θ(Q,)ψ(I - Ps) Σ?=i θ(Tt) =

Σ?-i <?(Qι). Hence Θ(SJ + Θ(S2) + Σ?-i <?(2V) =

Lemma 13. S, = PιD (I - P3) = D(I - P8) = P2Z>(1 - P3) = S,. Hence
by Lemma 8, β(SJ = Θ(SS).

LEMMA 26. r 1 f ί Nu + Σ ΛΓ4Λ = Σ M« +

Proof. If Xe Mn then 0 = [X, Q2] = [X, Q3] = [X, JBJ ΐ = 1, 2, 3.
Hence, 0 = [φ(X), Θ(QJ] = [φ(X), Θ(QJ] = [^(X), ^(Λ,)] i = 1, 2, 3. Thus,
0 = θ{Q1)φ(X)θ(Q2) = θ{Qi)φ(X)θ{Q1) = θ{Qz)φ{X)θ{Q*) = θ(Q2)φ(X)θ(Q3),
and ff{Ri) φ{X)θ'{R3) = 0iΦj.

On the other hand for YeNn, then 0 = [Y,θ(Qύ] = [Y,Θ(QJ] =
[Y, θ'(Ri)] i = l,2, 3. Thus if X e M is such that φ(X) - Ye ZN we
have 0 = [X, Q2] = [X, Q3] = [X, R{] i = l,2,3 by Lemma 6. Hence

X e Σ?=i Mit + Σ U Λf«.

LEMMA 27. φ-^N^) = M{j and Φ'^Na) = MiS for % Φ j .

Proof. Φ{Mi3) g N{j{i Φ j) as in the I 2 case. Suppose YeN12

and let X be such that φ{X) - YeZN. Y= [Θ(QJ, Y] = [Θ(QJ, [Y,
Θ(Q2)]]. Hence, as before [Q,, X] = [Qlt [X, Q2]] so that Q2 x Qι = 0.
Moreover, 0 = [Γ, 0(Q8)] = [Γ, ̂ '(jRi)] for i = 1, 2, 3 so that 0 = [X,
Q3] = [X, R{] for * = 1, 2, 3 by Lemma 6. Writing X = Σ i s w β -Xij +
Σisi.isa J « where X ί 3 e 3fw, Xi} e Jtfw we have X = Σ L i X « + Σ L i X ϋ +
X12. Hence ^(X) - Σi=i-X« + ΣSJXu + Xa- Z= YeN12 for some Ze
ZN. By Lemma 26, ^ (Σ?-i X« + Σί- i £«)e Σ?-i N« + ΣUNu and
so, as in Lemma 16, φ (Σ?=i X« + Σf=i Z«) = z o r ί 5 ^ ) = ϊ7"*

For the other part, let X e Ma. As before, X = [i?1? [X, i?J] =
[RltX]. But now, since φ(R() = -(?'(i2<) + λ'(Eί) and the <?'(#,) are
mutually i , we have ?5(X) = [-0 '( iy, [^(X), -^(5 2)]] = ^'(i?2) x
φ(X)θ'(Rι) + ef(R^(X)ef(R2) = θ'(R2)φ(X)θ'(Rι) - e'(R^(X)d'(R2). Hence
?5(X) = tf'CRMX^'CRO. This shows ί*(M«) S iV^ An argument
similar to that above shows Φ^iNjΐ) = Ma

COROLLARY, Φ is onto.

LEMMA 28. Φ(ZMn) s iVu + ZN.

Proof. A e ZXn implies [A, X] = 0 for all X in M23 + ikf32 +
Σϊ=i Mtt + Σf=i Mu Hence if B = φ(A), [B, X] = 0 for all X in Nn +
Ns!i + Σ<=! ^» + Σl=i iViΐ by Lemma 26 and Lemma 27. That is, [5,
X] = 0 for all X in Nt = {STS\ TeN,S = Θ(Q2) + Θ(Q3) + f (I - D)).
Now by Lemma 26, B = Bί + C where B.eN^, CeN0. Thus, 0 =
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[B, X] = [Bt + C,X] = [C, X] for all Xe No, and CeZNo = {SZS \Ze
ZN}. Thus, since S = I- Θ(PJ, B = B, + C = Bx + Z(I - Θ(PJ) =

+ Z where Ze ZN.

COROLLARY. Φ&MSJ S Nn + ZN.

Proof. SiMSi is an abelian algebra, and so S îlίS^ £ ZSίMSi =
ZN} £ ZMn since & = Pi-Dί/ - P3).

LEMMA 29. ΦiT.MT,) g Σl = 1 JVίW4, + Σί = 1 JVβ,(5l,, + Σ?-i
2Luiί rse'W')*

Proof. Since I = Σ ! = 1 <?(S,) + Σ! = 1 θ'(S'd + Σf=: ̂ (^) + ΣS-* ^(2T
we apply the method of Lemma 15.

LEMMA 30. ΦiTMT,) = θ{Tt)NΘ{T3), φ{StMS,) = θ(St)NΘ{Si),
) = θ'(Sί)NΘ'(Sΐ), Φ(ΓiMΓi) = θ'iT'JNΘ'iTΰ for i Φ j .

Proof. As before.

LEMMA 31. ΦiT.MT,) s Θ(TJNΘ(TJ + ZN.

Proof. If A e ΓiΛf^ then L4, Z] + 0 for all X in Γ2ϋίΓ3 + T3MT2 +
Σ ^ . SίJMSy + Σ * w îkΓS + Σί=, TίMΓJ. Hence, if 5 = ώ(A), [5, X]
= 0 for all X in Θ(T2)NΘ(T3) + Θ(T3)NΘ(T2) + Σ w θ(St)NΘ(Si) +
Σ w 0 Ό $ ) W(S;) + Σw/(TJ) NΘ'iT'i). Since the corresponding pro-
jections (e.g., θ(Si), θ(Sj)) have the same central carrier, we can apply
Lemma 5 to conclude that [B, X] = 0 for all X in {STS\ TeN,S =
Θ(T2) + Θ{T3) + Σf=i 0(Si) + Σf=i Θ'(S\) + Σ?=i ^'(^)} = iVo. As before
we have B = BL + C where B^θiT^NΘiT^), CeZNo. Hence ΰ e

LEMMA 32. jK-ftfJ £ iVu + ZN.

Proof. Mn = PMPi = (S1 + T^MiS, + ΓJ = S.MS, + T.MT,.
Similar arguments show that φ{Mu) s Nu + 2^, Φ(MU) s iV̂  + ̂  for
i = 1,2,3.

We define mappings σ: MD -*• N^(D) and λ: MD —»^r in the following
manner: if Ae Af{i(i ^ i) then σ(A) — Φ(A), and if Ae Mu by Lemma
30 φ(A) = σ(A) + iί where σ(A) e iVi{ and Ze ZN. Extend σ to all of
MD by linearity and define X(A) — φ(A) — σ(A) for A e MD. σ and λ
are well defined, for if 7\ + ̂  = T2 + ̂  where Γi e Nu, Zi e Zs, then
Tt- T2eN«f)Zn = {0}.
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We can analogusly define mappings σ': MT^D —> Nψ{I_D) and λ':

D —• ZN using the corresponding facts for Mi3>. Note that σr(Mi3) =

As before, σ, λ, σ', and λ' are *-linear mappings.

LEMMA 33. If AeMiiyBe MiS{i Φ j) then σ{AB) = σ(A)σ(B). If
A e Miif B e Miό{i Φ j) then σ'{AB) = - σ'{B)σ'{A).

Proof. AeM«, BeMi5 then σ'(AB) = φ(AB) = φ[A, B] = [φ(A),
φ(B)] = [σ'{A),σ'{B)} = - σ'(B)σ'(A) since σ(B)eMsi.

LEMMA 34. // A,BeMH then σ(AB) = σ(A)σ(B). If A,BeMu

then σf{AB) = - σ'{B)σ'{A).

Proof. The proof for AjBeMa is similar to Lemma 21. If A,
B e M« and S e MiS(i Φ j) then σ'{S)σ'{B)σ'{A) = - σ'(BS)σ{A) = σ'{ABS)
= - <f(S)σ'(AB). Hence 0 = [σ'{AB) + σ'{B)σ'(A)]σ'{S) = σ'(S)[σ'(AB) +

LEMMA 35. If Ae Mi3 , B e Mdi(ί Φ j) then σ(AB) = σ(A)σ(B). If
AeM^BeMji then σ'(AB) = σ'{B)σ'{A).

Proof. Similar to Lemma 22.

THEOREM 3. σ(resp. σ') is a *-isomorphism of MD onto Nψm (resp.
is the negative of a *-anti-isomorphism of MΣ-D onto Nψ{I-D)) and
λ(resp. λ') is a *linear map from MD into ZN (resp. from M^D into
ZN) which annihilates brackets.

Proof. Similar to the I2 case.

REMARK 1. If M has no summand of type I2, then a proof much
like the one above gives the same Theorem 3 for such an M. Thus,
including the I2 case, Theorem 3 holds for all von Neumann algebras
M which have no abelian summands of type I.

REMARK 2. A result of Sunouchi [15] (see remarks following
Theorem 3 below) shows, in part, that if M is an infinite von Neumann
algebra, then [ikf, M] = M. Thus in the above, if φ: M —• N is a near-
isomorphism and M infinite then φ — σ + σ' and is automatically
bounded.
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REMARK 3. Martindale [10] proved that if L is a Lie derivation
of a primitive ring R into itself, where R has a nonzero idempotent
and is not of characteristic 2, then L — D + T where D is an ordinary
derivation and T a center-valued additive map which annihilates com-
mutators. By slightly altering Martindale's proof we can show the
same result if R is a von Neumann algebra.

4* Lie *-homomorρhisms of C*-algebras* We now turn our
attention to characterizing uniformly continuous Lie *-homomorphisms
between C*-algebras. In order to do this we first investigate ultra
weakly (UW) closed Lie *-ideals in von Neumann algebras.

DEFINITION. A Lie *-ideal U in a *-algebra M is a *-linear sub-
space of M such that if Xe U and YeM then [X, Y] e U.

LEMMA 36. Let M be a C*-algebra, U a Lie *-ideal in M such
that if A, Be U then [A, B] = 0. Then £7g ZM.

Proof. Since U is closed with respect to the *-operation it is
generated, as a linear space, by its self-adjoint elements. Suppose A =
A* e U, and B any self-adjoint element in M. Then [B, A] e U so
that [[B, A], A] = 0 since U commutative. By Lemma 6, [B, A) — 0.

LEMMA 37. If U is a Lie *-ideal in a C*-algebra M which is at
the same time an associative subring of M then either U S ZM or U
contains a (two-sided, associative) ideal of M.

Proof. We follow Herstein [3: Theorem 2, p. 281]. If U is com-
mutative then U S ZM by Lemma 36. If U is not commutative then
there exist X, Ye U such that [X, Y] Φ 0. In this case Herstein
proves that the ideal M[X, Y]M (= all finite linear combinations of
elements of the form S[X, Y] T where S, TeM) is contained in U.

LEMMA 38. If U is any Lie ideal in an associative ring M, then
T(U) = {TeM\[T,X]eU for all XeM) is a Lie ideal and subring
of M. Moreover UξΞ: T(U). If U is a Lie * ideal and ultra-weakly
closed, so is T((J).

Proof. See Herstein [3: Theorem 2, p. 282].

COROLLARY. If M is a von Neumann algebra, U a ultra-weakly
closed Lie *-ideal in ikf, then T(U) = ZM or there exists a nonzero
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central projection C in M such that Mc § T(U).

Proof. By Lemma 37 either T(U) £ ZM (in which case T(U) =
ZM since ZM S T(U)), or there exists a nonzero two-sided ideal / g
Γ(17). In the latter case, I'uw £ T(Z7) and i"-™ = Mc for some
nonzero central projection C.

THEOREM 4. If M is a von Neumann algebra and U an ultra-
weakly closed Lie *-ideal in M, then T(U) = ZM or there exists a
nonzero central projection C such that T(U) = ZM + Mc.

Proof. By the corollary to Lemma 38, T(U) = ZM or there exists
a nonzero central projection C such that Mi £ (Ϊ7). Let C be a
maximal such projection. Then Mc £ Γ(Z7) so that Z* + Λfc £ Γ(Z7).

Suppose SeT(U) and S g £* + Λfσ. We can assume S = S*.
Writing S = SC + S(I - C) we see that S(I - C)e T(U) (since 5, SCe
T(U)) and that S ( I - C) Φ 0 (since S i Z* + A^). Since Sf(/- C) ί
Z^ there exists S1 = Sf e M such that [S^ S(I - C)] Φ 0. Moreover
[S19 S(I- C)]eT(U) since Γ(JJ) is a Lie ideal, and [[Slf S(I - Q],
S(I — C)] ^ 0 by Lemma 6. Applying the techniques of Herstein [3:
Theorem 2, p. 281] with X= [Su S(I - C)], Y= S(I - Q, the set
M[X, Y]M is a non-zero two sided ideal contained in T(U). Or, 0 Φ
(I - QM[[Sl9 S], S]M £ C7. Let J - M [[Sιf S\, S]M. Then ((I -
C)J)-σw =(I-C)J~UW = (I-C)MD, where I) is a nonzero central
projection, is a nonzero, two-sided, ultra weakly closed ideal in T(U).
Hence (I — C)MD + Mc is an ultra weakly closed two-sided ideal in T(U)
properly containing Mc, a contradiction. Thus T(U) = ZM + M .̂

Sunouchi [14] proved that if M is a von Neumann algebra, and
[M, M] = all finite linear combinations of brackets from M, then M
infinite implies [ikΓ, M] = M, M finite implies that [M, M] is uniformly
dense in the null space of the center-valued trace, #, on M. Using
this fact and Theorem 3 we can prove the following corollary:

COROLLARY. If U is an ultra-weakly closed Lie *-ideal in a von
Neumann algebra M, and if ZM £ U, then either U — ZM or there
exists a nonzero central projection C, in M, such that U = ZM + Mc.

Proof. If T(U) - ZM then ZM £ U £ T(U) £ Z*. Otherwise
Γ( U) = ZM + Mc for some non-zero central projection Ce M. From the
definition of T(?7) this implies C[M, M] = [Λfα, Λfc] £ ?7.

Case 1. M infinite. The [ilf, If] •= M so that C[Λί, M] = Mc £ ?7.
Thus Z,¥ + Jfσ £ UST(U) QZM + Mc.
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Case 2. M finite. Then [M, M]~u " = {XeM\X* = 0} where #
is the center-valued trace on M. For notation let No = {XC\{XCf = 0}.
We have [Mc, Mc]"u " = Nc so that iV̂  £ Z7 This implies that Z^ +
No^Us T{U) ^ZM + Mc. But for arbitrary Xe M, XC = (XC)* +
XC - (XC)*eZM + Nc^U. Thus Mc g U.

THEOREM 5. If φ:M—+N is an UW-continuous L-onto Lie
*-homomorphism between the Neumann algebras M and N then there
exists a central projection C e M and another UW-continuous L-onto
Lie *-hθ7nomorphism ψ from M to N such that

(1) the difference of ψ and φ is a X-map (i.e., *-linear from M
to ZN, annihilates brackets),

(2) Mc lies in ker ψ, and

(3) the restriction of ψ to Mj-C is a near isomorphism of Mj^0

to N.

Proof. Let D be the maximal finite central projection in M and

set ψ(X) = Φ(X) — φ{(XDf). There exists, by the preceding corollary,

a central projection Ce M such that Φ"\Z^) — Mc + ZM. It is easy

to see that Φ~\ZN) = ψ~\ZN) = Γ(ker ψ) where T(U), U a Lie ideal,

is as above. The definition of T(ker ψ) implies that [Mc, Mc] g ker ψ.

By Sunochi's result, (I — D) [Mc> Mc] = MC{I^Ώ) £ ker ψ. Hence

ψ(XC(I ~ D)) = 0 or ψ{XC) = ψ(XCD). Moreover, again by Sunouchi,

[M0D,McD]-u " = {XCD\(XCD)*=0}Qkeτψ. Ύhusψ(XCD~-(XCDy) = O.

Finally, ψ(XC) = ψ(XCD) = ψ((XCD(*) = φ{{XCD)*) - ' φ{{XCD)*) - 0.

If YeN then, since φ is L-onto, there exists XeM such that
φ(X) - Y= ZeZN. Hence ψ{X) - φ(X) - φ{{XDf) = Y+ Z- Φ((XD).

Since φ{ZM) £ ZN we have ψ{X) - YeZN.

If ψ(X(l - C)) = ψ{Y{l - C)) then φ(X(l - C) - Y(l - Cj) e ZN or

X(l - C) - Y(l- C) = WC + Z for T^G M, Ze ZM. Thus X(l - C) -

We are now in a position to prove the main result. Note that
if φ: M-^N is a near isomorphism of von Neumann algebras M, N
and if CM (resp C )̂ is the maximal central abelian projection in M
(resp JV) then ψ(X) = (/ — C )̂ ^(X(J — CM)) is a near isomorphism of

M^CM to iV7_^.

THEOREM 6. If φ is a uniformly continuous Lie*-homom,orphism
of a C*-algebra J^f onto a C*-algebra &, there exists a central projection
D in the weak closure of B such that (modulo a λ-map) Dφ is a
*-homomorphism and (1 — D)φ is the negative of a *-antihomomorphism.
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Proof, Let M= j ^ * * , the second dual of j ^ , and N = .5?~w.
The theorem of Stormer [14: Theorem 3d, p. 443] for Jordan *-homo-
morphisms can be altered to give, in the present case, the existence
of an Z/W-continuous extension φ:M—>N of ψ which is also a Lie
*-homomorphism onto.

Let ψ: M—> N be an L-onto Lie *-homomorphism such that there
exists a central projection C in M such that ψ — φ is a λ-map, Mc £
ker ψ, and ψ \ Ml_c is a near isomorpism of MΣ_C to N. We can assume,
by the above remark, that Mj_c and N have no type I summands.
Applying Theorem 3 to φ\Xl_cwe have the desired result.

REMARK 1. Theorem 6 would be an exact analog of Stormer's
generalization [13, Theorem 3.3, p. 445] of the Kadison result [6,
Theorem 10, p. 334] on Jordan homomorphisms of C*-algebras were
it not for the assumptions of uniform continuity and ontoness. In
particular a Jordan *-homomorphism is automatically uniformly con-
tinuous. The question of continuity of Lie *-homomorphisms of von
Neumann algebras, because of the presence of λ-maps, is closely con-
nected with the problem of determining the linear span of commutators
in rings of operators.

We must assume ontoness in our theorem because of the lack of
an analog for the Lie case, to a theorem of Jacobsen and Rickart [16,
Theorem 7, p. 487] which states that any Jordan homomorphism of
an m x n matrix ring into another ring is the sum of a homomorphism
and an anti-homomorphism.

REMARK 2. Let S^f and & be C*-algebras with I, JK, ^ their
respective unitary groups, and p: ,SK —> .^?u a uniformly continuous
group homomorphism. As in [12] there exists uniformly continuous
map φ: Ssf—*^?, which is in particular a Lie *-homomorphism φ of
j%? onto έ%. Thus the statement of Theorem 6 applies to this φ.
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