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A CONTINUOUS FORM OF SCHWARZ'S LEMMA
IN NORMED LINEAR SPACES

LAWRENCE A. HARRIS

Our main result is an inequality which shows that a
holomorphic function mapping the open unit ball of one
normed linear space into the closed unit ball of another is
close to being a linear map when the Frechet derivative of
the function at 0 is close to being a surjective isometry. We
deduce this result as a corollary of a kind of uniform
rotundity at the identity of the sup norm on bounded holo-
morphic functions mapping the open unit ball of a normed
linear space into the same space.

Let Δ be the open unit disc of the complex plane, and let / :
Δ —» Δ be a holomorphic function with /(0) = 0. It is easy to show
that the inequality

(1) I f(z) - f'(0)z I £ M L
- \z

holds for all zeΔ (For example, apply the lemma given in [5] to
the function z~ιf(z). See also [3, §292].) Qualitatively, inequality
(1) means that if /'(0) is close to the unit circle then f(z) is close
to being a linear function of z as long as z remains a fixed positive
distance away from the exterior of the unit disc. Our purpose is to
prove a version of (1) which applies to vector-valued holomorphic
functions of vectors. We deduce this result from an extremal in-
equality for holomorphic functions, which reduces to a theorem of G.
Lumer in the linear case. It should be pointed out that the inequ-
alities we obtain cannot be proved simply by composing with linear
functionals and applying the 1-dimensional case, as for instance the
generalized Cauchy inequalities can.

1* Main results* In the following, a function h defined on an
open subset of a complex normed linear space with range in another
is called holomorphic if the Frechet derivative of h at x (denoted
by Dh(x)) exists as a bounded complex-linear map for each x in the
domain of definition of h. (See [7, Def. 3.16.4].) Denote the open
(resp., closed) unit ball of a normed linear space X by Xo (resp.,^).
Throughout, X and Y denote arbitrary complex normed linear spaces.
Our main result is

THEOREM 1. Let h: Xo —> Yι be a holomorphic function with
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h(0) — 0. Put L = Dh(0) and let ^ he the set of all linear isome-
tries of X onto Y. Suppose % is nonempty and let d(L, 1U) denote
the distance of L from ^ in the operator norm.
Then

| |h(x) - L(x)\\ £ S ^ 1 1

 2 d(L, <&), (x6Xo) .
(1 - INI)

Clearly Theorem 1 contains the main result of [5], i.e., h = L
when L is in ^ . In fact, it is a consequence of Theorem 1 that
any sequence of holomorphic functions hn: Xo —• Yλ converges uniformly
to a linear map L in ^ on closed subballs of Xo whenever the
sequence of derivatives Dhn(0) converges to L in the operator norm.
This may be proved by showing as in [5] that λn(0)—>0, and then
applying Theorem 1 to the function (1 + H&ΛO)!!)-1 [K(x) - hn(0)].

Let I be the identity map on X and let the symbol || ||, when
applied to functions, denote the supremum over Xo. We deduce
Theorem 1 from

THEOREM 2. Let δ ^ 0 and suppose h: Xo—*X is a holomorphic
function satisfying

(2) \\I+\h\\£l + δ

for all X e Δ. Let Pm be the mth term of the Taylor series expansion
for h about 0. Then

(3) \\Pm\\^Km δ,

where Ko = 1, Kx = e and Km = m

mi^-l\ m ^> 2. If inequality (2)
holds when the values of X are restricted to ± 1 , then (3) still holds
but with § replaced by λ/δ(2 + δ).

Recall that by definition

( 4 ) PJχ)=

Hence Px = Dh(0). Moreover [7, Th. 26.3.6], Pm is of the form
Pm(%) — Fm(Xj •••,»), where Fm is a continuous symmetric m-linear
map. It should be noted that in general Pm is a mapping of X into
the completion of X.

2. Proof of Theorem 1 assuming Theorem 2. Let h: Xo —»Xi
be a holomorphic function with h(0) — 0 and put L = Dh(0). I t
suffices to prove that h satisfies the inequality

(5) \\h{x)-L{x)\\S β' 1?? 1 1 ' 2\\I-L\\,(xeX0);
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for Theorem 1 can then be deduced by composing the given function
with inverses of linear maps in ^ and applying (5). Thus to prove
(5), let

h(x) = P,(x) + P,(x) + , (Pi = L) ,

be the Taylor series expansion for h about 0. This series converges
to h(x) for every x in Xo. (See [7, pp. 109-113].) Let xeX1 and let
^be a linear functional on the completion of X with \\s\\ <Ξ 1. Define
f(χ) = s(\rιh(Xx)). Then /: j—> I is holomorphic and

m=0

By [9, p . 172], we have | α m _ x | ^ 1 - | α o | 2 ^ 2(1 - |α o | ) for m ^ 2,

and hence
1

rg 1

for all λ e j . It follows from the Hahn-Banach Theorem that \\L+
1/2 λP w | | ^ 1, and therefore

= | | / - L | | ,

for all λ e j. Since Pm extends to the completion of X, Theorem 2
applies to show that

where the last inequality follows from the inequalities m/(m — 1) ^
2 and m <̂  2m-\ Hence if a? € Xo,

I I M a ; ) " L ( x ) l l - f i l | P - ( x ) l l = ( i 8 H | ! i T ι r
which is (5).

3* Proof of Theorem 2. Our proof is an elaboration of an
iteration argument due to H. Cartan. (See [1, pp. 13-14].) Clearly
we may suppose that δ > 0 and that inequality (2) is strict. Let N
be any positive integer satisfying N ^ 1/δ and put r = l/(Nδ). Then
by the triangle inequality,

( 6) || I + λrfc|| = ||(1 - r)I + r(I + Xh) | | < 1 + 1/N

for all λ G j. Take a = (1 + l/ATp1. Our strategy is to compute the
derivatives with respect to λ of the nth iterate of the function
al + Xarh and then apply the generalized Cauchy inequalities [7,
p. 97]. The number n of iterations we take will depend on N.
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Let xeX0 and define

fn(χ) = (al + Xarh)n(x) .

By (6), /»: J - + X is a well-defined holomorphic function satisfying

(7) ll/n(λ )ll < h (λ e j) .

Clearly //(0) = arh(x), and differentiating the identity

fn+1(X) = ocfn(X) + Xccτh(fn(X)) ,

we have

/ή+1(0) = α/«(0) + ctrh(ofx) .

Therefore, by induction

(8) /;(0) = ̂ α ^ V ^ α ^ ) .

By (7) and Cauchy's inequality,

(9) | | / ; ( 0 ) | | ^ l .

Let ΦΛ(α?) be the right hand side of (8). Clearly each Φn is holomor-
phic in Xo and by (9), | |Φ n | | <; 1. Applying the Cauchy inequalities,
we have

(xeX0) .

Hence

(10)

so

by (4),

1
m!

n—ί

IP-

Γ d'

xyW+(m

VII

ft

m n^

-1)krPm

1 -

ran[l -

(*)

- «m

- α

=0

— J

^ 1 ,

assuming m ^ 2. Since 1 — α m - 1 ̂  (m — 1)(1 — a), 1/r = iVS and
JV(l/α: - 1) = 1, it follows that

ill) up I, ̂  (m - ΐ)δ

Finally, letting n be the greatest integer in N(m — I)"1 log m and
taking the limit in (11) as N —> oo, we obtain inequality (3) for m ̂  2.
When m = 1, inequality (3) follows from (10) with n — N. When
m = 0, we may obtain (3) from (9) by letting x = 0 and taking the
limit as w —> oo.

The proof of the second part of Theorem 2 follows from quite
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general considerations. Suppose \\I±h\\ <^1 + δ. By the first part
of Theorem 2, it suffices to prove that the inequality

(12) || I + λίλ|| ^ 1 + t* , t = Vδ(2 + δ) ,

holds for all λ e j . To do this, let xeX0 and ^e (X*)i be given.
Then |̂ (a?) ± s{h{x)) | ^ 1 + δ, and consequently |<φ) |2 + | s(h(x))\2 ^
(1 + δ)2. Hence if λ e J, | /-(a? + Mh(x)) | ^ | /(x) | +

^ (1 + f)1/2(l + δ) = 1 + ? ,

where the last inequality follows from the Cauchy-Schwarz inequality.
This in conjunction with the Hahn-Banach Theorem proves (12).

4. Further remarks. Note that by Theorem 2 (or by [2, §§2, 3])
if 8 ;> 0 and L: X—+X is a linear map satisfying | | / ± L\\ ^ 1 + δ,
then | |L | | ^ e ι/δ(2 4- δ). This readily implies Theorem 18 of [8].
Note also that in the case δ = 0, Theorem 2 shows that I is an ex-
treme point of H°°(Xoy X)19 where H°°(XQ, X) denotes the space of all
bounded holomorphic functions h: XQ—>X with the sup norm. A
simpler proof of this fact has already been given in [6]. It would
be interesting to know whether or not Km is the best possible con-
stant in (3) which is independent of δ and h. See [4] for a related
result.

Note added in proof. The author has recently shown that the
answer to the above is affirmative.
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