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LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS

C. ROBERT MIERS

A mapping ¢: M — N between *-algebras M, N which is
*.linear, and which preserves the Lie bracket [X, Y] = XY —
YX of elements X, Y in M is called a Lie *-homomorphism
or just a Lie homomorphism. The main result of this paper
states that if ¢: A — B is a uniformly continuous Lie *-homo-
morphism of the C*-algebra A onto the C*-algebra B then
there exists a central projection D in the weak closure of B
such that modulo a center-valued *-linear map which anni-
‘hilates brackets, D¢ is a *-homomorphism and (I — D)¢ is the
negative of a *anti-homomorphism.

Previously we showed that if M is a factor then so is N and in
this case ¢ = 0 + M where ¢ is a *-isomorphism or the negative of a
*-anti-isomorphism of M onto N and ) is a *-linear functional which
annihilates brackets in M. This result parallels the algebraic theorems
of L. Hua and W. S. Martindale.

The main techniques used in this paper are the algebraic techni-
ques of Martindale [8], [9], and Herstein [3]. Adaptations of them
allow us to characterize Lie *-isomorphisms between von Neumann
algebras and also ultra-weakly (= UW) closed Lie *-ideals which
contain the center. For a complete exposition concerning Lie struc-
tures on associative algebras we recommend Herstein [4]. We wish
to thank Professor H. A. Dye for many invaluable conversations
during the preparation of this paper.

1. Preliminaries and notation. We denote by < (H) the ring
of all linear operators T: H — H, H a complex Hilbert space with inner
product (., .), which are bounded in the norm || T|| = sup.;<: || T%|].
With this norm, #°(H) is a Banach algebra with identity the identity
operator I. In addition to the uniform topology on &#(H) we shall
be concerned with (1) the weakest topology making the linear func-
tionals T'— (7%, y) continuous for all z, y € H, called the weak (operator)
topology and (2) the weakest topology making the linear functionals
T—>%.,(Tx,, vy, continuous for all sequences {,} {y,} such that

o1 1 2a 1% St || ¥all? < oo called the ultra-weak (operator) topology.

To each operator T'e & (H) there corresponds an operator T™ ¢
Z(H), called the adjoint of T, defined by (Tw, y) = (x, T*y) for all
z,ye H. If T = T* T is called self-adjoint; if T is selfadjoint and
T = T? T is called a projection; if TT* = T*T = I, T is called unitary.

A C*-algebra, M, is a subalgebra of < (H) which is closed in the

17



718 C. ROBERT MIERS

uniform topology and closed under the operation of taking adjoints.
A von Neumann algebra is a weakly closed *-subalgebra of & (H)
which contains I. It is a fact that if M is a von Neumann algebra
then M is the smallest weakly closed linear subspace of L(H) con-
taining the set {P|P a projection in M}. The set Z,, = {Se M|ST =
TS for all Te M} is called the center of M. If P is a projection in
M then M, = {PAP|Ac M}.

Any associative algebra M can be made into a Lie algebra by
defining a new multiplication of elements A, Be M to be the com-
mutator [A, B] = AB — BA where AB is the associative product.
For notation let [M, M] be the linear span of all such commutators.
A Lie ideal of M is a linear subspace which is an ideal with respect
to the multiplication [A4, B]. Any associative ideal is a Lie ideal,
[M, M] is a Lie ideal, and any linear subspace of Z, is a Lie ideal.

We use Dixmier [1], [2] as general references.

2. General results.

DEFINITION. Let M be a von Neumann algebra with center Z,.
For each self-adjoint operator A c M we define the core of A, denoted
by A, to be the LUB [Se Z,|S self adjoint, S < A]. One has 4 —
A = 0. Further, if SeZ,and A— A=S=0then S=0. If P is
a projection it is clear that P is the largest central projection < P.
We call a projection core-free if P = 0.

The following theorem is a generalization of a result of L. Hua
[5] and its proof is due to H. A. Dye.

THEOREM 1. Let M be a von Neumann algebra on the Hilbert
space H. If A is a self-adjoint operator in M satisfying the identity
[[[X, 4], A] = [X, A] for all Xe M, then A — A 1is a projection.

Proof. The identity is true for A — A as well so we can assume
A=0and A>=0. In particular, for each nonzero central projection
C, 0 lies in the spectrum of CA (considered as an operator on CH)
(otherwise there exists ¢ > 0 such that A = ¢C).

Suppose o(4) = {0,1}. We can then choose peo(A) such that
d(¢, {0,1}) > 2¢ > 0 where d(a, S) = distance from a to the set S.
Let 6 > 0 be such that |t — ¢| < 6 implies d(¢ {0,1}) <e. By the
spectral theorem there exists an operator B, commuting with A, of
the form B = >\, M P, where the \; are distinet and = 0, the P; are
mutually 1 projections of sum I, 0 < B < A, and |[|A — B|| is so small
that ||A — Bl| < e and

(1) |IllIX, Bl, Bl, B] — [X, B]|| < 6 for all X in M such that || X||<1.
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Furthermore, 0 occurs among the A; and P, = I (if P is a pro-
jection P is the central carrier of P) for i =1, -+, n. Finally, since
[|A — B]| < ¢, one of the \,;, say \,, will be at distance > ¢ from {0, 1}.

Now we consider the mapping +,(S) = USU~" where U is unitary
in M. Taking X = U in (1) and rewriting this relation in terms of
4r, We have

@ [[9u(B)’ — 8Byu(B)* + 3B*y(B) — B* — 4(B) + B|| < ¢

P, = ] implies the existence of nonzero projections @, < P,Q, < P,
such that @, ~ Q.. We choose a unitary operator U such that +», has
order 2, +,(Q,) = @, and +, is the identity off @, + Q.. For this U,
(2) reduces to ||(A — A\)Q, + (A — )R, < 6. In particular, |\ —
o] < o so that d(\,, {0, 1}) < ¢ which is a contradiction. Hence d(4) =
{0,1} and A is a projection.

LEMMA 1. Let P and Q be commuting core-free projections in M.
Then P+ Qe Z, implies P L Q, and P — Qe Z, implies P = Q.

Proof. If P+ Qe Z, then (P+ Q) — (P + Q) = 2PQeZ,. But
in this case PQ<P=0. If P—-QeZ,, then (P— Q)+ (P — Q) =
2(P— PQ)eZy. But P— PQ < P = 0sothat P = PQ. By symmetry
Q = PQ.

DEFINITION. Two projections P and @ are called parallel (P||Q)
if PQ = 0.

LEMMA 2. P||Q implies [[P, X], Q] = 0. Conversely, +f P and
Q are commuting core-free projections such that [[P, X], Q] = 0 for all
xe M then P||Q.

Proof. The first statement is clear from the definition of central
carrier.

For the other part, multiplying the relation [[P, X],@Q] =0 on
the left by PQ gives PQX(I — P)(I — Q) = 0 for all Xe M so that
PQ||(I — P)(I — Q). Multiplying the relation on the left by P and
on the right by @ gives P(I — Q) XQ(I — P) = 0 for all Xe M so that
P(I— Q)||QUI — P). The first parallelism statement implies PQ <
PU Q. Thus P(I— Q)PQ lies in PUQ, is orthogonal to @, and hence
is in P. Since P = 0 this implies P(I — Q)PQ = 0. Likewise Q(I —
P)PQ =0, forcing PQ = PQ so that PQ = 0. Thus P = P(I — Q) and
@ = Q(I — P) which implies P||Q.

LEMMA 3. Let P and Q be commuting projections in M such that
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[lIIX, P, Ql, P],Q] + [[Y, P], Q] = 0 for all Xe M. Then there exists
a projection Ce Z, such that PQUI — C) =0, (I — P)(I — @C = 0.

Proof. Multiplying the bracket identity on the left by PQ gives
PRQX(I—- PY{I— Q) =0 for all X so that PQ||(I — P)(I — Q). Let
C = PQ.

LEMMA 4. If the von Newmann algebra M has no summands of
type I, ( = central abelian projection) then each monzero central pro-
jection Ce M is the carrier of a core-free projection in M.

Proof. Nonzero core-free projections exist in M since if P is a
noncentral projection, P — P is core-free. By Zorn, let {P,} be a
maximal collection of || core-free projections and let P = XP,. Note
that P = I. For, otherwise there is a central projection C = 0 ortho-
gonal to all the P,, and this C would dominate a nonzero core-free
projection thus contradicting maximality. Moreover P is core-free.
If C is a central projection and C < P, then P,C < P, so that P,C =
0. Finally CP = CP = C for any projection Ce Z,,.

LEMMA 5. Let M be any von Newmann algebra, P and Q pro-
jections in M with P=Q %= 0. If AeM commutes with PXQ and
QXP for all Xec M, then A commutes with PXP and QXQ for all
XelM.

Proof. Since P-Q # 0 there exist nonzero projections P, < P,
Q. < @ such that P,~ Q,. Let V,e M be such that V*V, = P, V,V* =
@Q,. Since P,XP, = PP.XV:Q,QV,P,P we have that 4 commutes with
P XP, forall X. If P, # P, then P — P,Q + 0 so there exist projections
P,<P —P,Q, =< Q with P, ~ Q.. Let V,e M be such that V;V, =
P, V,V§i= Q.. As before P,XP, = PP, XV}Q.QV,P,P so that A
commutes with P,XP, for all Xe M. Moreover, since P,XP, =
PP XV QV,P,P, A commutes with P, XP, (and similarly with P,XP)
for all Xe M.

By Zorn, choose a maximal collection {P,} of non-zero mutually
orthogonal projections such that (i) P, < P, (ii) A commutes with
P, XP; for all a, 8 and all Xe M. By maximality ¥P, = P. Thus
PXP = (YP,) X (JP,) and so A commutes with PXP. A similar
statement holds for Q@XQ.

LEMMA 6. Let M be a C*-algebra of operators on H. If X, Y e
M with Y self-adjoint, and if [X, Y)e Z, then [X, Y] = 0.

Proof. By (Singer [13] p. 242), if X, Y skew adjoint, then [[X,
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Y], Y] = 0 implies [X, Y] = 0. The same statement holds for X, Y
self adjoint since then X and 7Y are skew-adjoint.

Now suppose Y self-adjoint. Then [X, Y]e Z, implies [—X*,
Yle Z, and hence [X — X*, Y]e Z,. By the above [X — X*, Y] = 0.
Moreover — [ — X*, Y] e Z, so [X + X*, Y] e Z, and is therefore zero.
Finally [X, Y] = 0.

3. Near-isomorphisms of von Neumann algebras.

DEFINITION. A mapping ¢: M — N between von Neumann algebras
M and N which is *-linear and which preserves the Lie bracket of
operators in M is called a Lie *-homomorphism (or just Lie homomor-
phism)., If h,(X) = X + Z, is the natural Lie homomorphism of M
onto M/Z, we call ¢ L-onto if hyop maps M onto N/Z,. This implies
#(Zy) & Zy. Thus ¢ (if L-onto) induces a Lie homomorphism of M/Z,
onto N/Zy. If this induced homomorphism is a Lie isomorphism call
¢ a near-isomorphism.

If ¢: M— N is a L-onto Lie homomorphism, and Pe M then by
Theorem 1 and Lemma 1 there exists a unique core-free projection
6(P)e N and a central element MP) ( =¢(P)) such that ¢(P) = 6(P) +
MP). If we write 0'(P) = 6(P) — 6(P), then 6'(P) is core-free, ¢(P)
= — §'(P) + N(P) + N(P) (W(P) € Zy) and this representation is unique.
Note that 6(P) = #’(P) and that Pe Z, implies (P) = 0. We assume
from now on that ¢ is a near-isomorphism between the von Neumann
algebras M and N.

LEMMA 7. If Q is a core-free projection in N, then there exists
a core-free projection Pe M such that 6(P) = Q.

Proof. [[[Y,QIQ]Q] — [Y,Q] =0 for all YeN. Let PPeM be
such that ¢(P") — Qe Zy. Then ¢([[[X, P'|P'|P] — [X, P']) = 0 for all
XeM so that [[[X, P|P'|P]— [X,P]eker ¢ & Zy. By Lemma 6
this bracket expression is zero. Hence, by Theorem 1, PP — P = P
a core-free projection. ¢(P’) = 6(P) +MP) +¢(P) = Q+ Z,2€ Zy and
MP) + ¢(P') € Zy. Hence by Lemma 1, 6(P) = Q.

LEMMA 8. Let P and Q be_ core-free projections m&_]ll . 1_%_en P||Q
if and only if 6(P)]|6(Q) and P = Q if and only if 0(P) = 6(Q).

Proof. P||Q implies [[P, X],Q] =0 for all Xe M. If YeN let
Xe M be such that ¢(X) — Ye Z,. Then ¢([[P, X], Q) = [[6(P), Y],
6(Q)] = 0. Hence 6(P)||6(Q). On the other hand if 6(P)||6(Q) then
[[P, X], Q] eker ¢ = Z, for all Xe M. By Lemma 6, [[P, X]Q] =0
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for all X.

For the other part, if P = Q@ but 6(P) + 6(Q) then there exists a
projection C e Z, such that C(Q) = 0, C4(P) + 0. There exists a core-
free projection R in M such that O(R) = C6(P). Hence 6(R)||0(Q)
which implies R||Q. But 6(R)||#(P) so that R||P a contradiction.
Similarly 6(P) = 6(Q) implies @ = P.

LEMMA 9. 6 and 0" are additive on parallel core-free projections.

Proof. Let P, ---, P, be parallel core-free projections in M. By
Lemma 8 the 6(P), ---,0(P,) are parallel (and core-free) so that
O(P) + +++ + 6(P,) is a projection. It is also core-free by parallelism.
One has

0P, + -+ + P) = 31 0(P) = 3\ MP) — MP, + -+ + P) e Zy
By Lemma 1
0 (; Pi> = ; o(P,) <and g MP) = x(g P.i)).
A similar argument gives the result for &'.

LeMMA 10. If M and N have no central summands of type I
then there exists a unique *-isomorphism  of Z, onto Z, such that
O(CP) = 4(C)0(P) for all projections P and all central projections C.
One has (P) = 0(P). A similar statement holds with 6 replaced by 0.

Proof. We first define +r for central projections. For each central
projection C, choose a core-free projection P such that P = C (Lemma
4). Define ¥(C) = 6(P). If Q is any other core-free projection such
that @ = C then 8(Q) = 4(P) by Lemma 8 so that the mapping is well
defined. If D is a central projection in N, choose a core-free projec-
tion Re N such that R = D. There exists a core-free projection Pe
N such that 6(P) = R so that y(P) = 6(P) = R = D. Hence + is onto.
If v(P) = 4(Q) for core-free projections P and @ then 4(P) = 6(Q) and
by Lemma 8, P= Q. If C and D are central projections in M with
CD =0 let P and Q be core-free projections in M with P = C, Q@ = D.
Then CD =0 iff PQ =0 iff P|Q iff 6(P)||6(Q) iff 9(P)4(Q) = 0 iff
Vv(C)y(D) = 0. Thus + is a projection orthoisomorphism of Z, on Z,
and as such is implemented by a unique *-isomorphism (also called )
of Z, on Z,.

To show 6{(CP) = +(C)0(P) choose a core-free projection @ such
that @ = C(I — P). Then PC + Q has carrier C, and (C) = 6(PC + Q)
= 6(PC) + 6(Q) by Lemma 9. Now 6&(P) = 6(PC) + 6(P(I — C)) and
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both terms on the right are orthogonal to #(Q). Multiplying the
two relations together we have (C)8(P) = 6(CP).

Finally we show that 6(CP) = (C)8(P) implies v(P) = 8(P). Put
C = P to get 0(P) = 4(P)d(P) or 6(P) < v(P). So 6(P) < +(P). Now
if P+ R=1T1and PL R we have 6(P) + 0(R) = 1.

DeriNITION. Two projections P, @ are called co-orthogonal (co L)
ifP-—PLQ-Q.

LemmA 11. Let P,, ---, P, be commuting core-free projections,
each pair of which satisfy the identity of Lemma 3. Then there exists
a central projection C such that the P; are orthogonal on C, co-orthogonal
on I—C.

Proof. For each pair P;, P; (¢ # j) there exists a central projec-
tion C;; such that P,P;C;; =0 and (I — P)YI — P;))(I— C;;) =0. Let
<% be the boolean algebra generated by the C;;. If C is an atom
in & then P,P;,C=0or (I— P)I— P;)C =0 (t+#J).

Index so that PC, ---, P,C are the non-zero terms of the form
P,C (we can leave 0 out since it is both L and co L to all projections).
We claim that these projections are either I or co 1. It suffices to
take m = 3. If PP,C =0 then all the P,C are mutually 1. For
if, say, P.P,C #+ 0 then (I — P)(I — P;) C =0 so that (I — P) C £ P..
The two relations give P,C < P,. Now if CP,P, = 0 we have P,C =
0 a contradiction. If (I — P)(I — P,)C =0 then C(I—~ P,) < P; so
that C < P, contradicting the fact that P, = 0. The same argument
shows P,P,C =0 for + = 3. Applying this reasoning to each P,C in
turn gives their mutual perpendicularity.

In a similar way if, say, (I — P)(I — P,) C = 0 then all the (I —
P,)C are mutually orthogonal. If, for example, P.P,C = 0 then (I —
P)C< P, and we have P,C< P,CP,P,=0 implies P;=0 and (I — P, X
(I — P,)C = 0 implies C < P,, both contradictions.

COROLLARY. Let M and N be won Neumann algebra with no
central summands of type I, and let P,, ---, P, be a collection of
mutually L projections in M. There exists a projection D e Z, such
that the P;D have 1 image under 0, the P,(I — D) have 1. image under
g.

Proof. Apply the above to the 6(P;) and get the projection Ce
Zxy. One has C = (D) for some D € Z,, and 6(DP;) = C 6(P,), 0(DP;) =
Co'(P;).
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LEMMA 12. Let P, -+, P, be projections in M with P, = I, De
Zy such that (i) P;D are mutually L, (ii) 2P;D e Z,, then >.,*, P;D = D.

Proof. Say 3P,D=CeZy. Then P;D=P;CD so that D= CD.
Hence D < C. Obviously C < D.

LemMA 18. Let P, +--, P, and D as in Corollary to Lemma 11
with P, =1 Then (D)3, 0(P;) = (D), (I — D)L, 6(P;) =
v(I — D).

Proof. ¢(D) = >, 60(P;D) + > MP;D)e Z,. Hence >,
O(P)y(D)e Zy and the O(P)y(D) are mutually 1. By Lemma 12,
7, 0(P)y(D) = y(D). A similar argument works for ¢ and I — D.

LEMMA 14. If M is any von Neuwmann algebra and P a core-free
projection in M, then M, (= {PAP|Aec M}) N Z, = {0}.

Proof. Suppose PAPcZ, where A is self-adjoint and A < I.
Then ((P — PAP)x,2) = ((I — A)Px, Px) = 0 so that P = PAP. Since
P = 0 we have PAP = 0. In general, if A = A, + 14, where 4,, 4, are
(nonzero) self-adjoint and PAPe Z,, then PAP + PA*P =2PA Pec Z,.
Therefore P(1/||A,||) A,Pe Z, so that PA,P = 0 by the first part of the
argument. Similarly PA4,P = 0.

4, The decomposition theorem. The following arguments are,
in part, adaptations of those of Martindale [8], [9]. These adaptations
are of sufficient technical complexity to merit their entire conclusion.

We consider first the case where ¢: M — N is a near isomorphism
of M to N, and M is a type I, von Neumann algebra. Let P,, P, be
equivalent, orthogonal, abelian projections of sum I in M. We have
that P, =0, P; = I for i =1,2,and that 6(P)6(P,) =0 since 6(P,) +
6(P,) € Zy. Moreover, I = (I) = 4(P,) =0(P) < 6(P,) + 6(P,) = 6(P,) +
0(P,) < I and so 8(P,) + 6(P,) = I. Notice that 8(P,) = 6'(P,) and 0(P,) =
0'(P,). For notation let M;; = {P,AP;| A€ M}, N;; ={0(P,)A0(P;)| A e N}.

LEMMA 15. ¢7'(N, + Np) = M, + M.

Proof. If Xe M, let ¥ = ¢(X). Since [X, P,] =0 we have 0 =
[Y, 6(P,)] or YO(P,) = 6(P,)Y. This implies 0(P,)YO(P,) = 0(P,)YO(P,) =
0 which in turn implies Ye N,, + N,. Similarly if Xe M.

Suppose Ye N, and Xe M is such that ¢(X) — YeZ,. Then
[Y, 6(P)] =0 so that [X, P,Jeker ¢ = Z,, which implies [X, P)] =0
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by Lemma 6.
LEMMA 16. ¢ (N,) = M,; (i # 7).

Proof. For example, suppose ¢ = 1,7 =2 and let XeM,. X =
[Q., [Xy Q] = [@, X]' Hence ¢(X) = [0(P), [¢(X)a 0(P2)]] = 0(P1)¢(X)
O(P,) + 6(P,)¢(X)0(P) = O(P)[O(P,), $(X)]0(Ps) + O(P)[O(P), $(X)]0(P,) =
O(P)¢(X)O(P,) — 6(P)¢(X)0(P,) since O(P,) L 6(P,). Therefore ¢(X)=
0(P) $(X) 0(P,). So ¢(My) & No.

If YeN,, then Y = [0(P), Y] = [¢(P,), Y] and also Y = [0(P)),
1Y, 6(P)]] = [¢(P), [Y, #(Ps)]]. Let Xe M be such that ¢(X) — Ye
Zy. Then [P, X] — [P, [X, P]]lcker ¢ and so equals zero, or P.X —
XP, = P,XP, + P,XP,. This gives P,XP, = 0. Now ¢(X) = ¢(P,XP)) +
é(P.XP,) + ¢(P,XP,) so that ¢(P.XP) + ¢(P.XP,) + $(P.XP,) — Z =Y
for some Zc Z,. By the first part of the argument we then have
HP.XP) + ¢(P,XP,) — Ze N,. By Lemma 15, ¢(P.XP)) + ¢(P.XP,) =
9(P)S6(P) + O(P,)TO(P,). Hence 4(P)S6(P) + 6(P,)TO(P.,) — Z =
0(P,) Wo(P,) for some We N. Multiplying on the left and right by
0(P,) gives 6(P)SO(P,) — ZO(P) = 0. Similarly 6(P,)TO(P,) — ZO(P,) =
0. Hence 6(P)SO(P) + 0(P,)T6(P,) — Z = 0. This implies ¢(P,XP,) =
Y.

COROLLARY. ¢ s onto.
LemMA 17. é(M;;)) & N, + Zy.

Proof. M, and M, are abelian von Neumann algebras in their
own right and so, therefore are M,, + M., (= M,, @ M.,) and by Lemma
15, N,, + N, ( = N, @ N,;). The latter implies that N,,, N,, are abelian.

Let Xe M, and Y =¢(X). Then Ye N, + NS Zy, + Zy,, (since
Nu + sz abelian) = ZNu + Zsz S Zﬂ(Pl) -+ ZB(PZ)' Thus Y =S 0(P1) -+
T6(P,) where S,TeZ,. But 6(P)=1I1—0(P,) so that Y = (S —
mewr) + T.

We define mappings : M — N and M M— Z, in the following
manner: if Ae M;; (i =J) then 0(4) = ¢(4), and if Ae M,; by Lemma 17,
#(A) = 0(A) + Z where 0(A)e N;; and Ze Z,. Extend o to all of M by
linearity and define M(A4) = ¢(A) — ¢(A). o and )\ are well defined,
for if A, + Z, = A, + Z, where A;e N,;, Z;€¢ Z, then A, — A,e N; N
Zy = {0}.

LeEMMA 18. o and ) are linear mappings.

Proof. We show o(aA + BB) = ao(A) + Bo(B) for A, Be M and
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a,BeC. It suffices to assume A,BecM;;. Then o(aA + BB) —
_ao(A) — go(B) = — MaA + BB) + aMA) + AMB) e N;; N Zy = {0}.

LEMMA 19. ¢ and N preserve adjoints.

Proof. Again assume Ae M;;. Then o(4*) — od(A)* = MA)* —

LEMMA 20. If Ae My, Be My; (i # 7) then o(AB) = o(A)a(B).

Proof. In this case, 6(AB) = ¢(AB) = ¢(AB — BA) = [¢(A4), (B)] =
[0(4), 0(B)] = a(A)a(B).

LEMMA 21. If A, Be M;; then o(AB) = d(4)o(B).

Proof. Let Se M;; (1 +7). Then c(AB)o(S) = d(ABS) = d(A)a(BS)
= g(A)o(B)o(S). Hence, [0(AB) — o(A)a(B)]e(S) = o(S)o(AB) —
[6(A)o(B)] = 0. Specifically, ¢(AB) — g(A)o(B) commutes with N;;.
Similarly ¢(AB) — o(A)o(B) commutes with N;;. Applying Lemma 5,
0(AB) — 0(A)o(B) commutes with N;; and N;;, so that, g(4B) —
O'(A)O'(B) €ZyN Ny = {0}

LEMMA 22. If Ae M., Be M;; (i # 7) then o(AB) = o(A)a(B).

Proof. Applying ¢ to the identity [[A4, B], A] = 2ABA we have
#(ABA) = ¢(A)p(B)p(A). But since ¢ =0 on M;; (+ #Jj) we have
0(ABA) = 0(A)o(B)o(A).  Moreover, ¢[A, B] = [4(4), 3(B)] = [0(4),
o(B)]and ¢[A, B] = ¢(AB) — ¢(BA) = d(AB) + MAB) — o(BA) — \MBA)
so that (1) 6(A)o(B) — 0(AB) + o(BA) — 0(B)o(A) = Ce Z,. Multiply-
ing this last relation on the right by oc(4A) we get Co(4) =
0(A)o(B)a(A) — 0(AB)o(A) = 0(A)o(B)o(A) — 0(ABA) = 0.  Similarly
Co(B) = 0. Multiplying (1) by C, and using the preceding, we have
(2) C(6(BA) — 0(AB)) = C*. Hence C* = C*(o(BA) — 6(AB)) = C(o(BA) —
0(AB))* = C(6(BA)a(BA) — 0(AB)d(AB)). Multiplying (1) by 0(P) gives
CO(P) = a(A)a(B) — 0(AB), and by I — 6(P) gives C6(1 — P) = a(BA) —
o(B)o(A). Hence C°* = C((o(B)o(A) + C(I — 6(P)))* — (6(A)o(B) —
CH(P))*) = C(o(B)a(A)o(B)a(A) + C(I — 0(P)) — (c6(A)a(B)o(A)a(B) +
C*0(P))) = C*(1 — 6(P)) — C*9(P) = C* — 2C*0(P). Thus C*9(P) = 0. In
particular the set NC*9(P)N = {XC*0(P) Y|X, Ye N} is a nilpotent
ideal in M so that C*6(P) = 0. By the same reasoning C4(P) = 0.

LEMMA 23. 0o is a *-isomorphism of M onto N.
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Proof. (i) 1—1: If 0(A) =0 then ¢(AB) = 0(AB) + MAB) =
MAB) e Z, for all Be M. Thus, by the near one-one-ness of ¢, AB¢
Z, for all Be M. Thus A, AP,, and AP, all are in Z,,. This implies
AP;eZ, N M;; (+ =1,2) so that A = AP, + AP, = 0.

(ii) onto: o =¢ on M;; (i # Jj) and ¢'(IV;;) = M;;. Let Ye N,.
There exists Xe M,, + M,, such that ¢(X) = Y. Hence X = SP, +
TP, = (S — T)P, + T where S, Te Z,. Thus Y = ¢(P(S— T)P,+ T)
=a(P(S — T)P) + MP,(S — T)P) + ¢(T)sothat Y — o(P(S — T)P) e
N, N Z, = {0}.

THEOREM 2. Let ¢: M — N be a near-isomorphism of the type I,
von Neuwmann algebra M onto the von Neumann algebra N. Then (i) ¢
18 onto, and (ii) ¢ = 6 + N where o 1is a *-isomorphism of M onto N
and N is a *-linear mapping of M into Z, which annihilates brackets.
N s then of type I, with 6(P,), (P, equivalent, orthogonal, abelian
projections of sum I.

In what follows we assume M and N have no summands of type
I,. We now turn our attention to the case when M is not of type
I, but has a summand of type I,. Choose non-zero orthogonal projections
P, P,, P, such that 3, P, =1, P, = P, =1, I — P,is the I, summand,
I— P, <P + P, and P, — P,P,, P, — P,P, are the equivalent abelian
projections comprising I — P,. There exists a central projection D
such that 6(P;,D) are mutually L, and ¢'(P;(I — D)) are mutually L.
For notation, let Q; = P;,D, R, = P, (I— D), T;=Q,P,, T{ = R,P, all for
1=1,2,3,and let S, =Q,(I— P), S; = R(I— P,) fori =1,2. Further-
more let M;;=Q,MQ;, M;;=R,MR;, N;;=0(Q)M (Q,), N;;=6(R,)NO'(R;).

Lemma 24. S, S, are equivalent abelian projections. A similar
statement is true for S, S..

_ Proof. P(1— P,)) ~ P,(1—P,)) and are abelian. Hence S, = DP,(1 —
P,) ~ DP,(I — P;)) = S.. Moreover S,MS, < P,(1 — P,) MP,(1 — P)
which is abelian.

Lemma 25. The S, S, T;,, T}1=1,2,7 =1,2,3 are mutually L,
core-free projections. A similar statement ts true for 0(S;), 6'(S)),
0T, 0'(T;). Moreover
3

T.= DP, 3, T; = (I - D)P,, 3. 0(S) + 3. (T

¥(I — D).

1=l

Il

= ¥(D), 3, 0/(S) + 3, 0/(T))

i=1

Finally 0(S) = 0(S.), 6(Ty) = 6(T)), 0'(S)) = 0'(5)), 0'(T:) = 0'(T5).
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Proof. 6(S) = 0@)w — P), 6(S) = 0Q)w(I — P) X4, 6(T)=

P (P)0(Q:) = y(Py) 3-,0(Q:).  Hence 0(S) + 6(Sy) + 35, 0(Ty) =

6(Q) +0(Q) + (P 0(Q) = 6(Q) + (Qs) + 0(Q:.P) = 32..6(Q) = ¥(D) by

Lemma 13. S, = PD (I - P,) = D(I - P;) = P,D(1 — P,) = S.. Hence
by Lemma 8, 4(S,) = 6(S,).

LEMMA 26. ¢~ (21 N + i‘: N,h-> = 2_3] M;; + Zi‘i M.

Proof. If XeM, then 0 =[X,Q.] =[X,Q]=[X,R]7=1,2,38.
Hence, 0 = [¢(X), 6(Q,)] = [¢(X), 0(Q:)] = [6(X), 0'(R)] % = 1, 2, 3. Thus,
0 = 0(Q)3(X)0(Q) = 0(R)H(X)0(Q) = 0(Q)P(X)0(Q:) = 0(Q)H(X)I(Qy),
and 0'(R;) ¢(X)0'(R;) = 014 = 3.

On the other hand for Ye N, then 0 =[Y,0(Q)] =Y, 6(Q)] =
1Y,0(R)] +=1,2,38. Thus if Xe M is such that ¢(X) — Ye Z, we
have 0 = [X,Q,] = [X, Q] = [X,R] ©=1,2,3 by Lemma 6. Hence
Xedi, M+ X%, M.

LEMMA 27. ¢—1(Nij) = M,;j a'nd ¢_1(Nj5) = M.;j fOT 7: * j.

Proof. ¢(M;;) = N;;(t = J) as in the I, case. Suppose Ye N,
and let X be such that ¢(X) — YeZ,. Y =[0(Q), Y] =[0(Q), Y,
0(Q:)]]. Hence, as before [Q,, X] = [@,, [X, Q:]] so that @, x Q, = 0.
Moreover, 0 = [Y, 8(Q,)] = [Y, ¢’(R;)] for 4 =1,2,3 so that 0 = [X,
Q)] =X, R] for ¢ =1,2,3 by Lemma 6. Writing X = >, ;< Xi; +
Dlisiiss Xi; where X;; € My;, X;;€ M;; wehave X = 33, X + 233, Xo +
X, Hence ¢(X) = D3, X5 + D3/ X + Xo— Z = Ye N, forsome Ze
Zy. By Lemma 26, ¢ (3. X + 33 Xi)e 3 Ni + 233 N and
so, as in Lemma 16, ¢ O3, X, + D3, X)) = Z or ¢(X,) = Y.

For the other part, let Xe M,,. As before, X = [R, [X, R)]] =
[R,, X]. But now, since ¢(R;) = —0'(R;) + N(R;) and the ¢'(R;) are
mutually 1, we have ¢(X) = [—0'(R), [¢(X), —O0(R)]] = 0'(R,) X
$(X)0'(R) + 0" (R)$(X)0'(R,) = 0'(R,)$(X)0'(R,) — 6¢'(R)$(X)¢'(R;). Hence
#(X) = 0'(R)¢(X)0'(R). This shows ¢(M;;) = N;;. An argument
similar to that above shows ¢ (N;;) = M;;.

COROLLARY. ¢ 18 onto.
LEMmA 28. ¢(Zy,) S N, + Z,.

Proof. AeZy, implies [A,X] =0 for all X in My + M, +
oM+ >3, M,;. Hence if B = ¢(A), [B, X] = 0 for all X in N,, +
Ny + D3 Ny + 3. N;; by Lemma 26 and Lemma 27. That is, [B,
X] =0 for all X in N, = {STS|Te N, S = 0(Q.) + 6(Q;) + v — D)}.
Now by Lemma 26, B = B, + C where B,e N,,Ce N,. Thus, 0 =
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[B, X]=[B, + C, X] = [C, X] for all Xe N,, and Ce Z,, = {SZS |Z<
Zy}. Thus, since S=I—6(P), B=B,+C=B,+ Z(I — 6(P)) =
B, — Z6(P) + Z where Zc Z,.

COROLLARY. ¢(S.MS) & N, + Zj.

Proof. S,MS, is an abelian algebra, and so S.MS, & Zsys, =
{ZS,|Ze Zy} S Z,,, since S, = P.D(I — P,).

LemMA 29. ¢(T.MT) S 33 Ny + 2 Novsyy + 22 Nogryy +
S NB'(T,;')‘

Proof. Since I = 33, 0(S;) + 3=, 6'(S)) + X3 0(Ty) + >3-, 6'(TY)
we apply the method of Lemma 15.

LemMA 30. o(T:MT;) = 0(T)NO(T,), $(S:MS;) = 0(S)NO(S,),
$(SIMS)) = 0'(S)NO'(S)), $(T:MT}) = 6'(T,)NO'(T%) for i+ j.

Proof. As before.
LEmMMA 31. ¢(T.MT) < 6(T)NO(T) + Z,.

Proof. If Ae T\MT,then[A, X] + 0forall Xin T.MT, + T MT, +
s SiMS; + i SIMS; + >o; TiMT;. Hence, if B = ¢(4), [B, X]
=0 for all X in O(T)NO(T,) + O(T)NO(T.) + s 0(S)NO(S;) +
S (S NO'(S)) + >iiwe; 0(T) NO'(T;). Since the corresponding pro-
jections (e.g., 6(S;), 6(S;)) have the same central carrier, we can apply
Lemma 5 to conclude that [B, X] =0 for all X in {STS|TeN, S =
O(T,) + 0(T) + 20 0(S5) + 232 0'(Sh) + 2 0'(T)} = N,. As before
we have B = B, + C where B, c¢d(T)NoO(T,), CeZ,. Hence Be
(T)NO(T) + Zy.

LeEMMmA 32. ¢(M,) = N, + Z,.

Proof. M, = PMP, = (S, + T)M(S, + T) = S.MS, + T\MT,.
Similar arguments show that ¢(M,;)) & N,; + Zy, (M) < N,; + Z, for
1=1,2,3.

We define mappings o: M, — Ny and A M, — Zy in the following
manner: if 4e M;;(¢ # j) then 6(4) = ¢(4), and if Ae M;; by Lemma
30 ¢(A) = 0(A) + Z where d(A)e N;; and Ze Z,. Extend o to all of
M, by linearity and define M4) = ¢(4) — o(4) for Ae M,. o and »
are well defined, for if T, + Z, = T, + Z, where T;e N,;, Z;c Z,, then
T,— T.eN;N Z, = {0}.
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We can analogusly define mappings o¢’: M,_, — Ny ;_p and \:
M,_, — Z, using the corresponding facts for M;;. Note that o'(};;) =
Nji‘

As before, g, A, ¢/, and N are *-linear mappings.

LEMMA 33. If Ae M., Be M(i + j) then o(AB) = o(A)o(B). If
Ae M, Be M,(i # j) then o’(AB) = — o’ (B)o’(A).

Proof. Ae M, Be M;; then o'(AB) = ¢(AB) = ¢[A, B] = [¢(4),
#(B)] = [0’(A4), ¢’(B)] = — o¢’(B)o’(A) since o(B) € M;,.

LEMMA 34. If A, Be M;; then 0(AB) = o(A)o(B). If A,Be M,
then ¢’(AB) = — d'(B)d’(A).

Proof. The proof for A, Be M;; is similar to Lemma 21. If A4,
Be M;;and S € M;;(i + j) then ¢’(S)o’(B)o’(A) = — o’(BS)o(A) = 0’'(ABS)
= — ¢'(S)0’(AB). Hence 0 = [0'(AB) + d’(B)a’(A)]o’(S) = ¢’(S)[0’(AB) +
o'(B)d’(A)].

LEMMA 35. If Ae M, Be M,(i = j) then o(AB) = o(A)a(B). If
Ae Mij’ Be Mj’i then 0"(AB) = UI(B)O"(A).

Proof. Similar to Lemma 22.

THEOREM 3. o(resp. ¢') is a *-isomorphism of M, onto Ny, (resp.
is the negative of a *-anti-isomorphism of M,_, onto Ny, ) and
Mresp. N) is a *linear map from M, into Z, (resp. from M, , into
Zy) which annihilates brackets.

Proof. Similar to the I, case.

REMARK 1. If M has no summand of type I, then a proof much
like the one above gives the same Theorem 38 for such an M. Thus,
including the I, case, Theorem 3 holds for all von Neumann algebras
M which have no abelian summands of type I.

REMARK 2. A result of Sunouchi [15] (see remarks following
Theorem 3 below) shows, in part, that if M is an infinite von Neumann
algebra, then [M, M] = M. Thus in the above, if ¢: M — N is a near-
isomorphism and M infinite then ¢ = ¢ + ¢’ and is automatically
bounded.
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REMARK 3. Martindale [10] proved that if L is a Lie derivation
of a primitive ring R into itself, where R has a nonzero idempotent
and is not of characteristic 2, then L = D + T where D is an ordinary
derivation and T a center-valued additive map which annihilates com-
mutators. By slightly altering Martindale’s proof we can show the
same result if B is a von Neumann algebra.

4. Lie *-homomorphisms of C*-algebras. We now turn our
attention to characterizing uniformly continuous Lie *-homomorphisms
between C*-algebras. In order to do this we first investigate ultra
weakly (UW) closed Lie *-ideals in von Neumann algebras.

DEFINITION. A Lie *-ideal U in a *-algebra M is a *-linear sub-
space of M such that if Xe U and Ye M then [X, Y]e U.

LEMMA 36. Let M be a C*-algebra, U a Lie *-ideal in M such
that +f A, Be U then [A,B] =0. Then U< Z,.

Proof. Since U 1is closed with respect to the *-operation it is
generated, as a linear space, by its self-adjoint elements. Suppose A =
A*e U, and B any self-adjoint element in M. Then [B, Ale U so
that [[B, 4], A] = 0 since U commutative. By Lemma 6, [B, A] = 0.

LeEMMA 387. If U is a Lie *-ideal in a C*-algebra M which is at
the same time an associative subring of M then either U< Zy or U
contains a (two-sided, associative) ideal of M.

Proof. We follow Herstein [3: Theorem 2, p. 281]. If U is com-
mutative then U < Z,, by Lemma 36. If U is not commutative then
there exist X, Ye U such that [X, Y] 0. In this case Herstein
proves that the ideal M[X, Y]M (= all finite linear combinations of
elements of the form S[X, Y]T where S, T'e M) is contained in U.

LEMMA 38. If U is any Lie ideal in an associative ring M, then
T(U) ={TeM|[T, X]1e U for all Xe M} is a Lie ideal and subring
of M. Moreover U< T(U). If U is a Lie *ideal and ultra-weakly
closed, so is T(U).

Proof. See Herstein [3: Theorem 2, p. 282].

COROLLARY. If M is a von Neumann algebra, U a ultra-weakly
closed Lie *~ideal in M, then T(U) = Zy or there exists a monzero
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central projection C in M such that M, & T(U).

Proof. By Lemma 37 either T(U) & Z,, (in which case T(U) =
Zy since Z, = T(U)), or there exists a nonzero two-sided ideal I&
T(U). In the latter case, I'"" < T(U) and I'Y% = M, for some
nonzero central projection C.

THEOREM 4. If M is a von Newmann algebra and U an ultra-
weakly closed Lie *-ideal tn M, them T(U) = Z, or there exists a
nonzero central projection C such that T(U) = Z, + M,.

Proof. By the corollary to Lemma 38, T(U) = Z, or there exists
a nonzero central projection C’ such that M, < (U). Let C be a
maximal such projection. Then M, & T(U) so that Z,, + M, = T(U).

Suppose Se T(U) and S¢Z, + M,. We can assume S = S*.
Writing S = SC + S(I — C) we see that S(I — C) e T(U) (since S, SCe
T(U)) and that S(I — C) = 0 (since S¢Z, + M,;). Since S(I— C)¢
Z, there exists S, = Sfe M such that [S, S(I — C)] == 0. Moreover
[S,, SI — C)]e T(U) since T(U) is a Lie ideal, and [[S,, S(I — O)],
S(I — C)] # 0 by Lemma 6. Applying the techniques of Herstein [3:
Theorem 2, p. 281] with X =[S, SI — C)], Y = S{I — C), the set
MI[X, Y]M is a non-zero two sided ideal contained in 7(U). Or, 0
I—-COMI[S,S,SIM< U. Let J=MI][S, S],S]M. Then ((I-—
C)J)""" =(I — C)J " = (I — C)M,, where D is a nonzero central
projection, is a nonzero, two-sided, ultraweakly closed ideal in T(U).
Hence (I — C)M, + M, is an ultraweakly closed two-sided ideal in T(U)
properly containing M,, a contradiction. Thus T(U) = Z, + M,.

Sunouchi [14] proved that if M is a von Neumann algebra, and
[M, M] = all finite linear combinations of brackets from M, then M
infinite implies [M, M] = M, M finite implies that [M, M] is uniformly
dense in the null space of the center-valued trace, %, on M. Using
this fact and Theorem 3 we can prove the following corollary:

CoROLLARY. If U s an ultra-weakly closed Lie *-ideal in a von
Nevmann algebra M, and if Z, = U, then either U = Z,, or there
exists a nonzero central projection C, in M, such that U = Z,, + M,.

Proof. If T(U)=Zy then Z, c U< T(U)< Z,. Otherwise
T(U) = Zy + M, for some non-zero central projection Ce M. From the
definition of T(U) this implies C[M, M] = [M,, M;]1 < U.

Case 1. M infinite. The [M, M| = M so that C[M, M] = M,< U.
Thus Z, + M, S UST(U) S Z, + M,.
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Case 2. M finite. Then [M,M]™" "= {Xe M|X*= 0} where #
is the center-valued trace on M. For notation let N, = {XC|(XC)* = 0}.
We have [M,, M,;]~"" " = N, so that N, & U. This implies that Z,, +

N, U< T(U) S Zy + M,. But for arbitrary Xe M, XC = (XC)* +
XC — (XCf'e Zy + N, < U. Thus M, < U.

THEOREM 5. If ¢:M— N 1is an UW-continuous L-onto Lie
*-homomorphism between the Neuwmann algebras M and N then there
exists a central projection Ce M and another UW-continuwous L-onto
Lie *-homomorphism + from M to N such that

(1) the difference of + and ¢ is @ N-map (i.e., *-linear from M

to Zy, annihilates brackets),

(2) M, lies in ker v, and

(8) the restriction of + to M;_, is a near isomorphism of M, .

to N.

Proof. Let D be the maximal finite central projection in M and
set Y(X) = ¢(X) — ¢((XD)¥. There exists, by the preceding corollary,
a central projection Ce M such that ¢ (Zy) = My, + Zy. It is easy
to see that ¢(Zy) = v (Zy) = T(ker ) where T(U), U a Lie ideal,
is as above. The definition of T(ker ~y) implies that [M,, M,] < ker +.
By Sunochi’s result, (I — D) [M;, M;] = My;-r & ker . Hence
Y(XC(I — D)) = 0 or y(XC) = 4(XCD). Moreover, again by Sunouchi,
[Mep, Mo 1" = {XCD | (XCD)*= 0} = ker 4. Thus 4(XCD— (XCD)*)=0.
Finally, 4(XC) = 4(XCD) = ((XCD(*) = ¢((XCD)*) — ¢((XCD)* = 0.

If Ye N then, since ¢ is L-onto, there exists Xe M such that
(X)) — Y =ZeZy. Hencey(X) = ¢(X)— ¢((XD)*) = Y + Z— ¢((XD).
Since ¢(Z,) < Z, we have (X) — Ye Z,.

If (X1 — C)) = y(Y(L — C)) then ¢(X(1 - C)— Y1 — C))e Zy or
X1-C—-YQA—-C=WC+ Zfor WeM, Ze Zy. Thus X1 — C) —
YA —-C =2Z1 - C)eZy,.

We are now in a position to prove the main result. Note that
if ¢: M — N is a near isomorphism of von Neumann algebras M, N
and if C, (resp C,) is the maximal central abelian projection in M
(resp N) then (X) = (I — Cy) ¢(X(I — Cy)) is a near isomorphism of
M; ¢, to N, .

THEOREM 6. If ¢ is a uniformly continuous Lie*-homomorphism
of a C*-algebra .7 onto a C*-algebra <7, there exists a central projection
D in the weak closure of B such that (modulo a X\-map) D¢ s a
*-homomorphism and (1 — D)¢ is the negative of a *-antithomomorphism.
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Proof. Let M = .o7**, the second dual of .o, and N = ",
The theorem of Stormer [14: Theorem 3.1, p. 443] for Jordan *-homo-
morphisms can be altered to give, in the present case, the existence
of an UW-continuous extension ¢: M — N of ¢ which is also a Lie
*-homomorphism onto.

Let +: M — N be an L-onto Lie *-homomorphism such that there
exists a central projection C in M such that + — ¢ is a »-map, M, =
ker +, and +r|,,_, is a near isomorpism of M, to N. We can assume,
by the above remark, that M, , and N have no type I summands.
Applying Theorem 3 to +|,, ,we have the desired result.

REMARK 1. Theorem 6 would be an exact analog of Stormer’s
generalization [13, Theorem 3.3, p. 445] of the Kadison result [6,
Theorem 106, p. 334] on Jordan homomorphisms of C*-algebras were
it not for the assumptions of uniform continuity and ontoness. In
particular a Jordan *-homomorphism is automatically uniformly con-
tinuous. The question of continuity of Lie *-homomorphisms of von
Neumann algebras, because of the presence of A-maps, is closely con-
nected with the problem of determining the linear span of commutators
in rings of operators.

We must assume ontoness in our theorem because of the lack of
an analog for the Lie case, to a theorem of Jacobsen and Rickart [16,
Theorem 7, p. 487] which states that any Jordan homomorphism of
an m X 1 matrix ring into another ring is the sum of a homomorphism
and an anti-homomorphism.

REMARK 2. Let .97 and <% be C*-algebras with I, .27, <7, their
respective unitary groups, and p:.%7, — <%, a uniformly continuous
group homomorphism. As in [12] there exists uniformly continuous
map ¢: % — <&, which is in particular a Lie *-homomorphism ¢ of
.7 onto <#. Thus the statement of Theorem 6 applies to this ¢.

REFERENCES

1. J. Dixmier, Les Algebres D’ Operateurs dans L’Espace Hilbertiam, Cahiers Scientifi-
ques, Fas. XXV, Gauthier-Villars, Paris (1957).

2. , Les C*-algebres et Leurs Reprsentations, Cahiers Scientifiques, Fas. XXIX,
Gauthier-Villars, Paris (1964).

3. I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Ameican
J. Math., 77 (1955), 279-285.

4. , Topics in Ring Theory, The University of Chicago Press, Chicago (1969).
5. L. Hua, A theorem on matrices over a field and its applications, J. Chinese Math.
Soe., (N. S.) 1 (1951), 110-163.

6. N. Jacobsen and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer.
Math. Soc., 69 (1950), 479-502.




LIE HOMOMORPHISMS OF OPERATOR ALGEBRAS 735

7. R. V. Kadison, Isometries of operator algebras, Annals of Math., 54, No. 2 (1951),
325-338.

8. W. S. Martindale 3rd. Lie isomorphisms of primitive rings, Proc. Amer. Math. Soc.,
14 (1963), 909-916.

9, ————, Lie isomorphisms of simple rings, J, London Math. Soc., 44 (1969), 213~
221.

10. ———, Lie derivations of primitive rings, Michigan Math. J. 11 (1964), 183-187.
11. C. Robert Miers, Lie isomorphisms of factors, Trans, Amer. Math. Soc., 147,
January (1970), 55-63.

12. 8. Sakai, On the group isomorphism of unitary groups in AW*-algebras, Tohoku
Math. J. 7 (1955), 87-95.

13. I. M. Singer, Uniformly continuous representations of Lie groups, Annals of Math.,
56 (1952), 242-247.

14. E. Stgrmer, On the Jordan struture of C*-algebras, Trans. Amer. Math. Soc., 120
(1965), 438-447.

15. H. Sunouchi, Infinite Lie Rings, Tohoku Math. J. 8 (1956), 291-307.

Received December 30, 1969 and in revised form April 30, 1970.

UNIVERSITY OF VICTORIA








