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NONSOLVABLE FINITE GROUPS ALL OF WHOSE
LOCAL SUBGROUPS ARE SOLVABLE, III

JoHN G. THOMPSON

In this paper, the simple N-groups for which 2¢r, are
classified, The proofs rely heavily on the fact that many
subgroups of odd order are contained in just one maximal
subgroup. The numbering of the sections is a continuation
of II.,! The bibliographical references are to be found at the
end of 1.2

10. Some uniqueness theorems. Throughout the remainder of
this paper, & denotes a simple N-group.

We set n; = 7,(®), = =1, 2, 3, 4.

Lemmas 10.1 through 10.5 are proved on the hypothesis that
3em,.

Let B be a S;-subgroup of & and let & be a solvable subgroup
of & which contains PB. Let L, = BN 0,,,(Y), and let X be a normal
elementary 3-subgroup of 8. Let

7 (8, B, %) = {2A| (1) A is a normal abelian subgroup of P.
2 XS A= P,
(8) m(2) is maximal subject to (1) and (2).
(4) || is maximal subject to (1), (2), (3).}

(10.1)

An important property of &7 (%, Y3, X) is given by

LEmmA 10.1. If Ae .7 (R, B, X), then We.FE 47 (B,), where
S~Eo = S’B N 03',3(8)-

Proof. Let 2* = C(A) N Py. Suppose A A*. Then there is a
subgroup 2, of A* such that A, < B, |2A: A| = p. Then A, is abelian
and so (4) is violated.

LEmMmA 10.2. If Ae o7 (8 B, %), then Cy(A) has a mormal 3-
complement.

Proof. Let © be a S,-subgroup of Cy(2). Since Ae .& +(By),
it follows that Z(B,) S A. Hence, C4(A) S Ny(Z(By)) = N, say. The

1 Non solvable finite groups all of whose local subgroups are solvable, II, Pacific.
J. Math., 33 (1970), 451-536.

2 Non solvable finite groups all of whose local subgroups are solvable, I, Bull. Amer.
Math. Soec., 74 (1968), 383-437.
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Frattini argument implies that € = 0,(%)(8 N N). Hence 0, NN) =
0,(8), so that 0,(NN) = NN 0,(®), and L0, (¥) is incident with
LNNO,ERNN). Also, 0, ,(NN) S0,,,(8. Since ENN2PB, and P
is a S,-subgroup of N, it follows that 0, ,(N) N BP0, (8 N N). Hence,
if we set B, =0, ;M) NP, we get P, =PB,. Since D is a 3'-group
contained in Cy(2), we get AD = A x D. Since P, and 0, ;(N)/0,(N)
are incident, it follows that Cy ()0, (N)/0, (N) is the set of fixed points
of % on 0y 4(90)/0; (N). Since P, = PB,, Lemma 10.1 implies that Cy (A) S
2A. Hence, D centralizes 0, ;(N)/0,(N), by Lemma 3.7 of [20], so
DS 0, (N). Since D is a S;-subgroup of Cy(), the lemma follows.

LEMMA 10.3. Suppose e 78, B, %), and q is a prime #* 3.
Then Hypothesis 6.1 is satisfied for each Q in WU(; q).

Proof. Since & is an N-group, the only condition which requires
verification is (d). Suppose (d) does not hold. Let

& = {Q|(1) QeU®; qg).
(2) There is a 3-solvable subgroup & of & which
contains 2Q, such that Q, Z 0,(S).}

Thus, & #= @. Let Q be a minimal element of &. Let

& = {61 A &6,
(2) &, is 3-solvable.
(3 Q<L 0,(3,).}

Thus, . #= @. Choose & in & so that &N P is maximal.

Let 2, = Cy(X). By a basic property of ¢-groups, 2, = C,(Q/D(Q)).
By the minimality of Q, acts irreducibly on Q/D(Q). As U is
abelian, it follows that 20/, is cyclic.

Let &, be a S,-subgroup of & which contains 9, and set &, =
S, N 0, 4(6). Let B = C) N S,. Thus, BO,(S)/0,(S) = Cy(Y,), where
V =0, 48)/0,(&). By Lemma 3.7 of [20], Q does not centralize C, (),
and so Q & 0,(N, Q, B>). Thus, by Lemma 10.2, we have %, cA. If
9, is any subgroup of 2 which is not contained in 9,, the irreducibi-
lity of A on Q/D(Q) forces Q = [Q, A].

Suppose U, contains an element Z of Z(P)!. Then A, Q, B) = C(Z),
so that C(Z)e .~ By our choice of &, we get L = S. Hence, [V, U] is
covered by U, since A <]P and V is covered by B. Hence [V, A, Q]
is covered by [¥, Q] = Q, so that [V, ¥, Q] = 1. This violates Lemma
5.16 so no such Z is available.

Since U is noneyclic, and since N 2 Z(P,) 2 Z(P), it follows that
9 contains an element 11 of Z/(P). Let U, =U N A, so that |U,| =3,
U, & Z(P). Then &, Q, BY> = Cy(1,), so that
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(10.2) Cy(ll) e &~

By Lemma 6.1, we have 1 & O,, ;(Cs(11;)). Hence, [U, Q] S 0, 5(Cs(y)).
But U Z 2, so [, Q] = Q. Hence, QS 0, 5(Cs(1,)), which gives Q S
0, (Cs(1y)), against (10.2). This contradiction completes the proof.

LEMMA 10.4. Suppose e .7 (8, B, X) and m() < 2. Then P, =
BN Oy 4(R) is the central product of a cyclic group and a mnonabelian
group of order 3° and exponent 3. Furthermore, P = PLP), where P
s an element of P of order 3 which lies in an abelian normal sub-

group of PB.

Proof. Since m() < 2, so also m(X) < 2. Let P, = Cy (¥X) so that
B, <IB, |Be: B.| < 8. Choose B, in <Z(P)* and let B = 2,(B,). Let €
be a normal abelian subgroup of P of largest order subject to € = B.
Then €e L% _+(B) and X = €, so that m(€) < 2. Hence, B, being
of exponent 3 and class <2, is either elementary of order 9 or non-
abelian of order 3°.

Let N = Ny(B,). Thus, 0, ;N) =B, x RN 0;(¥). Since B,e
ZZ(B,) it follows that a S,-subgroup of N/N N 0,(¥) is faithfully re-
presented on B,, so, by 0.3.6, is faithfully represented on B. Hence
Cp(B) = (NN 0, (Y)-B. Since Cp(B) <N, we have Cp(B) =B, x NN
0;(¥). In particular, Cy(B) < L.

If B is elementary of order 9, then by Lemma 0.8.9, ®B is contained
in an elementary normal subgroup B* of P8 of order 8°. Hence B* =
PB,. But this violates (8) in the definition of .7 (8, B, X). Hence, B
is nonabelian of order 3* and exponent 3, and € is of order 9.

Since B, e Z(P,), it follows that P, = B-Cy (B). Since X is con-
tained in Z(B), we have |[X| <3, and so B, = B,. Since B and B,
are normal in P, so also Cy(B) |P. If C,(B) is noncyclic, then
there is an elementary subgroup € of Cy(B) of order 9 with € <] %P.
But then <G, €> <|P, is elementary of order 3°, against m() < 2.
We conclude that C, (®) is cyclic, so that the first assertion of the
lemma holds.

Since 3e€m;, P contains a normal elementary subgroup 9 of order
8% Thus LN Y is of order 9, so we can choose Pec®Y — PB,. Since
No(Bo)/BoCo(B,) is faithfully represented on B/D(B), we have P = PLP.
‘The proof is complete.

LEMMA 10.5. Suppose Ne &7 (R, B, X) and m@) < 2. Let q be
any prime # 3, and let O be a maximal element of U(B; q). Then
P = Ny(Q)'.

Proof. Let & be any element of & _+;(P). By the transitivity

» 3 See Definition 26 and Lemma 5.18.
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theorem, N(€) = (IV(€) N N(LQ))0,.(N(€)). Suppose we have shown that
P <= NE)'. Then P = (IVE) N N(Q))', so all the more so, P S N(Q)'.

Since m() < 2 for some e .7 (8, P, %), the structure of P is
given by Lemma 10.4. It is straightforward to verify that € is the
only subgroup of P of its isomorphism class; in particular, & is weakly
closed in PB. By a standard transfer theorem [20, p. 212], we get
B S N(@)’, and we are done.

THEOREM 10.1. If pem, — {2}, g w(®) — {p}, B is a S,~subgroup
of & and Q is a maximal element of U(B; q), then L S Ny(Q)' .

Proof. First, suppose p =5. Let  be a p-solvable subgroup
of @ with S,-subgroup 9,. Choose & e .= _+(9,). Since [9,, &, K] =1
it follows from (B) that & = 0, (). Choose AN e .= 15(P), and let
& = {}. Then Hypothesis 6.2 is satisfied with this choice of 2, F.
Conditions (a), (b), (¢) of Hypothesis 6.1 are also satisfied, since ® is
an N-group. Hence, Hypothesis 6.1 is satisfied, by Lemma 6.3. We
have already shown that condition (f) of Hypothesis 6.3 holds, so
Hypothesis 6.3 holds. Thus, the theorem follows from Corollary 6.2.

We may therefore assume that p = 8. If ® contains a 3-solvable
subgroup 2 such that £ 23, and such that for some normal element-
ary 3-subgroup X of &, there is U in &7 (L, L, X) with m@Y) < 2, we
are done by Lemma 10.5. Hence we may assume that

(10.3) mQ) = 3 for all Ae o7 (L, B, %) and all relevant &, X.

Set & = Ng(Q). If & =1, we are done, so suppose Q #= 1. Then
& is solvable and P = 8. Choose Ae &7 (L, B, X¥). By Lemma 6.2, the
application of which is guaranteed by Lemma 10.3, we get

(10.4) (U|Ge® A S P} = (W |Le A =P} .

Set B = V(ecls(N); B), and X = 2,(Z(V)). Let M = Ny(X) 2P, and
choose Be &7 (IN, B, X¥). By Lemma 6.2, with B in the role of A, we
get M = 0,,(IM)(M N Q.

Suppose Ge @ and A = M. We will show that Ge M. We may
choose M, in IN such that A1 = P. Let G, = GM,. Since AL =P, A
normalizes Q% ", so Q% = Q° for some Ce C(Q). Since ¥ S, we get
CeM. Let G, = CG, so that Q = Q.

Since B S 0, 4(¥), we have & = 0,(2)(8N M) = 0,(R)(& N N(B)).
Hence, G, = L,L, where L,e &N N(B), L,€ 0,(8). Since A* = P, so
also A% = P, since A% = A%, Since L, e N(B), and A =B, we have
WA o P, Thus, for each 4 in A, A-Lr. Alic P, Since A~ ALl =
[4, L,]", we get that [A, L,] is a 3-element. Since L, 0,(2), we get
[A, L,] =1. Hence, L,e Cy(Q) S M. Since L, N(B) <=M, we get
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G,e M. Since Ce CA) = M, we get G, € M. Hence, Ge M.

We may now apply the argument of Lemma 0.17.2 to complete
a proof that IM = O*(M). Since M = O, (M) N M), we also have
£ = 0°(®). The proof is complete.

We next turn briefly to z,.
THEOREM 10.2. If pex, and p =5, then .7 (p) S #*(G).

Proof. Let P be a S,-subgroup of & and let X = Z(J(P)), M =
N(X). By a result of Glauberman [15], if & is any solvable subgroup
of & which contains 3, then S < I. Hence, Pe 2 *(O).

Let .o*(P) = {A|A is a subgroup of P, A contains some
element of &2 +;(*P”) for some M in M.}

Suppose . *(P) & .~ *(®). Let A be an element of largest order in
S K(P) — A4 *(G), and let & be a solvable subgroup of & which con-
tains U and satisfies S £ M. Choose M in M and € in L& _15(PY),
such that € = 2.

The maximality of 9 guarantees that 2 is a S,-subgroup of &.
Since & = &, it follows that 0,.(&) = 1, by Theorem 6.1. Hence & &=
N(Z(J))), by a result of Glauberman. Since N(Z(JQ)) DA, we
get S < M, against our choice of &. Hence, ./*(P) & 2 *(®).

We may now complete the proof by using the argument of Theorem
0.24.4.

THEOREM 10.3. Suppose pem, p =5, P is a S,~subgroup of O,
and M = M(B). Let T be a S,-subgroup of M permutable with P.
Then one of the following holds:

(a) 2em,.

(b) For each T in X% Cyx(T) has cyclic S,-subgroups and S, -
subgroups of M are p-closed.

(¢) T is a S,-subgroup of ©.

Proof. Let B, = 0,(PX). Since per, T is faithfully represented
on P,. Suppose (a), (b), (c) fail. Let T* be a S,-subgroup of & which
contains E. Suppose Cy(T) is noncyclic for some involution 7 of T.
Then Cy(T) e ./(P), so Co(T) S M. Since & 13(T*) #+ @, it fol-
lows that C4(T) contains an elementary subgroup of order 8, so ¥
contains an elementary subgroup 2 of order 8. Let

A = {A]Ae W, Cy(A) is noncyelic} .

Suppose T contains an elementary subgroup of order 16. Then there
is a four-subgroup B of T such that Cy(B) is noneyclic. Hence Cy(B) &
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I for all B in B*. Thus, if Ne Ny (<), then PY is normalized by B,
so Py S M, so NeM. Hence, in this case, Ny (T) <= M, so that (c)
holds. We may assume that T contains no elementary subgroup of
order 16. Let € be a normal elementary subgroup of T* of order 8,
and let e 2 17 (T*), ES F. Since Co(T) = M, so also C(T) = M.
If €< M, then we may take Te @, so that F = IM. But then LB, e
Ny (F; »)s so Ng(B,) contains a S,-subgroup of &, by the transitivity
theorem. This is not the case, so Ce(T) = €, is of order 4. We may
now take A = {T) x G, Then AN E, = @. Choose N in N (Z) - 2.
Then £ normalizes L3Y , SO A'NE, = @. But we also have AN = o,
since N¢ M. Thus, |A| £ 2. Since 0,(PT) = 1, Lemma 5.3 yields an
A-subgroup P, of P, which is the direct product of 3 N-subgroups of
order p, P, = P, ¥ Pie X Py, such that Cyu(B) = 1. Let A = Cu(P),
A, = W N, Since |A| < 2, we may assume that 2, = Ay = (4D, But
then A centralizes %3, contrary to construction. Thus, £ is a S;,-sub-
group of @ in this case.

We may now assume that C,(T) is cyclic for all T in T'. Hence,
T contains no elementary subgroup of order 8. If B, =%, then (b)
holds. We may assume that {3, Cp.

Let Z, = T N 0,,(PI), B = Ny(&y), T = [Ty, P]. Since p = 5,
B centralizes every characteristic abelian subgroup of TF. Hence
TF is special, by Lemma 5.17. Suppose |Z(I;)| = 4. Let J be any
involution of Z(Ty). Since Cy (J) is cyclic, T3’ centralizes Cy (J). Since
|Z(ZF)| = 4, it follows that T = Z(Z{) centralizes B,. This is not
the case, since 3, is noncyclic. Hence, Ty is extra special of width
2 and p = 5. It follows that if J is any noncentral involution of <,
then Cy (J) is noneyclic. This is not the case. The proof is complete.

HypoTHESIS 10.1. _Z5°(®) contains an element IR with the pro-
perties:

(i) [M] is even.

(ii) Cg(I) = M for every involution I of .

(iii) If T is a S,-subgroup of M, then Ny(T) < M.

(iv) If p is a prime such that some element of I of order p is
a product of two involutions of & and is not a product of two involu-
tions of M, then S,-subgroups of I are cyclic.

(v) If Pis in O0,(M)* then either Cy(P) = C;(P) or C5(P) = M.

THEOREM 10.4. Under Hypothesis 10.1, ® s isomorphic to L,(2")
or Sz(2") for some n.*
Proof. By Lemma 5.38, ¢(®) = ¢(IN) = 1.

4+ This theorem is an immediate consequenee of Bender’s theorem on strongly
embedded subgroups.
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We next show that if § is any element of 727 (®) such that
HNM contains a four-group, then = M. Let I, be an involution
of N M and let T, be a S,-subgroup of § containing I,. Two ap-
plications of Hypothesis 10.1(ii) yield £, =M. Let L be a four-
subgroup of ¥,. Then 0,(9) is generated by its subgroups O.(9) N
Cy(V), Ve B, s0 0,(HD) =M. Let T, = 0, ,(H) NI, so that

9 = 0,(D)Ny(Z) .

If NeNy(Z,) and T is an involution of ¥, then T%eg,, so that
T¥ = T* for some M in I and NM~e€ Cy(T) S M, so Ne M. Hence,
H =M.

Let I be an involution of IM and let € = Cy(I) = Cy(I). Let
m = |M: €|, the number of involutions of M. Choose G in & — IN.
Then ING contains exactly m involutions T, ---, T,., and

{ly fZ-'1T'27 M} Tle}

is a set of representatives for the cosets of € in . Holding G fixed
and letting I range over the involutions of I, it follows that T,T;
commutes with no involution of IM, 2 <7 < m. By the results of
[9], m = 3.

Let =1, Ty, --+, I\T,.}, U =<T\T,, -+, I\T,>. Then U is a
subgroup of I normalized by T, and & is a subset of I closed under
all power maps X+ X, s =1, ---. Also, |11] is odd since T, commutes
with no involution of . Let p be a prime such that some element
S of & has order p. If S is a product of involutions M, M’e IR, then
since M, M’ O, (M), we get S€0,(M). But then Hypothesis 10.1(v)
is violated. Hence, S is not a product of two involutions of MM, so
by Hypothesis 10.1(iv), S,-subgroups of I are cyclic.

Let 7 be the set of primes p such that some element of & has
order p. By the preceding argument, if pex and U, is a 7Ti-invari-
ant S,-subgroup of 1, then U, is cyclic and 7) inverts every element
of U,. Hence, L =T, 1, is the direct product of its subgroups 11,
pem. It is easy to see that L S &, even though & is not yet known
to be a subgroup. If V is any element of &, then V is a m-element,
so T, centralizes 0. (11). As T, inverts every element of B, it follows
that ¥ also centralizes O..(11). Hence, ¥ <{U. Hence, T, centralizes
1/B. Since || is odd, and U is generated by elements inverted by
T., we have I = 8. In particular, |8| = m. Since a S.-subgroup of
M is a Z-group, and since no element of B¥ centralizes any involution
of I, it follows that M = B, € NV = 1, and this implies that € is
a m’-group.

Let T be a S,-subgroup of M permutable with B. Since T has
more than 1 involution, 0,(¥B) = 1. By Lemma 5.40, we conclude
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that TB is a Frobenius group with Frobenius kernel Z.

If m, is the number of involutions of &, then m, < m, clearly.
On the other hand, m, = 0 (mod |®B|), since TB is a Frobenius group.
Since m = |B|, it follows that m = m, so B permutes transitively
and regularly the involutions of It. Hence, m = 2 — 1, where 2* =
|2(Z(Z))|. Let 9, = 2,(Z(F)), so that H, <] M, and let €, = Cy(,) =
Cn(9,). Clearly, €, is a T.I. set in G.

Since B is transitive on £, any 7n’-element of 9% which centralizes
B lies in €, Let M = M/C, and let B = BE,/C,. As B is a S-sub-
group of M and is transitive on $f, it follows that O, (M) = 1, which
in turn implies that 8 = F(M). Hence, the subgroups C;'BC,, C, e &,
exhaust all conjugates of B contained in M. Also, if 4, A, €I, then
[B4, B4] S 6,

We next show that if Ve®* and Ge® — I, then Vé= V. As
we have already shown, we have G = CU, Ce @, U an involution.
Furthermore, there is an element C, of €, such that U inverts every
element of C;*BC,. Hence,

(10.1) UC-veuU =V,
(10.2) UC:VC,U = CV-C, .

Thus, U[CVC, C7*VCJU = [V, C;*V'C,]. Since €, is a T.I. set in
& and M = Ny(E€,), we have [V, C;7*V~'C,] = 1. Hence, we necess-
arily have C;'VC, = V, since (V) is a S-subgroup of {V, C;*VC,).
Hence (10.1) and (10.2) become C—'VC = UVU = V~'. This is not
the case, since B normalizes <, so that no element of B¥ is M-real.
Hence Cyx(V) & M for all V in B*.

We next show that C€,(V) =1 for all V in B% Since Cy(V) =
Cn(V), we see that T, normalizes Cy(V), so normalizes O..(Cx(V)) 2
Cx(V)N €, Since T, normalizes B, T, also normalizes

[B, 0.(Ca(V)] E6C, .

Since €, is a T.I. set in &, we have [, 0.(Cx(V))] = 1. Hence,
B <] Cyx(V). Since B is the largest subset of M which is inverted
by T,, it follows that T, centralizes some S.-subgroup of Cyu(V),
and in particular, centralizes Cy (V). Hence Cy (V) =1, and so € is
a Frobenius group with Frobenius kernel €,. Since$ =€, T is a T.I.
set in ®&. We may apply [36] and conclude the proof of the theorem,
since if ¢ = 2" > 2, U,(q) is not an N-group.

HypoTHESIS 10.2. (@) 7, q € w(®&)—{2}.
(b) % is a S,-subgroup of & and Q, is a maximal element of

UEB; q).

(¢) B does not centralize Q,.
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@) P N(Q)'-

(e) Q, contains an element Q of order g such that Cy(Q) N N(Q,)
does not contain an elementary subgroup of order g°.

(f) Q is a S,-subgroup of N4 (Q, permutable with .

LEMMA 10.6. Under Hypothesis 10.2,

(i) qem,.

(ii) 2 s a S,-subgroup of ®.

(iii) Either Q s abelian or Q is a central product of a cyclic
group and a monabelian group of order ¢* and exponent q.

iv) 2(®) = Q..

Proof. Hypothesis 10.2(c) and (d) imply that A44(X,) is nonabelian.
In particular, Q, is noncyclic. We first treat the case m(Z(Q,)) = 2.
By Hypothesis 10.2(e), it follows that 2,(Z(Q,) = 2,(X,) is of type
(g, 9). Let Q* be a S,subgroup of & which contains Q. Clearly,
Z(Q*) = Q and 2,(Z(0%) & A(Q), by (¢). If 2(Z(Q%)) = 2(Q,), then
2 = 0%, since Q is S,-subgroup of the normalizer of every nonidentity
characteristic subgroup of Q,. In this case, we have 2,(Q,) = 2,(Q).
In particular, o7& +,(Q) is empty. Since ¢ > 3, an appeal to 0.3.4
shows that Q is metacyclic, so by 0.3.8, & is abelian and we are
done.

Suppose 2,(Z(Q*)) < 2,(Q,). In this case, we conclude that

Q(Z,Q%) =2 .

If 2(Z,(Q%)) does not centralize 2,(Q,), then the image of 2,(Z,(Q*))
in A4(2,(Q,)) is a normal subgroup of order ¢, so that S, -subgroups
of A4(Q,) are abelian and (d) is violated. Thus 2,(Z,(Q*)) centralizes
2,(Q,). Hence, 2,(Z,(2%) = 2,(2,) by (). This in turn implies that
Q* = Q and that & 7,(Q) is empty. Since L is nonabelian, Q is
not metacyclic. Hence, 2,(Q) is of order ¢° by 0.3.4. Since 2,(Q,)
is of index ¢ in Q,(Q), it follows that 44(Q,) has a normal subgroup
of order ¢ and (d) is violated. Thus, if Z(Q, is nonecyclic, we are
done.

The rest of the proof assumes that Z(Q,) is cyclic. By (d), P
centralizes Z(Q,). Let Q, be an element of <Z (Q,), and let Q, = 2,(Q,).
Suppose @ ¢ Q,. Then C,(Q) is of order ¢, and <Q, Q,) is of maximal
class. This implies that +'Q,Qi is of index ¢ in Q,, 1 =1, --+, m,
q" = |Q,]. Now (d) implies that {3 centralizes Q,, so centralizes Q,,
so centralizes Q,. This is not the case, so Qe Q,. As Q, is of class
at most 2 and is of exponent ¢, this implies that |Q,| < ¢*. Suppose
[2Q,] = ¢*. We see that P centralizes Q, and so centralizes Q,. Hence,
Q, is the nonabelian group of order ¢* and exponent ¢. Now (d)
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implies that A44(Q,/Q;) is a q¢’-group. Hence, by a well-known pro-
perty of extra special groups, we have Q = Q,C,(Q,). By (e), Ca(Qy)
is eyclic. The proof is complete.

HyporHesis 10.3. (a) pem, — {2} and P is a S,-subgroup of &.

(b) ¢ is an odd prime, ¢ = p and Q, is a maximal element of
UEB; q)-

(¢) B does not centralize Q,.

(d) < is a S,-subgroup of N4(Q, permutable with PB.

(¢) Either ¢ #= 3 or 3em,.

LEmMMA 10.7. Under Hypothesis 10.3, Q is a S,-subgroup of ©.

Proof. By Theorem 10.1, 2 S Ny(Q,)'.

We may assume that Hypothesis 10.2 is not satisfied for (5, Q,, Q).
Hence, ge 7, Ur,. If gem, then since ¢ = 5, the lemma follows from
Theorem 10.2. Suppose ge m,. In this case, the lemma follows from
§ 0.20.

LEmMmA 10.8. If p,qem, — {2} and A, B) e 9277 (®) where e
7 (p) and Be (), then p ~ q.

Proof. Assume that p £ q. Choose the notation so that p > q.
The proofs of Lemma 0.10.12 and 0.22.1 show that if & is a p, ¢-sub-
group of ® and & contains an element of .97 (p), then & is p-closed. On
the other hand, by sections 0.17 and 0.19, it follows that if & contains
an elementary subgroup of order ¢° then & is ¢-closed. The details
are straightforward, so are omitted.

We may assume that {2, B) is a p, ¢g-group. Let & be a maxi-
mal p, g-subgroup of & containing (2, B>, and let &,K, be a Sylow
system for & We may assume that B S R,. Clearly B is faithfully
represented on &,, since p # q. We may therefore choose B in B* so
that Cy (B) is not centralized by B. Let € = Cy(B) so that € contains
an elementary subgroup of order ¢°. Thus, all p, g-subgroups of €
are g-closed. This violates the fact that BC,,(B) is not g-closed and
completes the proof.

LEMMA 10.9. Assume the following:

(@) p,gemUm — {2}

(b) Either 3¢({p, q} or 3em,.

() &, BYe 7277 (®), where Ne 7 (p), Be .~ (q).
Then p ~ q.

Proof. If p and ¢ are in m, then M({, B)) contains a S, -



NONSOLVABLE FINITE GROUPS 493

subgroup of &, by Theorem 10.2. This is obviously impossible. We
may assume that per,, qem;, by Lemma 10.8. Let It = M, BD).
Then M contains a S,-subgroup P of &. Let & be a S, ,-subgroup of
I which contains P, and let Q be a S,-subgroup of 8. We may
assume that B < Q.

Let B, = 0,(8). Since 0,(IM) =1, so also 0,(¥) =1, so Q acts
faithfully on %B,.

Suppose by way of contradiction that & contains no elementary
subgroup of order g¢°.

Choose Be®B*. We argue that one of the following holds:

(a) Cy(B) is cyclic.

(8) Cy(B)e.4(D).
Suppose () does not hold. Let & = Cy(B), N = N,y (€). Since B
acts faithfully on %, we have RO E€. Also, N = €[N, <B>], and so
N = €-Cy(€). Since B does not centralize N, B does not centralize
C,(€), and so does not centralize 2,(Cy(€)). Thus, C,(€) contains
an element D of order p which is not in €, and so <€, D) = € x {D).
This equality shows that € e.o7(p).

Suppose now that (8) holds for some B in ®B*. Then C(B) N M
contains an element of .4(p), and so C(B) & M. But Be.¥(q),
and so C(B) contains an elementary subgroup of order ¢*, the desired
contradiction.

Since B acts faithfully on P,, we can choose Be B* such that B
does not centralize Cy(B). Since Cy(B) is cyclic, we get p=1
(mod ¢). In particular, $5,8 is supersolvable.

Let © be a minimal normal subgroup of BB. Thus, D = Z(P,),
and || = p. Also, P, = Cy (D) contains an elementary subgroup
of order 2% so C(D) < M.

Let B, = BN C(D), so that |B,| =q. Let & be a S, ,-subgroup
of C(B,) which contains BD. Then

(i) & is not g-closed.

(ii) & contains an elementary subgroup of order ¢°.

Let  be a p, g-subgroup of & which satisfies (i) and (ii) and such
that | 9|, is maximal. Let §,, $, be a Sylow system for §.

Case 1. [0,(9), 8] = 1.

In this case, 0,,(9) = 0,(9) x 0,9). By Theorem 1 of [43], we
get that ©, is a S,subgroup of &. Set $, = 0,(9).

Since p + q, S,-subgroups of § are not in .%7(p). Thus, §, has
a cyclic subgroup € of index p. Since gem, $,<= N(D,) -

Now 9, has a cyclic subgroup of index p and § is a S, -subgroup
of N(©y), so [,(N(,)) =1. Since 9, < N(9,), it follows that
Aoy (9,) is of order divisible by ¢, and that .o4,($,) contains
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a S,-subgroup of .9, (9,). This implies that $, is elementary
of order p°.

Let X = A4(9,). Since 9,¢ .7 (p), it follows that p||X|. Since
% is solvable, ¥’ is a p-group. This is the desired contradiction, since
g%

Case 2. [0,(9), §,] # 1.

Since  contains no element of .7 (p), we get |0,(9)| = p. Hence,
|0,(9)] > g, since §, contains an elementary subgroup of order g°.
By Lemma 6.6 (ii) (with p and ¢ interchanged), it follows that 9, is
a S,-subgroup of ®&, and 0,(9) is a maximal element of N(9, p).
By Theorem 10.1, we have 9, < N(0,(9)), which is the desired
contradiction. The proof is complete.

LEMMA 10.10. Assume the following:
(@) »gemUm — {2}
(b) Either p # 3 or 3 €,
(¢) There is an element © in 27 (®) such that
(i) $ contains an element of .7 (p).
(ii) 9 is a p, g-group and O is not p-closed.
Then p ~ q.

The proof of Lemma 10.10 parallels the proof of Lemma 10.9 and
is therefore omitted.
We are now in a position to handle~adequately.

LEMMA 10.11. Assume the following:
@ »¢qremUnm — {2L
(b) FEither 3 + p,q,r or 3€T,.
(¢) p~qand p~r.
Then q ~ 7.

Proof. We may assume that <%, B> is nonsolvable whenever
WAe ¥ (q) and Be ¥ (r). Let P be a S,-subgroup of &. By sections
0.19 and 0.20 together with Theorem 10.1, ® satisfies £, , and E,,. Let
2, R be S,-and S,-subgroups of & respectively which are permutable
with 9. Suppose P centralizes 0,(PQ), and 0,(PLQ) is cyclic. If
O,.(PR) = 1, then by the transitivity theorem, N4 (O,(BR)) contains an
element of &7 (¢). If O,(PR) =1, then N (B) contains elements of
&7 (q) and o7 (r) where B = V(ecls(2); B), e .= +5(). Suppose
P centralizes 0,(PL) and O,(PL) is noncyclic. Then 0,.(PR) is cyelie,
since otherwise Cy(P) contains an element of .o (¢) and of .o/ (r) for
some P in Pf. Since O, (PR) is cyclic, it follows that N (0,(BLY))
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contains an element of .97 (r). Thus, we may assume that P does
not centralize 0,(PL) and P does not centralize O,(PR). By Lemma
10.6 if @ is an element of O,(PL) of order g, then C,(Q) contains an
elementary subgroup of order ¢°. Similarly for O,(PR). We may
now copy the proof of Theorem 0.22.2. The proof is complete.

LEemMMA 10.12. (i) Suppose p,qem, — {2} and & satisfies E,,.
Then & satisfies Cf,.

(ii) Suppose p,qem, — {2} and ® satisfies E,,. Then & satis-
fies D, ,.

Proof. The proof of (i) may be left to the reader, as it parallels
the proofs in § 0.21. As for (ii), if » > ¢, then every p, g-subgroup
of ® is p-closed, so D, , is obvious.

DEFINITION 10.1. Let ¢ be an equivalence class of 7, — {2} under~.
Then 7 = 7(o) is the set of odd primes ¢ with the properties:

(@) q¢o

() gem,.

(¢) There are at least one prime p in ¢ and one element & of
777 (®) such that & is p, g-group, |S|, = |®|,, and & is not p-
closed.

LEmMMA 10.18. Suppose o is an equivalence class of m, — {2} under
~, and peo. If &, is a p, g-subgroup of & which is not p-closed,
if &, contains an element of & (p), and if q¢ o Uxm, U {2}, then qe€
7(0).

Proof. Let & be the set of subgroups of & which satisfy the
hypothesis of the lemma. Let ¢ be the smallest positive integer such
that some element of .&” contain an element of .%%(p). Among all
elements of . which contains an element of .%7(p), choose & so that
|&|, is maximal, and with this restriction, maximize |&|,.

Suppose ¢ = 1. Choose A S S such that Ae .= +;(p), and S,
is a S,-subgroup of & containing 2 and let L be a S,-subgroup of &
containing &,. If A centralizes 0,(S), then & = Ny(B),

B = Vieels(2); S,)

by section 0.17, so by maximality of &,, we have &, = 8 and we are
done. If 2 does not centralize 0,(3), then maximality of |&|, guarantees
that 0,(®) is a maximal element of UL; q), so by maximality of &,
and section 0.17, &, = P and we are done.

Suppose ¢ > 1. Let Q, = 0,(8). If &, centralizes Q,, then maxi-
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mality of &, and Lemma 0.7.9 guarantee that &, contains an element
of A& _1;(p), contrary to ¢ > 1. Hence, &, does not centralize Q,.
Let B be a subgroup of &, of type (p, p) with Be. o7 (P). If B does
not centralize Q,, then B does not centralize C, (B) for suitable B in
B, so that S, ,-subgroups of Cy(B) are not p-closed. This violates
the choice of 1, since C4(B) contains an element of .97 _,(p). Hence
Bo = (BIBS S, Be 4(P), B of type (p, p)> centralizes Q,. Since
B, is weakly closed in &,, we have [Ny ($o) |, > |S[,. Since &,Q, is
contained in Ny(%), S, ,-subgroups of Ny(B,) are not p-closed. This
violates the choice of & and completes the proof.

THEOREM 10.5. If o is anm equivalence class of m, — {2} under
~, then © satisfies C, .. and (o) S T,.

Proof. Choose ge7(s) and then choose peo so that for some
P, g-subgroup & of @, |&S|, = |G|, and & is not p-closed. We assume
without loss of generality that & is a maximal p, ¢g-subgroup of ®.
Let {&,, &,} be a Sylow system for &, and let Q,=0,S). If &,
does not centralize Q,, we apply Lemma 10.6 and conclude that ge
7, and that &, is a S,-subgroup of ®. In this case, it is straight-
forward to verify Cj,. Suppose [&,, Q)] = 1.

Let P, = 0,(8) so that F(©) = P, X Q, = 0, (). Let

Ae . FZ NS, .

Thus, AS Py, 50 S S Ny(B) =N, B = V(eels(); S,), and S is a S, .-
subgroup of N. By sections 0.17, N = 0?(N). Consider O = 0, ,(©)/0,(S).
Since g¢ o Um, it follows that .“& +3(Q) = @. By construction,
&,/%, is faithfully represented on Q and A4(Q) = 0°(44(Q)). This
implies that A44(Q/D(Q)) is a ¢’-group, which in turn implies that
0,,,3) = BB, which in turn implies that &, is a S,-subgroup of &.
The details are omitted.

Since Q is clearly not cyclic, it follows that ¢ e 7,. Furthermore,
it follows that & satisfies C,,, and the preceding argument shows
that if ¥ is a maximal p, ¢g-subgroup of @ and |Z|, = |®|,, then T
is a S, ,-subgroup of ®&. (Note that this is weaker than C;,.) In
any case, we have shown that z(o) S 7,.

Retaining the previous notation, let p,ec. We may use Lemma
10.8 together with Cj, to conclude that @ satisfies C, ,.

Now suppose ¢, €7(c). By the preceding argument, & satisfies
C,.q,» As the situation is symmetric in ¢, ¢, we may assume ¢ > q..
In this case, every g, ¢,-subgroup of ® is g-closed. Lemma 10.8, C,,
and C,,, yield C,,,.

We may now apply the argument of section 0.21 and conclude
the proof.
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THEOREM 10.6. Suppose pem, p is odd, L is a S,-subgroup of
© and & = DD ecHU(P))> is a solvable p’-group. Then

(p) & AZ*O) .

Proof. Let M = Ny(®) 2P and let .o*(P) = A|A =P, A con-
tains an element of .o7(P¥) for some M in M}, 1 =1, 2, 3, 4, and let
1 be the smallest integer such that some element of .o/*(P) is not
in Z*@®). Let A be such an element of maximal order and let &
be a solvable subgroup of & which contains 2, is not contained in I
and is minimal subject to these restrictions. Then & = AQ for some
g-group L, q # p. By minimality of ¢, together with the transitivity
theorem, it follows that 0,) < M. Hence, 0, ,(S) = 0,) x 0,(®)
and 2 is a S,-subgroup of N4(0,(&)). Let %, = 0,(&). Thus,

Co(W) = Z(A) X D,

where ® is a p’-group. Choose S in & — IM. Then A, normalizes
&S. Since & = M, it follows from Theorem 2 of [41] that

RCSO,(M) =K.

Hence & = & against our choice of S. The proof is complete.

THEOREM 10.7. Suppose T is a S,-subgroup of ®, 2emw, and
& =99 eWN(2)) is of odd order. Let M = Ny(&). Then M 2 Ny(X)
and M contains the centralizer of each of its imvolutions.

Proof. If Ne N4<), then € normalizes £". By definition of R,
we have & = 8", so Ny(T) = .
Suppose Ze 2,(Z(X))%&. We will show that C4(Z) S M. Let

Zy =T N0, :(C(2)) -

Thus, there is a subgroup B of T, with ZeBe % (T). Choose Ne
N(E) N Cy(Z). Thus, T, normalizes &'. Now & N Cy(Z) is normalized
by %, so & N Ce(Z) S 0,,(Cy(Z)), so & N Cy(Z) = K. Choose Be Bt
By Lemma 6.1, [& N C(B), Z] = 0.(Cs(B)). Since CxB) contains an
element of & 15(%), it follows that [®' N C(B), Z] = K. Hence
KSR, so & = K, or in other words, Ne M. Since

Cy(Z) = 0,(Cs(2))+ (Ns(To) N Cos(2))

it follows that Cy4(Z) = M.

We next show that if A <L, C:) = Z@) and A contains an
element B of Z7(T), then N ) S M. Choose Ne Ng). Thus, A
normalizes &". Choose Ze Z(X) N B*. Since [N C(B), Z]= ! for
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all B in B and since & N C(Z) & R, it follows that & = K, Ne M
so Ng(Q) < In.
Suppose £ = Se.9727(®). Then 0,(®) = & and

NENO,,©) =M,

so =M. That is, T e _Z*®).

Throughout the remainder of the proof, we set £, = T N 0, ,(M).
Since 2 € m,, there is an element B of Z(¥) with B=L,. We will
show that Cy(B) &M for all B in Bf. If Z(T) is noncyeclic, the as-
sertion holds since e _Z*(®). We may assume that Z(%) is cyclic
and that B¢ Z(%). Let T* be a S,-subgroup of Cy(B) which contains
C:(B). If T* is a S,-subgroup of &, then since T*e 7 *(®), we get
Cy(B) =M. We may assume that T* is of index 2 in a S,-subgroup
of M, so that T* = C(B). Since Ny(T*) < M, it follows that T*isa
S;-subgroup of Cy(B).

Let €, = 2* N 0, ,(C(B)) and choose N in C(B) N N(Z,). Then ¥,
normalizes &. Let & = & n C(B). By definition of Z,, it follows
that & £ 0,(C(B). But T* contains an element of & 45(%), so
0,(C(B) SR Thus, RS R. If Be® and Ze B N ZX), then

[R" N C(BY, Z] = &

by Lemma 6.1. Since & = &, it follows that £ = R, so Cy(B) = M,
as asserted.

Let I be an involution of £, which centralizes a subgroup % of
/4 (@), where BS I, and § is some S.-subgroup of M. Let T, be a
S,-subgroup of Cy(I) which contains Cy(I). Let .7 ={&|T is a 2-
subgroup of ® and & 2 Z,}. We will show that each element of &~
is in IN. Suppose false. Among all elements of & which are not
contained in I, choose & so that £ N M = T* is maximal. Let T*
be a S,-subgroup of N(T}). Maximality of & guarantees that T*
is a S,-subgroup of Ny (¥F). Choose N in Ng4(Z;). Then T normalizes
&Y, so Cy(I) normalizes . Since B = C;(I), it follows that &' < k.
By definition of T,, it follows that [®", C; (I)]S&®. We will show
that & N C(Cy,(I)) = K. This is an immediate consequence of Lemma
5.11 applied to & N C(Cy (1)) X C:(I) acting on 92,,2(%)/02,(932). Hence,
& =8, 80 Ny(THS M. But T =T NMand & Z M, so N:(TF) £ M.
This contradiction establishes our assertion.

Let <# be the set of all subgroups B which are contained in
0,.,(M) and are also in Z/ (L) for some S,-subgroup T of M. Suppose
Be ., and & is a S,-subgroup of M. If <Z(§Z),23> is a 2-group,
then since Z(¥) maps into the center of 0, ,(MM)/0, (M), it follows that
KZ(&), B) is abelian.

Let .7 be the set of involutions of 0, ,(I) which centralize at
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least one element of <. We will show that for each I in .7, Cy(I) = IN.
Suppose false. Among all elements of _# whose centralizers are not
contained in IR, choose I so that |Cy(l)|, is maximal. Let T* be-a
S;-subgroup of Cy(I). By our previous argument, * is a S,-subgroup
of Cy(I). Let & be a S,-subgroup of I which contains T* and
choose

Ze 2(ZR)) .

Thus, <{I, Z) is a four-group.

Let T = T* N 0,,,(Cs(1)).-

If & is any solvable subgroup of & and if $* is a S,-subgroup
of &, then since %} <]Z*, it follows from Lemma 5.11 that 0,.(S)
contains every element of U (T}; 2.

Choose N in N(E¥) N Cy(I). Thus, T} normalizes K¥. Suppose
RS M. Let & = C4(I) N &Y. Thus, taking & = Cu(I), we get

R < 0,(C()) -

By Lemma 8.7 of [20], it follows that 8 S ®. Now [®”, I] S & since
IeZ, S0, ,(MM). Hence, & = (C;(I) N KY[KY, I] = R, so Ne M. Since
Cy(I) = (Co(I) N Ng(TF))+0,(Cy(I)) and since T* contains an element
of B, it follows that Cy(I) S M. We may therefore assume that
Y L M.

Now & = (& n C))(RY N C(Z))(®Y N C(ZI)). Since & N C(I) =
0,.(C(I)) < M, and since C4(Z) < M, it follows that KY N C(ZI) £ M.
Now C(ZI) 2 ¥*, so by maximality of |Cy(I);, it follows that T* is
a S,-subgroup of Cy(ZI). Taking & = C(ZI), we get

K5 N CZI) S 0,(CZI) = M .

This contradiction shows that if Ie .7, then Cy(I) < IN.

Suppose now that Ge¢IM. We will show that .~ N 7%= @.
Suppose false and Ie .# N.#% Then Cyp(I) and Cye(I) both contain
S,-subgroups of Cy(I), since Cy(I) = Cy,(I). Thus, a S,-subgroup of
C,(I) is contained in some S,-subgroup of I Since each element
of & 1is in M, it follows that M N MY contains a S,-subgroup of &.
Since e 7 *(®), we get M = M?, against G¢ M.

We next show that if Ge¢ I, then T, N IM? is elementary. Sup-
pose false and T is an element of <, of order 4, Te IM¢. Then I =
T*e D(Z,;), so Ie. % Let ¥ be a S,-subgroup of IM¢ which contains
T and let &, =% n 0, ,(M°%. Then N {T> =1, since I centralizes
every element of 7 (%).

Let € = C(I) N %,. Then [T, €] S 0, ,(M), since C(I) S M. Since
every element of [T, €] centralizes every element of % (%), it follows
that [T, €] = 1.
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Now T normalizes an element & of 2.+ (%) and & contains
an element of Z7(X). Since Co(I) = Co(T), it follows that T centralizes
. Hence, = M. Since € contains an element of Z (i), it follows
that & < M¢. Since KeU(E; 2), it follows that & = 0..(M°) = &KC°.
This violates the assumption that G¢ I, so T, N M is elementary.

We rephrase the previous result in a more convenient form: if
M, and M, are distinct conjugates of M, then O, ,(M,) N M, has ele-
mentary abelian S,-subgroups.

We now choose an element Z in 2.(Z(%))*. Suppose Z¢c M. We
will show that Ge M. Suppose false. We assume without loss of
generality that C.(Z°9 is a S,-subgroup of Cy(Z¢. In particular,
Z%e ¥, so Z° normalizes I,.

Since Cy(Z°) < M, it follows that C;(Z°) is elementary.

Let B be an element of Z/(¥) with BT, Let g, = C;,(B).
If C;,(Z° is of order 2, then {(Z°¢ T,> is of maximal class. Since
%gZ(i‘io), it follows that &, = 9B, and so I, is either a four-group
or a dihedral group of order 8. Both possibilities are excluded since
2em,. Hence, C;,(Z°) is elementary of order at least 4, and of course
Z e C;,(Z9).

Let T* be a S,-subgroup of IM? which contains Cy(Z¢). Let

ggk = ZT* N 02,’2(%(;) .

Let B* e 2/(T¥), B* S TF and let T = C,x(B).
Choose C in C;(Z°* Then [C3x(C), C5,(Z°)] is in

0, ,(M) N O (M)

and being contained in T'N T, we have [C;x(C), C;,(Z9)] =1 That
is, all elements of C; (Z°)?* have the same fixed points on Ty. Also,
C;(Z°) is faithfully represented on ¥ and C;x(Z) is faithfully re-
presented on %,. This implies that |C:x(2)| = |C;,(Z°)| = 2¢, with
a=2 Let §=T,Cex(2), A=<C:x(Z),C:,(Z%)y =AU, x A, where
A = C;x(Z), W = C;,(Z°). Since a =2, it follows that |y %[ = 4.
Hence, it follows readily that A,(Z°) contains a four-group, where
Z:AD> A, 1. Each element of 4,(Z”)* induces an isomorphism between
A/A, and 2A,. By symmetry, it follows that A42A) is nonsolvable.
This contradiction shows that if Z%e¢ I, then G e M.

Now let I be any involution of . Let T* be a S,-subgroup of
Cr(I). We may assume that T*= <. If T* is not a S,-subgroup of
Cy(I), choose T in Ng(T*) N Cy(I) — M. Then ZTecIM, so TeIN, an
absurdity. Hence, Z* is a S,-subgroup of C4(I). Since Cy(I) N O, (M)
contains a four-subgroup whose 3 involutions are in ._#, we have
0,.(Cs(I)) = M. Since Ze€ 0, ,(Cy(I)), we get Cy(I) = M. This com-
pletes the proof.
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THEOREM 10.8. Suppose pem, — {2} and &7 (p) L #*(S). Then

(i) 38em,.

(ii) 2¢rm..

(iii) There are a prime q =5 and a subgroup B of type (q, q)
such that B does not centralize every element of W(B;2) and B does
not centralize every element of W(B; 3).

Proof. Let o be the equivalence class of 7; — {2} under ~ which
contains p, and let 7 = ¢ U 7(g). Let $ be a S,-subgroup of &, which
exists by Theorem 10.5. It is an easy consequence of Theorem 10.6
that for each ¢ in g, ¥ (q) £ .Z*(®). For each set of primes =,
let $., be a S;-subgroup of .

First, suppose that there is a prime ¢ in ¢ such that the S,-
subgroup of F(9) is noncyclic. In this case, let B be a subgroup of
F(9) of type (¢, q) which is normal in §,.

Let 7* be the set of all primes s = ¢ such that B does not cen-
tralize every element of U(B;s). If |7*| <1, then by the argument
of Theorem 0.24.1, it follows that (®| R U(,)) is a solvable ¢’-group
so by Theorem 10.7, . (¢) & .2 *(®). This is not the case, so
|7*| = 2. By definition of 7, and by the transitivity theorem, it
follows that 7 N7* = @, and #* N (T, Um, Um, — {2}) = 4. Suppose
sen*, s=5. Then sem. By Theorem 10.2, &7 (s) & Z*(©®). It
follows readily from Theorem 10.7 that .7 (¢) & .~ *(®). This is not
the case, so 7* = {2, 3}. Hence, n* = {2, 3}. By construction, 3ex,.
‘Thus, (i) and (iii) are satisfied.

Let 95, be a maximal element of U(9,; 2), and let Q, be a maxi-
mal element of U(,; 3). Thus, B is represented nontrivially on both
B, and Q,. Let & be an elementary subgroup of 9, of order ¢* which
contains B. We can choose a subgroup &, of € of order ¢* with
[Cy, (&), €] # 1, and we can choose a subgroup €, of € of order ¢*
with [C,(€,), €] = 1. Since ¢q = 5, it follows that Cy (&) contains a
noncyclic abelian subgroup of order 8, and C; (€,) contains an element-
ary subgroup of order 27.

Suppose 2em,. Let €* = E N E + 1. Then 2~3, as CyxE*) ex-
hibits. Thus, Theorems 8.1 and 9.1 imply that ® is isomorphic to either
S,(8) or E,(3); both possibilities being excluded, we conclude that 2¢ =,.

We may assume now that F(9) N 9, is cyclic. We will show that
9, is nilpotent. Namely, $, N Q' centralizes F(9), so , N &' = F(H),
so0 O, N ©" is eyclic. In particular, 9, is cyclic. By Theorem 10.1, it
follows that 9, is nilpotent.

Let » be any prime =5, r¢ g, and let ge 0. We will show that
every q, r-subgroup of ® is r-closed. Suppose false. Thus, r||44(Q)]
for some g¢-subgroup Q of &. It follows from Lemma 5.51 that
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$, contains a normal subgroup 5,, such that 'rHA@,(@q)l. Let $F be
a normal subgroup of §, maximal subject to r|| As(9})|. Hence, $F
contains every element of .“&_75(9,). Let R, be a S,-subgroup of
Ng(9}) which is permutable with §, and let & be a maximal ¢q, 7-
subgroup of & which contains $,R,. By the transitivity theorem,
9, N & centralizes F(9), so §, N L is cyclic. This implies that ¢ =1
(mod 7), and that »||&: &'| for every solvable subgroup & of & which
contains &. It follows that ® satisfies E,,, so that & is a S, ,-subgroup
of &. Hence, ¢, since r¢ 0. Since r = 5, it follows from Theorem
10.2 that r¢x,. Thus, rexw, U7n, and ® contains a normal subgroup
of index 7, against the simplicity of &. Hence, every ¢, r-subgroup
of & is r-closed.

It is an immediate consequence of the preceding paragraph that
@r(a) Q 'Sz)'

By the transitivity theorem, [F(9), §,] is noncyclic. Cheose ¢ so
that the S,-subgroup of [F(9), §,] is noncyclic, and let B be a sub-
group of [F(9), §,] of type (g, @) which is normal in 9,.

Let 7* be the set of primes s #= ¢ such that B does not centralize
every element of U(B;s). By the transitivity theorem, 7 N 7* = @.
Also |7*| = 2, since otherwise & (p) & #Z*(), as may be easily
verified.

Suppose sem* s =5. Choose ¢, in o. Since 9, N CO(9)) is
noncyclic, it follows that §, normalizes a S,-subgroup & of @.
Suppose $,, does not centralize &. Clearly, s¢x;, since s¢ o. Also,
s¢mx, since (q) <% . Z*(®). Hence, serm, Um, so sez(o). This
violates 7* N7 = @, and so 9, centralizes &. It follows that 9,
centralizes a S,-subgroup of ®, call it &. This implies that [0,(9), 9.]
centralizes every element of U(0,(9);s). This violates our choice of
B. Hence n* = {2, 3}, so n* = {2, 3}.

Since §, N C(0,(9)) is noncyclic, it follows that 3e=x,. If 2¢x,,
we are done, so suppose by way of contradiction that 2em,. Since
9, N C(0,(9)) is noncyclic, it follows that §, does not centralize every
element of U(9,; 2) and $, does not centralize every element of U(H,; 3).
Hence, 2~3, against Theorems 8.1 and 9.1. The proof is complete.

THEOREM 10.9. Suppose T is a Sy-subgroup of & and I is solv-
able subgroup of & such that

(@) No@) =M,

(b) MM contains the centralizer of each of its imvolutions.
Let p be an odd prime, pexw, UT,. Suppose M contains an element
of Z(p). Then 7 (p) S 2 *O).

Proof. It is easy to verify that if G¢ I, then [IM N M| is odd..
By Lemma 5.85, ¢(®) = () = 1. Furthermore, as in the first part.
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of the proof of Theorem 10.4, if & is a solvable subgroup of & and
& N M contains a four-group then & < IN.

Let P be a S,-subgroup of M permutable with T, and let L* be
a S,-subgroup of & which contains . Let 3 = 2,(%) = 2,(Z(2)).
By Lemma 5.40, 0,(BI)8 <] PT. Set & = PI.

Suppose 0,(8) = 1. In this case, 0,(IN) is of even order, so 83 &
0, (M), so that 3<]8 Let ¢ be the smallest integer such that P
contains a subgroup B of type (p, p) with Be .o%(p). We can then
choose B in B* with Cy(B) noncyclic. Then Cy(B) =< I, so ¢ = 1. Hence,
% contains an element of & _#5(p), and it follows that P is a S,-
subgroup of 8. We can then choose a subgroup € of P of type (p, »)
such that Cy(€) is noncyclic. Hence Cy(E) = I for all E in &*. Hence,
every element of U(P) is contained in M. By Theorem 10.6, we are
done.

For the remainder of the proof, we may assume that 0,(2) = 1.
Let & = P38, so that & is a group. By a result of Glauberman [171,
Z(J(P) <18, so we get that

(10.5) No(ZU®) S M,  No(Z(IJD))) e 2*(O) .
In particular

(10.6) ¥ is a S,-subgroup of &, N() =M .

Now (10.5) and (10.6) imply that

10.7) I is the only conjugate of M which contains L.

Let &0 be a maximal element of MU(P;q) for some ¢ =+ p. By the
transitivity theorem, which may be applied since p¢ 7, U 7,, it follows
that Vy(Q) contains a four-group. Hence by (10.7), we get

(10.8) N(Q) S M.

In particular, every element of MU(P) is contained in M. If pemx,
we are done by Theorem 10.6. So suppose pe¢ 7,.

Let .o *(Y) = {A|A S P, A contains an element of
7 (BY) for some M in .}

Let ¢ be the smallest integer such that .o7/*(3) £ .2 *(®), and choose
Ae v *(P) — ~Z*(®) of maximal order. Let & be a solvable sub-
group of & of minimal order subject to A =S, S L M. Then S =
ALY, where Q is a ¢-group for some ¢ +* p. The minimality of 3
guarantees that 0,(8) = M. Suppose ¢ = 2. Then

S = 0,(9)-Ne(Z(JQ))
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by the result of Glauberman [17], so & = . Hence ¢ = 2. Suppose:
L contains a four-group. Then & < IMM¢ for some G in &. The
maximality of 2 guarantees that % is a S,-subgroup of M Thus
Mé =3I by (10.7. We may therefore assume that Q contains no
four-group. In this case, the involution I of £ normalizes 2, and
the maximality of U gives Ie M. Hence Q= Cy(I) S M, so S = IN.
The proof is complete.

11. The case 2€ m,. Except for Lemmas 11.1 and 11.2, all results.
in this section are proved on the hypothesis that 2 e 7,.

The following notation will be used throughout this section. <
is a S,-subgroup of &, 8 = 2,(Z()). Incase |3| = 2, we set 8 =<{Z>.
In case (%) # @, we choose a fixed element T of Z (<) and let
T, = Cy(W). Incase |3] =2 and ' (T) = @, we choose [ in T — 3,
and observe that I ~ IZ. Let M = Ny(38), let Q be a S,-subgroup of
N, let & = N.(Q), and let $ =T N0, ,(N). Let Q, be a S,-subgroup
of N permutable with T. Let N = RN/0,.(N), and for any subset & of
N, let © be the image of & in N. Further notation will be used for
various special cases, but the preceding notation is always used.

Notice that if 2, B are 2-subgroups of %, then ¥ and B are con-
jugate in N if and only if A and B are conjugate in N. Finally,
9 = 0,(N) and C5(9) = Z(9) 2 Z(Y) = Z(V).

A result of Glauberman is quite helpful [16]. Since & is simple,
Glauberman’s result implies that

(11.1) T has no weakly closed subgroup of order 2.

In this section, the groups of symplectic type appear frequently
(cf. Definition 2.4 and remark).

We begin with some elementary remarks. Suppose p is a prime
and 9, B are p-subgroups of a group £ and A < N(B), B = N).
Let €, be a S,-subgroup of NQ) N N(B) and suppose that £, is
not a S,-subgroup of N(B). Let LF be a S,-subgroup of N(L,) N
N(B), so that €F D&,. Since ¢, is a S,-subgroup of N() N N(B),
no element of ¥¥ — ¥, normalizes . In particular, A is not charac-
teristic in any subgroup of ¥, which is weakly closed in £, with
respect to 8. We record this.

LEmMMmA 11.1. Suppose U, B are p-subgroups of a group &, A =
N(B), 8BS NQ) and L, ts a S,subgroup of N(A) N N(B). Suppose
also that &, is not a S,-subgroup of N(B). Then A is not charac-
teristic in any weakly closed subgroup of L,.

REMARK. In this section, this lemma will be used frequently in
case |UA| = |B| = 2.
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We need an application of (11.1) and Lemma 11.1.

LEMMA 11.2. Suppose &, is a S,-subgroup of the group £ and
(a) [DE®)| =2,
(b) 2, has no elementary abelian subgroup of index 2.

Then D&, S Z(2 mod 0,.(2)).

Proof. Let Z be the generator for ID(,), and let I be an involu-
tion of &, — D(¥,). By (11.1), it suffices to show that I and Z are
not L-conjugate. Let N = Cy(Z), and let P be a S,-subgroup of NN
C(I). Choose N in N such that P" =T =Q,. Let J=I1"eZ. It
suffices to show that J and Z are not %-conjugate. In any case, J # Z,
since N centralizes Z. If Je Z(¥,), then J; Z if and only if Jygz, Z.
Since <Z) char N(%,), J and Z are not £-conjugate in this case. We
may assume that J¢ Z(%,). Hence, |8,:%| =2, since |DE,)| = 2.
Since ¥ is not elementary by assumption (b), we get D(T) = D(&,) =
{Z>, so by Lemma 11.1, J and Z are not 2-conjugate.

We now turn to our group ©.

LeEMMA 11.8. Suppose U is a normal subgroup of T of symplectic
type and width =2. Then

(@) A is extra special of order 2°.

() TR is faithfully represented on A/DRN).

Proof. Let w be the width of %. As U is of symplectic type,
2 is the central product of 9, and 2, where 2, is extra special of
width w and 2, is either cyclic or of maximal eclass. Thus, D) =
WDRL) and so 2,(D)) is cyclic of order at most 4. Also, Cy(2,(D(N)))
is of class 2, so that A* = 2,(Cy(2,(D®)))) is a characteristic subgroup
of A which is the central product of 2, and a cyeclic group of order
2'7¢, where ¢ = 0 if |9,| <2 and ¢ =1 otherwise. By Lemma 5.23,
some element B of .Z_+#"(R*) is normal in . Hence |B| = 21+v+e,
so [2,(B)| = 2°*», since |D(®B)| <2. As = 43T = @, we have
e+ w =<2 Hence, ¢=0, w=2, sothat A = A* = ..

Let € = C;() and assume €D A'. Let €, be a subgroup of €
of order 4 which is normal in £. Then [€B| = 2* and DE,B) < A’;
so m(ED) = 3, against . 1+5(F) = @. Hence, C,(A) = A",

Suppose X in ¥ centralizes /2. Then X induces an inner
automorphism of 9, so Xe . Then proof is complete.

Lemma 11.4. () If Z (%) = @, then one of the following holds:
(a) < s dihedral of order =16, _
(b) T=9p<A, B|A®*= B* =1, BAB = A%, and ) is isomorphic
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to the centralizer of an involution of L,(3).
(i) If ZZ(¥) has more than one element, then T 1is dihedral of

order 8.

Proof. (i) By the results of [9], T is not a generalized quaternion
group. The hypothesis Z(¥) = @ is equivalent to the hypothesis
that every normal abelian subgroup of £ is cyelic, so either (i) (a)
holds or

T =gp<A, B|A*" = B =1, BAB = A" n=3.

In the latter case, set T* = 4% B)>. Then T* is a dihedral group
and T* = Q,(%). More explicitly, every element of T — T* is a root
of Z. As © is simple, we can choose G in & so that TN T+ L T*,
Choose X in £ N T*¢ — T*, Since X ¢ IT*, Z is the involution of (X ).
Since X*e (A%, Z¢ is the involution of (X); that is, Z = Z%, GeN.
Hence 9t has no normal 2-complement. Application of Lemma 5.27 to
© implies that § is a quaternion group. Hence n = 3 and T has the
required shape. Since B¢ 9, it follows from Lemma 5.35 that B
inverts a S,-subgroup of %, which we may assume is £. These
conditions determine the isomorphism class of %, and it follows from
direct inspection of SIL(8,3) that (i) (b) holds.

(ii) Suppose T and W* are distinct elements of Z(T). Let
D = WBW*. Since 2em,, D is a normal dihedral subgroup of T of
order 8. Let € = Cy (D). Since T and W* are normal in T, it fol-
lows that ¥ is the central product of € and ©. Since 2¢e7,, every
normal abelian subgroup of € is cyclic. Suppose by way of contradie-
tion that ® < E. In this case |€] = 4.

Choose G in & such that Z, = Z°e X, Z, = Z; Z, is available by
(11.1). Since D(®) is cyclic, Z, ¢ D(¥). Let € = Cy(Z,)), and let T*
be a S,-subgroup of Cy(Z,) which contains &, so that

Z,p = Q(ZET") = AUDEY)) .

If & is not elementary, then Ze D(E) S D(I*) so that Z = Z,. As
this is not the case, & is elementary. Now Z, = CD,Cec@ DeD.
Since € and © commute elementwise, we have

CzZ, =CD=CDC=2ZC,

so that C and D commute with Z,. Hence, C* = D*=1. If Ce 3,
then Z, centralizes €, so that Ze D(C) < D(€) = 1. Hence, C # 1, Z.
If De 3, then D centralizes Z,, so Ze D(®) = D(€) = 1. Hence D +
1, Z.

Since € has more than one involution, € is of maximal class and
order = 16. Let €, =<C,> be the unique (ecyclic) normal subgroup
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of € of order 4. Thus, C inverts €, Let ®,=<D,> be the unique
cyclic subgroup of D of order 4. Thus, D inverts ®,. Also C; =
D: = Z. Hence, we compute that (C,D,)Z,C,D, = Z,, C,D, € €. Since
¢ is elementary, C,D, centralizes C. This is not the case since

c—'C,D,C = C*C,CD, = C,ZD, = C,D\Z .

The proof is complete.

For each prime p, let < (p) = {|¢ is a 2-subgroup of & and
p|A4s(%) I}

LEmMMA 11.6. Suppose p = 5 and < (p) = @. Then the following
hold:

(i) The image of Cy(Z) N N(L) in N(X)/0,(N(L)) is isomorphic
to the centralizer of an inwvolution of U,(4).

(ii) Sy-subgroups of N(X)/0,(N(X)) are of order 15.

(iii) #(®) = 1.

Proof. Choose £ in ~(p) with |N(®)|, maximal, and with this
restriction, maximize 8. Let I be a S, ,-subgroup of N(), let T* be a
S,-subgroup of M and let M, be a S,-subgroup of O,,,(M). We as-
sume without loss of generality that T* = <.

Clearly, & = 0,,(M) N T*. Hence, Z(¥T) < Z(T*). By Theorem 1
of [43] applied to I, either Cu(Z(T*)) or Ny(J(T*)) has no normal
2-complement. Hence, T = T*.

Since p > 8 and .= _13(T) = @, M, centralizes every character-
istic abelian subgroup of [M,, €] = &,. By Lemma 5.17, &, is special.

First, suppose Z(2,) is of order 2, so that &, is extra special.
Since p > 3, the width of &, is at least 2. By Lemma 11.3(a), |%] =
2°, Since ¥/D(&,) is a chief factor of IN, it follows that & centralizes
%/D(%). Hence ¢ =&, by Lemma 11.3(b). Since IN,/0,(M) is of
order 5, T/ is cyclic of order < 4.

Since M = N, it follows that & = &, and that S,-subgroups of N
are of order 5.

By (11.1), there is Z, = Z%€ X, Z, + Z. Suppose Z, €. Since
M permutes transitively the non central involutions of £, we may
assume that Z, = I. In this case A4, contains a subgroup {A)>
which permutes & transitively. Since Ze I, so also I¢E,. Hence,
H ¥ Since T/H is cyelie, it follows that (T, N H)* N H properly
contains . Hence Z4eW — 8 and W = 2,(C,(W)), since Cy(W) is
the direct product of <I> and a quaternion group. Hence (T, N $)* N D
contains an element L of order 4. Hence L = L{# for some L, in
TN 9. But then L* = (I)4 = Z = Z4. This is impossible, so Z,¢ 9.
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Suppose Ze Cy(Z)'. Enlarge Cy(Z) to a S,-subgroup § = ¥ of
Cy(Z). Then Ze ' < §*, so that Z = Z, by the previous paragraph.
Hence, Z¢ Cy(Z)'. By Lemma 5.36, Z, normalizes some S,-subgroup
of N, so Z, normalizes QF for some H in $. We may therefore as-
sume that Z, e R. Since &/8 is cyclic, & is abelian. Since & contains
more than one involution, & is not cyclic. Suppose |&| = 8. Then
Z,e<{D(R), Z>, so that Z, centralizes L. Hence & centralizes 3, since
Z ¢ Cy(Z). Then by Lemma 5.29, Cy4(Z) = W. Since K stabilizes
[9, Z] oW 21, it follows that D(K) centralizes [, Z,]. This contradic-
tion shows that & is a four-group.

Since Z, e & and Z, inverts &, it follows that Ci(Z,) = Ci(Z).
Thus, Cy(Z) is a S.,-subgroup of Cy(Z,). By Lemma 11.1,

C(Z,) = <Zp x Cy(Z)

is elementary. Hence, Ci(Z) =<{Z> x W = €, say. Let § = N,(©).
Thus, F/3 = N;,(E/3). Since T <] L, it follows that

F={FIFe9, |[F Z]ecB}.

Since Z, inverts L, it follows that
DI8 = £1/3 X 9:/3,

where [$;: 3] =4 and $,/3 is an indecomposable <(Z >-module. This
decomposition of §/3 shows that /3 is of order 8. Since /3 =
B/8, |8 =16, | Ny ()] = 32. This implies that TZ, is permuted
transitively by N (&). Thus, & contains exactly 5 conjugates of Z,
namely, {Z} U {8Z}. Since N (E)/8 is elementary, it follows that
Ny(&) maps onto A(Z") where % is the chain € > W > 1. Since 2¢
T, Ne(€) is a S,-subgroup of N (&), being of index 2 in ¥.

Let T* be a S,-subgroup of Cyx(Z,) which contains §. Since € is
generated by conjugates of Z, there is a conjugate E of Z which lies
in € — 0, ,(Cy(Z)). Let € = € N 0, ,(C(Z)), so that &, is a four group
and €, <] T*. Thus, &F consists of conjugates of Z and N,.(€) maps
onto A(Z*) where € * is the chain € > §, > 1.

Let B = A4(€). Thus, 4,(€) and A4..(¢) are distinct S,-subgroups
of B and are of order 4. Thus, B is a subgroup of Aut (€) with the
following properties:

(@) B, =4,

(b) B is not 2-closed.

As € is elementary of order 8, it follows by inspection of Aut (€)
that no such groups B exist.

We may now assume that Z(%,) is a four-group. Since 2¢em,, it
follows that £,/8(%,) is of order 2‘ and p = 5. Furthermore, & = &,
for the same reason. By Lemma 5.26, it follows that IM.,2/0,(IMN) is
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isomorphic to the centralizer of an involution of U,4).

We will show that 8 is weakly closed in ¥. First suppose | 8| =
4, so that 8 = Z(2,). In this case, any 2-subgroup of & which contains
8 and centralizes some element of 3% centralizes 3, since for each X
in 3% 83 < Z(C(X) mod 0,(C(X))). If 3°c <X, then since &/ is cyclic,
we have 83°N8 =1, s0 3NZ =1, so 83=23° Wemay assume that
|8] = 2. Hence 2c <. In this case, we first verify that I 7;, Z.

Suppose false. Then W = Z(Y) and A4(W) = Aut (W). Let N* = Ny ().
Then a S,-subgroup Q* of MN*/0,(N*) is of order 15 and a generator
Q* of Q is inverted by some element of 9*/0, (9*). Since O, ,(N*) =
20, ("), it follows that the characteristic roots of @Q* on
0,, ,(*) /B0, () are n, N\, A, A°* for some primitive 15th root of 1
in Fy. Thus, @* is non real in 3t*/0,.(3*). This contradiction shows
that I+ Z.

Suppose Z¢ = Z, ¢ %, Z, + Z. By the preceding argument, Z, ¢ €.
Let £ = ¥ be a S,-subgroup of C(Z,) which contains C,(Z). If Ze
C.(Z), then Ze ", so that Z = Z,. Hence Z¢ Cy(Z)'.

Suppose Z, centralizes 8. Then W N &¥ =~ 1, so that W N W* =
{I>. In this case, Cy(I) and C;(I) are both S,-subgroups of C(I),
80 Z, e Z(0, ,(C(I) mod 0,/(C(I))). This is not the case, since [Z,, ¥]
is not elementary. Hence Z, does not centralize 3. Hence, T/ is
of order 2. Since |C,(Z)]| = 4, it follows that Ze D{(Cy(Z)), so that
Z e %, This is not the case, so 3 is weakly closed in <.

By (11.1), we conclude that | 3| =4. By a standard transfer
theorem, T = N(¥)’. Hence ¢ =ZT. By (11.1) once again, the three
involutions of 3 are fused in N(¥). The lemma follows.

LeMMA 11.7. Suppose |3|=2, |Z(E)=1and [+ Z. Then one of

the following holds:
(@) (1) C(I) = 0,(Cy(I))-Cy(B).
(ii) If B is any 2-subgroup of C(I) which contains LS, then
B centralizes 3.
(b) || =2%

Proof. Since (a)(il) is a consequence of (a)(i), it suffices to show
that either (a)(i) or (b) holds.

Set € =C(I), %, = C,(I). Since I+~ Z, it follows that T, is a
S,-subgroup of €. Let &, = T, N 0, ,(€), € = N (9,), and let TW* be
the normal closure of & in €,. Notice that since T =& Z(T,), Lemma
5.10 implies that W* is 2-reducible in €,. In particular, T* = Z(H,).

By Lemma 11.6, A, (T*) is a 2, 3-group. If W* = W, it follows
that W* = Z(€,), so that (a)(i) holds, since € = 0,.(€)-€,. Hence, we
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may assume that 2B* O .

Since & 4(%) = @, it follows that /& _75(%,) = @. Namely,
let & be a normal elementary subgroup of T, of maximal order. Thus,
WS @, as W< Z(F). Choose Tin T — F,. Then &N E” is a normal
elementary subgroup of €, so € N E" = W. Thus, (€, ) is a normal
subgroup of ¥ of exponent < 4 and of order 2*“*® where |€| = 2**.
Let e 2 1 (KE, E7)), A <. Thus, A is of type (2%, 2%), where
1<a,=<a,<2, and 2,() = W. Since (€, E") centralizes W, (€, ")
stabilizes A 2 W 2 1. The stability group of this chain has order at
most 2¢, so that [(€, E"): A| < 2%, Since |A| < 2¢, we get [(E, ET)| < 28,
so that e < 3, as asserted. Hence |T*| = 2", where 3 <n<5. It
follows that A (T*) does not contain an elementary group of order
3°. By Lemma 5.34, 4, (T*) does not contain an elementary subgroup
of order 2:. Choose Te¥ — Z,. Then

W N W = W = Q(Z(T*, B) .

Since W*" N C¢ (W*) is in the center of {W*, W*”), it follows that
BT N C(W*) = W. Hence T*7/W*T N C(W*) is elementary of order
2" s0 n < 4. Suppose n = 4. Then

L [B*T N CW*) = W Cg (TW*)/C (T3*)

is a fourgroup. By Lemma 5.34, 0,(4.(8*)) contains a subgroup
which is the direct product of 2 groups of prime order. This is im-
possible since |T*| = 2* and Ie Z(C,). Hence, n < 3, so that n = 3.

Since » = 3, it follows that T* =I> x A, where A <] E, and
A, (A) = Aut ). Let T, = C; (W), €, = N (T,), so that [T:T,| =2
and €, maps onto A (W*). Choose T' in T — T,, and then choose X
in W7 — . We can then choose R of odd order in €, such that R is
inverted by X and does not centralize *, by Lemma 5.36. Since
[T,, X] is of order 2, it follows that T, = 2A x B, where B = C; (R).
Hence, B is centralized by X and Ie®B. If Ze®B, then WS VB, so
that W* 2 AW = A x L, a group of order 16. This is not the case,
so Z¢®B. Suppose B’ = 1. Since |ZT,: T,| = 2, it follows that T, N IT
is of index 4 in %, so of index 2 in Z,. Since T, N IT centralizes
W*7, it follows that W* £ T, NIT'. Hence T, = W*(T, N IT). Since
W* = Z(T,), and since T, is assumed nonabelian, we get

=@ NI 2.

Hence, Ze % =¥, against Z¢ B. Hence, B is abelian.

Since B = Z(T,), it follows that F'(Z(L,)) = '(B) <] T. Since Z¢
B, B is elementary. Since 2,(Z(T,)) = W, it follows that B = ).
Hence |Z| = 2|%,| = 2°|%,| = 2% | = 2°, so that (b) holds.
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The following lemma is the most elaborate of this section.

LEMMA 11.8. Suppose |8 =2, |Z &) =1 and B 4 N. Then
X 1s 1somorphic to Z,  Zs.

Proof. Since We Z(T), Lemma 6.1 implies that W = $. Since
B 4N, W 9.

If © contains a noncyclic characteristic abelian subgroup &£, then
W = 2,(]) {N, contrary to hypothesis. Thus, § is of symplectic
type. Since T c 9, the width of © is at least 1. Suppose by way of
contradiction that the width of  is = 2. By Lemma 11.3(a), we
get that © is extra special of order 2°. By Lemma 11.2, it follows
that $ < Z. Suppose |<: H| = 2.

We will show that if Je 9, J = Z, then J+Z. Suppose false.

[}
Let &, be a S,-subgroup of %t N C(J) and choose N in N such that
CG¥=0¢=2. Let I=J% so that I+ Z, IKZ. Thus €< and

CNnHisofindex2in . IfE =CEN9H, then Lemma 11.1 is violated.
Thus |€| =2% [N Y| =2 Let T* be a S,-subgroup of C(I) which
contains @ Thus & = T N T* T, T¥> = &, say. Since |[Z ()| =1,
we get B =, Z) = 2,(Z(@)) and so & maps onto Aut (W) = 4,(W).
Now § N G/ is a four-group, so that &/ is of order 8 and contains
a four-group. Let R be a 3-element of N(E) which permutes I, Z, IZ
transitively. Let W/ = Cu(K). We argue that [U:W| =2. As
|@: W| = 8, we certainly have |[U:W|=2. If [N:LW|>2, then R
centralizes @/ so that € = W x Cx(N), against W = 2,(Z(€)). Hence,
[ | = 2.

Since |U: W| = 2 and since /T is not a quaternion group, it fol-
lows that G/8 is elementary. Since A (C/TW) = X,, it follows that
U <]8. In particular, 1 <]{Z. But R induces an automorphism of 1
of order 3 and || = 8. Since W = [U, R], it follows that U is ele-
mentary of order 8, against 2€m,. We conclude that no element of
$ — 8 is conjugate to Z.

Choose G in & such that Z, = Z°e¢ %, Z, # Z. By the previous
argument, Z, ¢ 9. Since Cy(Z) = C:(Z), and since T = H(Z,», it fol-
lows that Cy(Z)) is a S,-subgroup of C,(Z)). By Lemma 11.1, we get
that Cy(Z) is elementary. By uniqueness of LB, it follows that

Cb(Zl) =B ’

so that € = Cy(Z)) = (Z> x BW. Since 2¢e 7, € 4 T, and so | N (E)| = 2°.
By symmetry, | N..(€)| = 2°, where T* is a S,-subgroup of C(Z,) which
containg €. Thus A4@®) is not 2-closed and has S,-subgroups of order
4. We have seen that Aut (€) has no such subgroups. We conclude
that |Z: 9| = 4.
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By Lemma 11.5, we get that £ is a 38-group. Since I/$ is
faithfully represented on 0,,(N)/$ and since § is extra special of
order 2°, we conclude that O = 0,, () and that £ is elementary
of order 8. This implies that  is the central product of 2 quaternion
groups 9, 9,. Furthermore, as 9, 9, are the only quaternion sub-
groups of 9, it follows that N.(9,) = N.(9,) is of index at most 2 in
T. Also, N ($)/9 is elementary of order < 4, and so |Z: 9| < 8.
As ¥/ is faithfully represented on £, and as S,-subgroups of Aut (Q)
are semi-dihedral of order 16, it follows that T/$ is one of the fol-
lowing:

(a) cyclic of order 4.

(b) a four-group.

(¢) a dihedral group of order 8.

Let R, = Co(9y), ©=1,2, so that |R;| =3, i =1,2. Also

R; = <R;, 0,,())
for suitable 3-elements R;. Let
iRs = <R1Rz, Oz’(m)> ?R4 = <R1R2—1; 02'(%)> .

Thus, R; exhaust the subgroups of £ of order 3, 1 <17 <4. Also
C5(§{z) = 8, 1 =3, 4.

We next show that ¥ — © contains a conjugate of Z. Suppose
false. Choose Z, = Z°e X, Z + Z,, such that Cy(Z,) is a S,-subgroup
of Cy(Z)). Then Z, € $. Since || = 32, it follows that L permutes
transitively the 18 noncentral involutions of . Thus, every involu-
tion of § is conjugate to Z. Since Cy(Z,) is the direct product of
{Z,> and a dihedral group of order 8, Cs(Z)) is generated by conjugates
of Z, so Cy(Z,) is weakly closed in C.(Z,). Thus, {Z) char Cy(Z),
against Lemma 11.1. Hence, T — § contains conjugates of Z.

Let J be an involution of £ — §. We need to relate Cy(J) to
the set of fixed points of J on QO/H. First suppose that J inverts
0H/9. Then J inverts R,H/H. Replacing Q by QY for suitable N
in N and applying Lemma 5.36, we may assume that J inverts %,.
Thus J normalizes C5z(R,) = 8. As Q3 is 3-closed, it follows that
with our normalization, we get that J inverts &. Hence, J norm-
alizes 9; = C3(R,), i =1,2. Thus, <J, Ry = 3, and (J, R,) is faith-
fully represented on ©,. Similarly, ¢§, R, is faithfully represented
on H,. We can therefore choose generators H,, H, of ©, such that
H! = H,;,, 1 =1,2. Thus, J inverts H; H,, and

This implies that Cy(J) =<Z, H,H,H, H,,», a four-group. Suppose

next that J does not invert QH/H. Thus QH/S = Q, x Q, where
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L, is centralized by J and Q, is inverted by J. Thus Q, = R,9/9
for a uniquely determined 7€ {1, 2, 3, 4}. Replacing & by a suitable
QF, Ne®R, and using Lemma 5.36, we may assume that J inverts
R,. If ie{l, 2}, then J normalizes §; = C,(R,), so that J normalizes
both §, and §,. Choose je{l, 2}, j = i. Then (J, Q) is represented
on §;, and since J centralizes Q,, it follows that J induces an inner
automorphism of ;. In particular, C4(J) is not elementary. Suppose
i€{3,4}. In this case, J normalizes Cy(R;) = 3Q, so J normalizes
. Choose je{3,4}, j = i. Since R; and R, are the only subgroups
of @ of order 3 which do not centralize quaternion subgroups of £,
it follows that J normalizes R;, so J centralizes R;. This then im-
plies that R/ = R,. Hence $7 = §, and C,(J) is elementary of order
8. We may thus draw up a table exhibiting the relationships just

discovered.

Csa/5(J) () 9’

1 a four-group )

(11.2) — !
R:9/9, i€ {1, 2} not elementary D1

R;9/9,9€{3,4} | elementary of order 8 | $:

Here J is any involution of £ — . We remark that if J is a square
in 9N/9, then the first possibility holds.

For the remainder of this lemma, Z, denotes a conjugate of Z
such that
(112)r (1) Zle(z_'@

) (il) @ = Cy(Z) is a S,subgroup of Cy(Z).

As we have seen, Z, is available satisfying (i). If (ii) is not satisfied
for a given Z, which satisfies (i), let & be a S,-subgroup of Cy(Z)
and choose N in N such that & = G = X. Then Z) = ZV satisfies
(). If Z/e9, we get Z, ¢ D, Z!cH against § <{I. So the con-
clusion is that Z, is always available satisfying (i) and (ii).

We now normalize a little more. Namely, we choose a S,-subgroup
L of M such that

(iii) Z, inverts some subgroup of & of order 3.

(iv) If Z, inverts Q9/9H, then Z, inverts Q.
So if (iv) holds, Z, € ®. Notice also that if Z, inverts R, with ie
{3, 4}, then Z, normalizes £ = 0,(C;s(R,)).

Case (a). /9 is cyclic of order 4.

Here Z, is a square in 9/9, so the first possibility in (11.2) holds.
Hence, & N © is a four-group. Since &/8 is cyclic, & is abelian, so
& normalizes N . Hence €N Y =W, by uniqueness of W. Also
G =REnNH) is of order 16. Let U be a subgroup of § of order 8
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which contains L and is normal in . If & centralizes T8, then &
stabilizes UD WD 1. As W is elementary, D(®) centralizes . Since
Z,€{D&®), Z>, Z, centralizes l. This is not the case, so [®, ] = 3.
Since € = &W, it follows that & = 3, against Lemma 11.1.

Case (b)(i). <Z/9 is a four-group and Cy4(Z)) is not elementary.

By (11.2), Z, normalizes both §, and 9,. As C,(Z,) is not a
four-group, Z, induces an outer automorphism of exactly one of 9,
9., say 9,. Thus, . has generators H,, H,, with HZ = H,, so that
Z, inverts H,H,. If €=<{(Z)>xENY, then Z char €, against
Lemma 11.1. Thus we may assume that |€: &N | =4, so that &
covers /9. First, suppose that Z, centralizes §,, so that Cy(Z) = 9..
Since Z, ¢ D(T), we get that € = {Z,> x E* for some group &*> 9,.
Thus, 8 is the only minimal normal subgroup of & which is contained
in D(@), so B char €, against Lemma 11.1. So suppose Z, does not
centralize §,. Then 9, has generators H,,, H, such that HZ = H,,,
H% = H3Y, and Cy(Z,) = {H,>-{H,H, H,). Since ¥/ is a four-group,
it follows that & contains an element X which inverts £, so that
=LZ,Z, X, X*c¢3 and XeN(9,). Also {Z,Z>< &, so that
(H.y = Cy(KZ, Z,)) <| R As X inverts Q, it follows that X inverts
H, and that Hf = H,H, Z°, where e =0 or 1. As {H,H,) is the
only subgroup of §, of order 4 which is inverted by Z,, it follows
that X inverts H, H,, and that H) = H,Z’, f= 0 or 1. Replacing
H,, by H' if necessary we may assume that ¢ = 0.

Suppose X'Z, X = Z,. Since & is of order 8, we get that

X ZX=27Z7Z

so that XH,, centralizes Z,. Hence XH,, is an element of & of order
8, so that 8 = %) char &. This is not the case, so X centralizes
Z,, so that € =<7, X, H,,, H,H, H,,)>. We now get

X—IHIIX = HITIJ X—1H12H21H22X = H12E1H22Zf.H21Zf = Hll-H;2H21H22 *

Hence & = (H,,), so that 3 char €. This contradiction shows that this
case does not occur.

Case (b)(ii). T/ is a four-group and Cy,(Z,) is elementary.

Suppose Cy(Z,) is not a four-group. Then Cy(Z,) is elementary
of order 8, by (11.2). Since C4(Z,) = C;(KZ, Z,>) and since {Z, Z,> <| &,
it follows that Cy4(Z,)) <|%, against 2em, Hence, Cy(Z) is a four-
group, so by (11.2), Z, inverts Q. Since <Z, Z> <| &, we get

Co(Z) =B,

by uniqueness of ZB.
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Let G, =<{Z,, ) so that €, is elementary of order 8 and €, < €.
Since Z, inverts &, there are generators H,, H,, of $; such that
H% = H,, 1=1,2. Hence W =<7, H,H,H, H,,», and

N\B(@l) = <%v H11H217 H11H12> ]

so that A,(€) = A(Z") where ©: €, DT D 1. On the other hand, &
normalizes €, since <Z,, Z> <{& and W = C;(KZ,, Z)). Let X be an
element of & — {Z, Z>. Then X7'Z X = Z,Y with

YeRNGN§ =<Z>.

If Cy(X) is elementary of order 8, then since (X, Z) <| R, we get
C,(X) <%, against 2e7,. Hence, C4(X) is not elementary of order
8. Since X*e<Z), it follows that X normalizes §, and £, and induces
an inner automorphism of precisely one of 9, ,. Hence, X does not
centralize BW. This implies that |A4.(€)| =8, and that C, (&) = €.
Hence, Cy(€) = &, x ¥, where |F]| is odd.

Since |[A4.(¢)| = 8, there is F in & such that E¢ C(T). Thus,
{E, G is of order 16 and is the direct product of {Z ) with (28, E,
a dihedral group of order 8. If |&| > 16, then |& N $| > 4. This is
not the case, so € = (&, ¢>. This violates Lemma 11.1.

Case (c). /9 is dihedral of order 8.
We first determine £ and T, = C.(T). Let

R =KNANR) =N NR), K =8N NR) = &0 NR) .

Since &/3 = T/9, it follows that &;/3 is a four-group, 7 = 1, 3. Choose
K;e®; — 3 such that K, centralizes R;, ¢ = 1, 3, and set K = K, K.
Define J = K?. Since &;/83 is a four-group, we get

(11.3) K: =27, a;=00r1,7=1,3.
Since K, centralizes R, and inverts &R,, it follows that

(11.4) Ci(K) = 9, ;

and also that £, is generated by H,, H,, such that

(11.5) K'H,K, =H,,;, 1=1,2.
Define H,; by

(11.6) K;'H K, = H,; , 1=1,2,
so that {H,, H,,» = , and

11.7) K:'H,,K; = H,; .
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We find that 2 =<1,, Z), where I, = H,H,H, H,,, and
(1]-'8) 2:o = <H11H12y H21H;21 HuI{zu Ka, Jy H11K1> ’
(11.9) I =<H,H,) x {JH,H,) .

It is important to show that I, « Z. Suppose false. First, suppose
(8]
that J is an involution.

We compute that H, H, inverts £}, so that T H, H,, contains only
involutions. Also,

§ = <%, H,H,>char I, ,

since I} char g, and ~z6H1H21 is the set of all elements of ¥, which
invert ¥,. Finally, ¥ contains exactly four elementary subgroups of
order 8,

%1 = <§~)Ey H11H21> y
%2 = <%, H12H21> s
%3 = <§B3! J> ’

%4 = <%) JH11I{12> .

We compute that i, Bad., 578 the last relation holding since
FHC9, LD

Suppose by way of contradiction that I3Z. Let T* be a S,-
subgroup of Cy4(I,) which contains ¥,. Let € =<, T*) so that T,
L and & permutes ¥ transitively. Since <{Zi, H, H,,>char ¥, {F;[1 =<
1 < 4} is invariant under 8. Since 6 = |2: T,C(T,)], it follows that a
S.-subgroup £, of ¥ normalizes §¥; for some ¢. Thus, the orbit of F;
under & is the orbit of $; under T, so has two elements. Hence &,
normalizes every $;, so &, centralizes ¥,;/%, 1 < 7 < 4. Since the
generate &, we get [, 2,] = W. In particular, [T, & ] S B = D).
Hence 2, centralizes ¥!. This contradiction shows that I, « Z.

We may now assume that J*= Z. Let J, = JH,K,. Then J,
inverts ¥, and C (%)) = T)Z, x Z,. Let T* be a S,-subgroup of C(I,)
which contains T,. Let & = <%, T*> < N(T,). Thus, normalizes B,
and & permutes transitively . Since J,<, is the set of all elements
of ¥, which invert Z;, it follows that L normalizes J, T, so normalizes
{(J3 = {X?| X e J,Z;}. Hence, J, is an involution. We compute that <,
permutes transitively J,%;, and so J,&; = ccl,(J;) is of cardinal 2. Fur-
thermore, there is a S,-subgroup ¥ of € which centralizes J,. Suppose
Jo~Z. Let §=<J, B. Then [F, B] = B, and so W = 0, ,(C(J)).
This implies that A4«E) contains A(%’), where Z:FDJ>D1.
Since F <] FL;, it follows that A4() is transitive on &, and so N(JF) is
non solvable. This is false, and so
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o+ Z.

Since J* = Z, J$ contains no involutions. On the other hand,
{9, dJ, K;» is of index 2 in ¥, and so J, is conjugate to some element
of (9, J, K;p. Since (DK,)*: = $K,J, it follows that HK, contains an
involution. Since 9% = &, and Kfe<Z), it follows that K, is an in-
volution. Also, all involtions of 9K, are conjugate under  to K, or
K,Z. Since Kf1 = K,J*, K, inverts J. Hence, J'K,J = K,Z, so all
involutions of YK, are conjugate to K,, whence are conjugate to J,,
so are not conjugate to Z.

By (11.2), ¥ — § contains a conjugate of Z. Since §J, U HJJ U
9K, U OK,J contains all the involutions of T — &, and since (J,)%s =
9JyJ, it follows that $J, contains a conjugate of Z. Now ccl,(J;) has
cardinal 2%, and so ccl,(J,) N §J, has cardinal 2°. By (11.2), J, induces
an outer automorphism of precisely one of §,, $,, and also T < C(J,).
It follows that C,(J;) is dihedral of order 2° and that $.J, contains
precisely 12 involutions. Hence, $J, contains precisely 4 conjugates
of Z. Hence, ccly(Z)) has cardinal 2°. Thus, |€| = 2% and |[EN Y| =
2°. We argue that every involution of € is contained in <Z,> x €N §.
If not, € has a 4-group &, which is a complement to &N $, and so
€, D §J, against the fact that $J has no involutions. By (11.2),
¢ N 9 is not elementary, and so <Z)> char &, against Lemma 11.1.
This contradiction shows that I, + Z.

Since |T| > 2°, Lemma 11.7(a) holds. Suppose Ge® and W, =
W =ZT. We will show that GeN. If Ze W, then Z¢'e W, so

207 = Z,GeN.

We may assume that Z¢ 2,. Set Z’' = Z°. By Lemma 11.7(a), we
get that

(11.10) XeW, — {Z" implies C(X) = C.(Z') .

Now (11.10) and (11.2) imply that T, N H = 1. Let T* be a S,-sub-
group of Cy(Z’) which contains C.(Z’). Since some element of L
centralizes 2B, (11.10) implies that T = C.(Z’). Hence

[B, W] S $ N 0, ,(C(Z)) .

If [, W,] =<Z), then Z€O0,,C(Z)), against I+ Z. Hence [T, W] =1,
and

(11.11) (BB =B x B, .

Since £/9 is a dihedral group of order 8, and since § N W, = 1, we
can choose W, in %1 such that W, is the centrall involution of ¥/9.
Then W, inverts Q§/9, so by Lemma 5.36, W, inverts some S,-
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subgroup of N, which we may assume is £. With this normalization,
we get W, e &, so that (W, Z) is a normal four-subgroup of & Since
R = 2¢, & is not of maximal class, so W,e Z(&). Also, since W,
inverts £, (11.2) gives T = Cy(W,). If W, = Z’, then by (11.2), (11.10)
is violated. Hence W, == Z’, so £ centralizes 2, by (11.10). This is
also impossible since 98, is a four-subgroup of 9 which satisfies

S—?ﬂﬂ_Bl:l,

so that 98,9/9 is not central in T/H. We conclude that whenever
Ge® and W=, then Ge k.

We now use the element Z, given in (11.2)’. Suppose first that
Cy(Z)) contains a four-group % with Ze ®. We can then choose N
in N(9) such that W = WY, Let T* be a S,-subgroup of Cy(Z,) which
contains . Choose G in ® such that $*¢ = . Then W< T, so
that NGeMRN. Since N(O) =N, we get GeN. This is not the case,
since Z, is not contained in the center of any S,-subgroup of 9. Hence
Cy(Z) contains no four-group. By (11.2), Cy(Z,) contains an element
T of order 4. Again, let * be a S,-subgroup of C4(Z,) which contains
&. Then Z = T*e D(T*), so that Z centralizes 2B*, the unique ele-
ment of Z/(T*). Hence W* =N, we get W* = W for some N in
N. Since Z, e W*, we get Z, W, so that Z, = 0, (N). This is
not the case since Z, €% — . With this contradiction we conclude
that the width of © is at most 1, so the width of & is 1.

Suppose = 2. In this case, we again get 3 char Cy(J) for
every involution J of T, against Lemma 11.1 and (11.1). Hence,
<. Since the width of  is 1, we get that |T: $| = 2, and that
9 is the central product of $, and ©,, where 9, is a quaternion group
and 9, is either cyclic or of maximal class.

Case 1. 9, is of maximal class.

_ Let 9, be tbe unique ecyclic subgroup of index 2 in ©,. Thus
1./ = 8 and .9, <|T. Since |Z ()| =1, we have B < £.§,. Sup-
pose Z,€ .9, and Z, is conjugate to Z in &. Then Z is the unique
involution in §*(C:(Z)), so Z, = Z. Since /9.9, is a four-group, it
follows that D(¥) & ©,9,. Suppose Z, €9, Z,5Z. Then C4(Z)) contains
an element T of order 4. Let T* be a S,-subgroup of Cy4(Z,) which
contains Cy(Z)). Then TeZT* so Z = T"e D(T*). By the preceding
argument applied to T*, we get Z = Z,. Thus, B is weakly closed
in 9.

Choose Z,€ X, Z, # Z,Z, ~ Z. Thus, T = §Z,>. Let

€ =CZ) =<Z) x Cys(Z) .
By Lemma 11.1, € is elementary, so |&| = 8. It follows that A4(C)
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contains A(%¥) where : D> W® D1, and so A44(®) is nonsolvable.

Case 2. $, is cyclic of order = 8.

Here, Lemma 11.1 implies that 8 is weakly closed in . Choose
Z, e, 4, + Z,7Z, ~ Z, and let H be a generator for 9,. By Lemma
11.1, Cy(Z) is elementary. Let K be an element of §, of order 4 so
that Z, inverts K. Also, ©, has generators H, H, with H?: = H,.
Hence Cy(Z) =<Z> x {H H,K). Let

€ = C(Z) =<Z> x Cy(Z) .

It follows that |N.(G)| =2° and that B = Z(N.(€)). Let T* be a
S,-subgroup of Cy4(Z,) which contains €. By symmetry, |N,.(¢)| = 2°
and <{Z,> = Z(N,.(®)). This implies N4(&) is nonsolvable.

Case 3. |9,] = 4.

First, suppose there is Z,€¢ ¥ — ©, Z, ~ Z. Then §, has generators
H, H, with H/* = H,. Let H be a generator for £,. By Lemma
11.1, Cy(Z) is elementary. Let A = H,Z.. Then A has order 8. Also
H'AH = A® Z,AZ, = A®. Let T = H,H,H so that T is an involution
and Z,T = TZ,. Thus, £ is the split extension of <A) by {Z, T
and (4> = C;(4). By a result of Fong [14], £ is not the S,-subgroup
of any perfect group.

Choose Z, €%, Z, + Z,Z, ~ Z. By the preceding paragraph, Z, e
9. We may assume that C,(Z) is a S,-subgroup of Cy(Z)). Since 3
char Cy4(Z), it follows that Cy4(Z)c Ci(Z). Choose T e Cy(Z) — 9.
We can then choose an element H, of §, such that ©, = <{H, H.
Let H, = Hf. Then H! = H,Z* for some a =0 or 1. Thus Z, =
H H,H, where H is a generator for 9, and Cy(Z,) = {H H,, Hy. Hence
C.(Z) =<{HH, H,T) so that Cy(Z)) < 3. By Lemma 11.1, Ci(Z)
is abelian. If T?e<Z), then <Z) = D(C,(Z))), against Lemma 11.1.
Hence T*¢ Z. Since T centralizes H H,, we get ¢« = 1. By Lemma
11.1, Cy(Z) is of type (4,4). Now H,H =T, is an involution of
T — Ci(Z), so & = Cy(Z)XT,>. Since Cy(Z) is the direct product of
T and T;T>T,, the proof is complete.

LEMMA 11.9. Suppose |7 X)| =1 and W IRN. Then B =3
and TS Ng(Z).

Proof. First, suppose T = 3. In this case, it suffices to show
that 2 is weakly closed in T. Suppose W, = W T, W, = W. Let
G B, WO WD1, 4B, WyoO W, D1. Since W< Z(R), it fol-
lows that for each W in ¥, every 2-subgroup of C(W) which contains
I centralizes W. Hence, W N W, = 1 and |A4(Z)| = 4, |A4(Z*) | = 4.
This implies that A4(<TW, W,»>) is nonsolvable.
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We may now assume that |3| = 2. First, suppose I+ Z. With
[}

this assumption, we may show that 2 is weakly closed in £. Suppose
W, =W, W, = BW. Let W, =W, NI,. Since W, =1, it follows
that [, B3N8 =1. If WNW, = 1, then W = W,, by Lemma
11.7. Hence, suppose TN W, = 1. It follows that AW, W) is
nonsolvable. This is impossible, so I is weakly closed in . We
next show that 8 is weakly closed in £. Suppose Z, = Z°e¢ X, Z + Z,
by the previous argument, Z, does not centralize 28. Hence, if e
FENH(L), then Cy(Z) is cyclic. If A =W, then < is dihedral of
order 8, against [Z/(¥)| = 1. Hence || >4, so [Cy(Z)| = 4. This
implies that Z € D(Cy(Z)). Thus, if & = ¥ is a S,-subgroup of Cy(Z))
which contains Cy(Z)), then Z centralizes T*. Hence, ¥ = W for
some N in R, so ZeW* and {Z, Z,> = W*, against IZCZ.

Thus, if I+ Z, then B is weakly closed in £. As this violates (11.1),
6]
we conclude that I~ Z.
[}
We will show that 2 is weakly closed in . Suppose

B, =WcCT,

W, = W. Then WNW, =1 and (W, W,> is abelian. Again we see
that Ay, W,>) is nonsolvable. Hence, W is weakly closed in L.
Finally, we show that 23 is the weak closure of 8 in £. Proceeding
as in the previous paragraph, we get that if Z, = Z°e¢ %, Z, + Z,
then W* = {Z, Z,> for some X in &, so W* = W for some N in N,
80 Z,e T NWO,N) =W. Thus, W is the weak closure of 8 in Z.

By the proof of Theorem 14.4.1 of [19] applied to N4«(W), we
conclude that T & Ng(W)'. This is not the case since 44TW) = Aut (W).
The proof is complete.

THEOREM 11.1. Omne of the following holds:

(a) % is dihedral.

(b) T=gp<A,B|A*=B* =1, BAB = A%, #(®) = 1.

() |Z] =2% T has exactly 3 involutions, each of which is central
and () = 1.

d T=ZZ, (G =1.

Proof. If z (%) = ¢, we have either (a) or (b) by Lemma 11.4(i).
If |7(®)| > 1, we have (a), by Lemma 11.4(ii).

We may assume that |Z(¥)| = 1. Suppose B <{N. Then by
Lemmas 11.9 and 5.28, we have (c) if ' = 1, while if ' =1, we
have (a) by [8]. Suppose B ¢ 9. Then T = Z,? Z, by Lemma 11.8.
Also, 9(®) = 1 in this case, as the proof of Lemma 11.8 shows.

The proof is complete.

THEOREM 11.2. If 2em, then & is isomorphic to one of the
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following groups: Uy®3), Li(3), M, A,, Ly(q).

To prove Theorem 11.2, we examine the possibilities of Theorem
11.1.

Suppose (a) holds. By the fundamental result of Gorenstein and
Walter [19], we have © = L,(q) for some g or & = A4..

Suppose (b) holds. Let W be a four-subgroup of T. (Since
Z (%) = @, this does not conflict with earlier notation). Suppose
p=5. We will show that Hypothesis 6.1 is satisfied with T in the
role of A, w = {2}, and with p in the role of ¢q. Certainly, (6.1)(a),
(b), (¢) hold, as & is an N-group. As for (6.1)(d), we see that every
{2, p}-subgroup of & is p-closed, so that (6.1)(d) also holds. Thus, if
Q,, Q, are maximal elements of U(TW; p) and if C, (W) =1 for some
W in 2 and ¢ = 1, 2, then by Lemma 6.2, Q, and Q, are conjugate
under C(2V).

We next argue that if Q,, O, are maximal elements of U(B; 3),
then Q, and Q, are conjugate under Ny4(28). Suppose false. Among
all pairs of maximal elements of U(W; 3) which lie in different orbits
of Uy(WW), choose (T, L,) such that |Q, N Q,| is maximal. Let W be
a fixed element of W As Ay(W) = Aut (W), it follows that there
are N, N, in N(B) such that W has nontrivial fixed points on QFi,
1=1,2. Hence € = Q,NY,* 1. Since O, Q, are distinct maximal
elements of U(TW; 3), we have € CQ;, i =1,2. Let € = Ny (€), and
let M = Ny(E). Since I is solvable, it follows that there is X in
Ng(T) such that (D, Df) = is a 3-group. Let £ be a maximal
element of U(TW; 3) which contains €. Then QN 29,0, so that
€ and Q, are in the same orbit under Ny (). Since

ONOF 2D oD,

£ and QX are also in the same orbit under N(W). Thus, our asser-
tion follows.

If & is a solvable subgroup of & which contains <, then £ £ &'.
Hence, no nonidentity solvable subgroup of & has a normalizer which
dominates both $ and 2. By the preceding argument, we conclude
that every involution of ¥ — 3 inverts some S|, ;.-subgroup of N. We
will show that every involution of £ — 3 inverts 0, (). Let N, be
a S.-subgroup of N permutable with . Choose W in T — 3 and let
A= Cy(W). Let T, = N;(W), so that &, is dihedral of order 8.
Suppose by way of contradiction that 2 = 1. Since U is a S,-subgroup
of Cy(W), it follows that Ng2) dominates W and Ng(2) O F,. Hence
Z, is a S,-subgroup of Ng®). This implies that N@) N N = 0, (N)L,
since if R is any element of N — 0,(T) of odd order, then (T, R)
contains a S,-subgroup of MN. Since N NN = 0,(N)T, it follows
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that |9 A, = 9. Let & be a S,,-subgroup of Ng2) which contains
AT,. The preceding inequality implies that %A < 0,(8). Hence,

18:0,(8) |, = 3

and B is faithfully represented on 0,(8). Enlarge 2 to a maximal
{2, 8}-subgroup I of ® and let P be a S,-subgroup of M. Since I,
is a S,-subgroup of IN, it follows that O,(M) is a maximal element
of U(LB: 3). By construction, Ng(0;(M)) dominates LB, so by a previous
argument, it follows that the maximal elements of WU(LW;3) are per-
muted transitively by Cy(¥). Since 2B normalizes some S,-subgroup
of N, and since Cu,(TW) =S N, it follows that O;(M) contains a S,-subgroup
of 9t. This is not the case, since ¥, normalizes no S,-subgroup of M.
Hence 21 = 1, so every involution of 9 — 3 inverts 0, (W). This im-
plies that 9 has an abelian 2-complement. Hence & = L,(3) or M,
by a result of Wong [45].

Suppose (¢) holds.

Suppose by way of contradiction that 5|| 44(T)|. Let N; be a S;-
subgroup of N permutable with ¥ and let I be a maximal {2, 5}-
subgroup of & which contains IN,. Let I, be a S,-subgroup of M
which contains ;. Since 30,(M)/0,(IN) is central in IM/O,(M), it
follows that 3 normalizes I,. Also, we see that

If & is a solvable subgroup of & which

(11.12) :
contains M, then 5//6: S| .

To see this, observe that since I is a maximal {2, 5}-subgroup of &,
M is a S, ;-subgroup of &S. The structure of T forces the 2-length
of & to be one, so Ng(T) covers &/0.,(S). Since 5||A42)|, we get
5|] 4¢(T)|, by construction. Hence (11.12) holds.

Let M, be a maximal element of U(B; 5) which contains M;. Let
L be a S, 5-subgroup of N(ims) which contains SSIR Then EUZ = 05(%),
by maximality of ‘JR Also 851)25/332 is central in 8/9)15, so using the
maximality of &m once again, we get that im is a S;-subgroup of L.
Thus, D¢, is a S.-subgroup of ®.

Case 1. 3 centralizes Ii,.

Since M is a maximal {2, 5}-subgroup of &, it follows that M, is
a S;-subgroup of Cy(Z) for all Z in 3?. Hence M, = M, N C(Z) for
all Z in 8. This implies that M, = .

Since 3 centralizes M, = M, it follows that N(B) covers N(I;)/
C(M,;). By (11.12), 5[| N(I;): N(I,)'|. If bemw, Um,, then 0.3.4 and
a standard transfer argument show that I, & N(M,)’. We conclude
that 5er, U,

Suppose 5ex,. By Theorem 10.2, .7 (5) & # *(®). Hence M =
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M(M,). This violates (11.12).
Suppose 5em,. Choose a prime ¢ such that a maximal element
Q of UM,; q) is not 1. By Theorem 10.1, M, & N(Q)'. Let

95%5 = E);Rﬁ n 05' 5(N(Q)) ’

so that I, <= N(Eﬁ?s)’. §ince 3 centralizes ., 8 is characteristic in
some S,-subgroup of C(I;). Hence ; = N(3)', against (11.12).

Case 2. 3 does not centralize IN;.

Since 3 = T’ and since T/KZ) is extra special for all Z in 3% it
follows that O,(IN) contains an elementary subgroup of order 5°. Hence
5em,Um, and M contains an element of .o~ (5). If 5emx,, then M =
M(I,), by Theorem 10.2. This conflicts with (11.12), so 5er,.

By Theorem 1 of [39],

M = Cm(Z(Ems))’Nm(J(Sms)) .

Since TO,(IMN)/T'O,(M) is a chief factor of M, it follows that IN =
Co(Z(IN;)) or M = Ny (J(MM,)). In both cases, we conclude that M, is
a S;-subgroup of .

Let & be a maximal element of U(N,; q) with Q = 1, ¢ a prime.
By Theorem 10.1, I, = N(Q)'. By the transitivity theorem, N(Q)
contains a S,-subgroup of &. This is not the case, by (11.12). We
conclude that 5/ 44(T)|.

Let Z,, Z,, Z, be the involutions of . Since #(®) = 1, these in-
volutions are fused in N(Z).

We will show that S,-subgroups of A4(¥) are of order 3. Let A
be a S;-subgroup of 44(T). Since T/’ is elementary of order 2¢, we
may assume that A is elementary of order 32. Then A = A, x A,
where || =3 and |Cye ()| = 4, 2 =1,2. This implies that %, and
9, both centralize nonidentity elements of 8 = Q,(T), so A centralizes
8, against #(®) = 1.

Let & = Ng(¥)/0,,(Nx(2)). Thus |2| = 2°-3, and & is a Frobenius
group. Let J be an involution of £. Then C4J) has a normal 2-
complement, since the 2-length of Cy4(J) is one and L is a Frobenius
group. Suppose T, T'eZ and T571". If T is an involution, we get
Tyz, T'. Suppose T has order 4. We may choose N in N(T) such
that T° = (T"%)*. Let T, = T". Then T and T, are conjugate in
Cy(T*. As C,(T* has a normal 2-complement, 7 and T, are con-
jugate in £. We conclude that elements of £ are &-conjugate only if
they are N(T)-conjugate. By a result of Glauberman [18], ® is not
simple.

Suppose (d) holds.

Since ¢(®) = 1, it follows that Cy(8)/0.,(Cx«(3)) is isomorphic to
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the centralizer of a involution of U,@8). By a result of Fong [14],
® = U,(3).

12. The case 2e€m, All results in this section are proved on
the hypothesis that 2e7,. Let ¥ be a S,-subgroup of ®.

LEmMMA 12.1. Suppose qem, Um, — {2} and Q, is a maximal ele-
ment of WZ; q). Then one of the following holds:

(@) [Ql=q

(b) N, contains a S,~subgroup of &.

(¢) ¢ =38 and Ci(Q) = 1.

Proof. We may assume that |Q,| > ¢ and | NQ)|, < |S|,. Let
Q% be a S,-subgroup of N(Q,) permutable with ¥ and let & be a
S,-subgroup of & which contains Q*. Let T, = 0,(TQ*).

First, assume that T, == 1.

By Lemma 6.6(1), it follows that Q* is a S,-subgroup of every
solvable subgroup of & which contains T,Q*.

Let e L2 15(Q), A = AN Q*, A = Ny(Q*). By Theorem 6.1,
A* A, so A*cW,. By Lemma 6.6(), we conclude that A*NQ, =1
and that C;(B) =1 for all B in %, — A. This implies that Q, is
elementary.

Choose A in U, — A* with A?e A*. Then Q, and QVf are normal
elementary subgroups of Q*. If XeQ, N QY then X = A'Q,A with
Q, in Q,, so that [Q,, A]e A* N Q, = 1so that Q, = 1, since C; (4) = 1.
Hence, B =<{Q,, Q> =Q, x Qf is a normal elementary subgroup of
L2* normalized by A. Enlarge B to an element ¢ of .&/& 4+ (Q%)
which is normalized by A. Since |Q,] > ¢, and since Q* is a S,-
subgroup of C(Q,) for all Q, in Z(Q*) N Q% it follows that (g, q, &)
satisfies Hypothesis 6.1. Let &, = Z{. Since m(E) = 3, we may choose
E in @ so that C;(F) # 1, 1 =1,2. Hence, by Theorem 6.1, there
is an element C in C(®) such that T, = $°. Hence, AC~ normalizes
Z,. But Q* is a S,-subgroup of N(T) N N(G), since Q* is a S,-sub-
group of N(Z,). Now every element of N(T,) N N(&) normalizes Cy(T)),
so B centralizes T,. This is clearly impossible since B <] Q*.

Suppose 0,(TQ*) = 1. In this case, Cyx(Q) =1, so if ¢ =3, (¢)
holds and we are done. Suppose ¢ = 5. By a result of Glauberman
[17], Z(J(Q*)) <{2Q*. Since TQ* is a S, ~subgroup of N(Z(J(Q*))),
we get O = Q* so that (b) holds.

LEMMA 12.2. Suppose qex, — {2} and Q, is a maximal element
of U(Z; q). Then one of the following holds:

(@) [&]=qg.

(b) N, contains a S,-subgroup of .

() g =38 and Q, 1s cyclic while |&: N(Q)|; = 3.
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Proof. We may assume that [Q,| > ¢ and that [N(Q)[, < |8],.
Let Q* be a S,-subgroup of N(Q,) permutable with £ and let O be
a S,-subgroup of & containing Q*. Let T, = 0,(TL*).

Since 2¢em,, T, # 1. By Lemma 6.6(i)), Q* is a S,-subgroup of
every solvable subgroup of & which contains Q*T,. Hence, 2,(Z(Q))
is contained in Q* and is disjoint from Q,. Hence, Q, is cyclic since
LQ* contains no elementary subgroup of order ¢°. Since |Q,| > q, it
follows that U'(Q,) = 1. Since J'(X) centralizes every normal ele-
mentary subgroup of Q, it follows that 2,(Q,) x £,(Z(L)) is a normal
elementary subgroup of Q of order ¢*. Since Q is not abelian, 0.3.8
implies that Q is not metacyclic. If ¢ = 5, then by 0.34, we have
0'(Q) € Z(Q), against Q* c Q. Hence, ¢ =3 and Q* is of index 3
in Q. '

THEOREM 12.1. There are mo solvable subgroups M of & such
that

(a) NE@) =MW,

(b) M contains the centralizer of each of its involutions.

Proof. Suppose false, and I satisfies (a) and (b). We will show
that Hypothesis 10.1 is satisfied. Clearly, Hypothesis 10.1 (i), (ii), (iii)
are satisfied.

Suppose p is a prime, P is an element of M of order p, P =1J
is a product of the involutions I, J of &, and P is not a product of
two involutions of M. Let B be a S,-subgroup of IM with PeP.
We assume without loss of generality that 3 is permutable with Z.
We must show that 3 is cyclic; assume by way of contradiction that
B is noncyclic. Since I< C*(P), it follows that C*(P) £ M. If

C.(P)#1,

then since P = IJ, we also have P = I'J’, with I’, J’ being involutions
of M. Hence, Cy(P) = 1.

Case 1. pem,.
Since (M) = 1, & 43(2T) + @, and since by Lemma 5.40, I has
2-length 1, it follows that T <] TP.

Case 1(a). S,-subgroups of & are abelian.

Since % is nonecyclic, we can choose P, in P* with Cy(P,) +# 1.
Since C(P,)(P> is a Frobenius group, it follows that Cy(P,) contains
a four-group. Hence, C(P,) S M, so P is a S,-subgroup of &. Since
P = 1J, there is an involution T of & which normalizes 8 and inverts
P. Since N((P) < M, it follows that T does not invert 3. Hence,
P =P, x B,, where T inverts Y, and centralizes LB,. Choose P, in
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f, and suppose T'e M? Then C,,(P,) is even, so C,,(*B,) contains a
four-group. Hence, C(B,) = M¢ Thus, M contains an element of
order p which is inverted by 7. This is not the case, since T <] TP.

Case 1(b). S,-subgroups of & are nonabelian.

Let PB* = Cx(P). Since PB* is noncyclic, we can choose P* in P*#
such that C.(P*) contains a four-group, so that C*(P*) =M. If p =5,
then every p-solvable subgroup of G has p-length at most 1. Hence,
in this case <P, I> can be enlarged to a subgroup F(I> with

BRI,

where B is a S,-subgroup of ®. Then C;(I) # 1, since P’ = 1. If
Pepin C(I), then C(P) is contained is some conjugate of M and so
a S, ,-subgroup of C(P) is 2-closed. This is impossible, since I does
not centralize C (P). We may assume that p = 3 and that some 3-
solvable subgroup of G has 3-length at least 2. Since 3em, every
subgroup of ® of odd order is 3’-closed. Hence, there is a 2, 3-sub-
group & of & with [,(&) = 2. If & contains a four-group, then & &
IN¢ for some G in &, against T <] TP. Hence, a S,-subgroup of S is
generalized quaternion group, and we have 0,(&) = 1. Let &, = 0,(®).
Since & 13(S,) = @, and since a S,-subgroup of & is faithful re-
presented on &,, if follows that a S,-subgroup &, of & is a quaternion
group. We assume without loss of generality that &, It. Let
S; = G (©). If &, # 1, then C(&,) & M, so that & centralizes C; (S,),
since T <] ITP. This forces &, = &,, against 0,(&) = 1. Hence, S; =
1, so that &; inverts &, and &, = &, x &,, where |&,| = |&;]| = 3%,
&,; being cyclic for 7 =1, 2. Since & inverts &, it follows that
N:(3,) is a complement to &, in &. Let A be a S,-subgroup of N (S,).
Since U centralizes &;, we have A<M, so N(U) = M. Hence,

N, =M, so [N, S]<0,©)NGS, =1,
against the fact that & inverts &,.

Case 2. pem,Ur,.
Let P* be a S,-subgroup of & which contains PB.

Case 2(a). P P*.
Since B is noncyclie, Theorem 10.9 implies that

Pe AP .

Hence, B contains a cyclic subgroup B, of index p. Also, T <]JITYP.
If P¢ Z(P), then P = PLKP) and 2,(P,) centralizes T. In this case,
2.() & Z(PB*), so P = P* against our hypothesis. Hence, Pe Z(P).
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If B is nonabelian, then the normalizer of every noncentral subgroup
of P of order p is contained in M. This is clearly impossible, since
P’ = 1 implies that Cup (W) £ P for all noncentral subgroups A of P of
order p. Hence, P = B, x B, is abelian, and exactly one subgroup
of B of order p has a non trivial fixed point on . Hence, if T
is an involution of &, then |C(T)|, = p. It follows that Pe Z(L*)
and P* is normalized by some involution T of &. Clearly, $* # 1,
since P P*. If P*e Cp(T)?, then C(P*) contains (T, Z(H*)> and
C(P*) is contained in some conjugate of M. This is impossible, since
T inverts Z(P*) and T <] TP.

Case 2(b). L = P*.

Since C*(P) £ M, it follows that a Sy-subgroup of Cyu(P) is of the
shape (P> x €, where € is cyclic. By Theorem 10.9, (P> x € is a
S,-subgroup of C(P), so there is an involution of G which normalizes
(P> x €and inverts P. But NKP) x C) < M, by Theorem 10.9, and
so P is a product of two involutions of I, against our hypothesis.
We have verified Hypothesis 10.1(iv).

In verifying Hypothesis 10.1(v), we may assume that P is of
prime order p. Let P be a S,-subgroup of 0, (IN) which contains P.
We assume without loss of generality that ¥ normalizes B. If Cy(P)
contains no elementary subgroup of order p° then since (M) = 1, it
follows that ¥ centralizes P, so that C*(P) = I and (v) holds. If
Cy(P) contains an elementary subgroup of order p° then once again
C*(P) < M, by Theorem 10.2. The proof is complete.

Theorem 10.2 and Theorem 12.1 imply that {©|$ e U(Z))> is non-
solvable. We will frequently use this fact.

THEOREM 12.2. Assume the following:

(i) p,gem —1{2,3,, 7 ={p, g}, rem.

(ii) 9 is a S, ,-subgroup of &; B is a S,-subgroup of 9; L is
a S,-subgroup of 9.

(i) P = 0,(9), FEANP) = O.

(iv) Q, = 0,9), FSZ 1) # O.

(v) e L2z 1B, AP, Are L& 47 (P), A< A

(vi) Be FZ 1), B LR, B*e Lz 47 (Q), B < B+
Then the following hold.

(i) C(BB) permutes tramsitively by conjugation the maximal
elements of U(B.B; 7).

(ii) Suppose B is faithfully represented on some element of U(B; r).
Then there is an element R in U(B.LQ,; r) with the following properties:

(@) 9 normalizes R.

(b) B is faithfully represented on R.
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Proof. (i) Hypothesis 6.5 is satisfied with 93, in the role of &,
£, in the role of 8. By Lemma 6.5, we conclude that P, centralizes
every element of U(PB,; q). We must show that B centralizes every
element of U@B; p). Choose B e Z*(Q), B, =B. By Lemma 6.4
(with p and ¢ interchanged), B, centralizes every element of U(B;; p).
Suppose € e U(B; p). Choose Z in BiN Z(Q). Then (B, €, QD> = C(Z).
Since P, is a maximal element of M(Q; p), it follows that P, is a
S,-subgroup of 0,(C(Z)). Since ¢ =5, B< 0, ,(C(8)). Hence,

[€, 8] < 0,(C(2)) .

Since B centralizes P, B centralizes every p-subgroup of 0, (C(Z))
which B normalizes. Hence, [§, B, B] =1, so B centralizes E.

We next show that C(PB) = Z(BB) x § where § is a 7’-group.
Since C(BB) < C(PB,) = N(P)), and since H = N(P,), the desired equality
follows from Lemma 5.19.

Let & = {8, B}. We will show that Hypothesis 6.2 is satisfied
with BB in the role of A, r in the role of q. (a), (b), (¢) have been
verified, and (d)(ii) holds by construction. Since = N(L,), (d)(i) holds
for F = PB,. Take F = B, and choose R, in Uy (LB; r). We must
show that R, < 0..(N(B)). Let $* be a S, ,-subgroup of N(B) which
contains QP,. Since, P, is a maximal element of U(Q; p), it follows
that P, = 0,(9*). Hence, Theorem 2 of [41] applies to yield (d)(i).
By construction, (e)(i) holds.

Since & is an N-group with 2exn’, it follows that (m, », BB)
satisfies conditions (b), (d), (¢) of Hypothesis 6.1. By Theorem 6.2,
(z, r, B, B) satisfies Hypothesis 6.1. Since m(B) = 3, Theorem 6.1
yields (i).

We remark that by symmetry we get also

(1) €CQ, permutes transitively by conjugation the maximal
elements of UQ; 7).

It remains to verify (ii). Choose B in % and let R, be an ele-
ment of U(B*; r) which is not centralized by B. Choose B, € Z *(Q)
with B, c B. Then choose B, in B! so that B does not centralize
C,(B). We argue that there is some element of W, (P, B; r) which
is not centralized by B. In any case, [Cy(B,), B] lies in O,(C(B)),
since B* < 0, (C(B)). Also, ¥, is a S,-subgroup of 0,(C(B)). Let
R, be a S,-subgroup of O,(C(B)) which is normalized by B* and is
permutable with B,. Then B does not centralize R,. Thus, B does
not centralize the Fitting subgroup of B,R,. Since B centralizes 3,
B does not centralize the S,-subgroup of the Fitting subgroup of {,R,,
and our assertion is established.

Let R be a maximal element of U(P,B; ) which is not centralized
by B. We will show that N(R) contains a S,-subgroup of N(.B).
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Choose N in N(P.®B). Then R* is a maximal element of U(PE.B; r),
so RY = R for some C in C(PH,B). Hence,

N(BB) = (N(B:B) N NR)C(B.D) .

Since C(PB) = Z(PB) x ¥, where F is a n’-group, our assertion
follows. Let ©* be a S, ,-subgroup of N(P,B) N N(R).

We have shown that if Be®¥, then there is a maximal element
R = R(B) of U(PB,B; r) which is not centralized by B. By (i), we
conclude that B is faithfully represented on every maximal element
of U(EB.B; 7).

Since Q = N(B.B), we can choose N in N(B,B) so that H*¥ 5 Q.
Replacing R by RY we may assume that R is a maximal element of
U(B.B; r) which is normalized by L. and on which B is faithfully
represented. Since R is a maximal element of U(P.B; r) normalized
by $.Q,, R is a maximal element of U(B,Q,; r). However, we argue
that R is also a maximal element of URAQ,; 7). Let N* = N(R). By
(i) applied to AQ,, we see that (w, r, AQ),) satisfies Hypothesis 6.1.
Hence, every element of U,.(AQ,; 7) lies in O, (N*). As R is a maximal
element of N(PWB; r), it follows that N is a S,-subgroup of O..(N*),
s0 is a maximal element of UAL,; 7).

By (i) applied to ALY, it follows that N(R) contains a S,-subgroup
of NQ,). Let B* be a S,-subgroup of N(R) permutable with Q,
such that B, < B*. Then P, = O,(P*Q), so (P, B*, O> < N(PB). Now
we have the exploitable equality Q, = 0,.(N(3)) N Q. We choose N,
in N(B,) so that P*" =P, Q¥ = Q. The expression for Q, guar-
antees that N, e N(Q). Thus, P normalizes R*: and since R": is a
maximal element of U(P.B; r), B is faithfully represented on R":; the
proof is complete.

HypoTrESIS 12.1. (i) pem,p = 5.
(ii) O satisfies E, ,.

We will show that Hypothesis 12.1 is not satisfied. Suppose false.
Let B be a S,-subgroup of & permutable with &, and let M = M(P),
M being available by Theorem 10.2.

Let B, = 0,(BPT) and let O be a maximal element of U(T;q), q
being an odd prime. We will show that Q = It. First, suppose that
T contains an elementary subgroup of order 16. In this case, £ con-
tains a four-subgroup & such that Cy (€)e .o7(p). Hence, C(E)<= M
for all E in &% by Theorem 10.2, so Q& M. We may therefore
assume that T contains no elementary subgroup of order 16. Suppose
that Q & IN.

Let & be a normal elementary subgroup of ¥ of order 8. Let
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Q,=2nNM,Q, S, [0,:9, =¢q, with = N(LQ,). Let
G, = Ce(R)/Q) «

Let ¢ = {E| E € G, Cy(E) is noncyclic}. By Theorem 10.2, ¢neG =g,
so EE' e @, for all E, E' in ¢. By Lemma 5.39 with 3, in the role
of 3, it follows that ¥ is isomorphic to a subgroup of GL(3, p).
Since M dominates T, it follows that T’ = 1. However, this violates
Lemma 5.43(b).

Since Q = M, M contains every element of U(L). Hence,

DIHenN®))= M.

This is not the case since IR is solvable.

HypoTHESIS 12.2. (i) pem, p= 5.
(ii) Maximal elements of U(T; p) contain elementary subgroups
of order p°.

We will show that Hypothesis 12.2 is not satisfied. Suppose false.

Let B be a S,-subgroup of & permutable with T. B is available
by Lemma 12.1. Let o be the equivalence class of 7, — {2} under ~
which contains p, and let 7 = ¢ U z(0). Let & be a S.-subgroup of
& which contains B. Let L3, = 0,(12), T, = 0,(PT). Thus, by Lemma
12.1, = 45 # O.

Suppose gem, ¢ # p and L is a S,-subgroup of & permutable
with B. Let Q, = 0,(BQ), B, = 0,(PL). We will show that

(*) [B,, Q,] centralizes every element of U(Q,; 2) .

Suppose (*) does not hold.

Since (*) does not hold, it follows readily that & does not satisfy
E;,,. We will exploit this fact.

If €, =1, then by Theorem 6.1, N(Q,) contains a &,, ,~subgroup
of &. We may assume therefore that

12.1) T, = 1.

Suppose B, NP, = F = 1. Let Lbe a S,, ,-subgroup of N(I) with
P8 We assume without loss of generality that T,Q, = 0,().

Let B=PNO,,(BI), xeNEP). By Theorem 6.1, (T,Q) <
(T2, CPH S CQ) = N(Q), and so (T,Q)" = (T,Q)° for some
ceC(iiB). This implies that N((vzoﬂl) contains a S,-subgroup gf S.

Let = L NO,,(BL), yeN(fG). Then (SOQIX = &Q, C(‘IS)> c
C S NE), s0 (TQ) = (T,Q,)" for some deC(P). Hence, NZ.Q,)
contains a S,-subgroup of &, and so N(T,Q,) contains a S,, ,-sub-

group of ®. This is false, and so
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(12.2) BNP,=1.
Since L Z 4"y #= @, (12.2) implies that

(12.3) FEN () # D .

Let [P, Q] = Q,. Since (*) is false, some element ® of N(Q,; 2)
is not centralized by Q.. Suppose L, centralizes every element of
U(Q;2). Note that P normalizes Q,. Let L, =08 =Q%°, so that £,
centralizes every element of U(Q;2). Since P & N(Q))', it follows
that Q, is not eyclic. Thus, £, contains a subgroup B of type (g, 9)
with B <]Q, and it follows that B centralizes every element of U(Q;2),
whence B centralizes every element of U(B;2). Let B = B = B,
so that B = L,, and B centralizes every element of M(EZNB; 2). Since
£,=9Q, we have B=Q, and De UB;2). Thus, D, B, <
N(®), and Q, is a S,subgroup of 0,(N(B)). Now D, = [D, Q] 2
[D, ;] #1 and D, < 0,(0,(N(B))). This implies that Q, does not
centralize any S,-subgroup of 0,(0,(N(B))), against our assumption
that Q, centralizes every element of MU(Q;2). We conclude that
[Bo, ©,] does not centralize every elememt of U(Q;2). By Theorem
6.1, [T, Q,] does not centralize any element of U*(Q; 2).

Suppose B, = 1. In this case, there is a maximal element R of
M(Q; 2) which is normalized by B, so (*) holds since [, R] = 1.

Suppose B, is a nonidentity cyclic group. Let & be a normal
elementary subgroup of B of order p* with & = B,. Choose a maximal
element R of U(Q;2) such that N(R) NP is a S,-subgroup of N(R).
Let P* = NR) NP, so that P*Q is a S, -subgroup of N(R) and
PP, = P. Let G* = ENP*. Since P, is cyclic, &* is noncyclic.
Since L, < Z(P), &* <] P. Let G (P, Er < @, |GF| = p*. Then

[CF, Q] = Qr

centralizes M and Q) is normalized by PB. Hence, N(Q}) contains
Q,, Rand B. Let & be a S, -subgroup of N(QF) which contains Q5.
Since Q, = 0,(®), (*) follows immediately.

Suppose .= 45(B) = @. Proceeding as before, choose a maxim-
al element R of U(Q,; 2) such that NR) NP = PB* is a S,-subgroup
of N(R). Since ¥z 44PB) = @, it follows that L*/Cu(B)) is ele-
mentary of order 1, p or p*. If L+ NP, is noneyelic, then since P* N
B, centralizes PB,, it follows that P* N P, contains an elementary sub-
group ¥ of order p* which is normal in PB. Since F centralizes R,
so does [Q,, &], so (*) is seen to hold. We may assume that x* N L,
is eyclic. Since ¥z 43(B,) = @, it follows that P*N P, = 1. Sup-
pose P* N C(YP,) is noneyclic. Since 2,(P* N Bo) & Z(P), there is an
elementary subgroup ¥ of L3* of order p* which is normal in B and
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contains 2,(P* N Y,). By Lemma 6.4, it follows that 2,(P* N B,) central-
izes M, so again (*) holds. Suppose that LB* N C(P,) is cyclic. Since
PP, =P and P, NP, =1, it follows that & +5(B*) = @. Now
since A& 1 (PB.) # O, and since & A (L) = O, it follows that P
contains a normal elementary subgroup U of order p°. Let

W =P*NA.

Thus, UA* is of order precisely p°, since B* contains a normal eyclic
subgroup P* N C(B,) with factor group elementary of order 1, p or
p®. Since P < N(B)', it follows easily from 0.3.4 that C(B,) N A* is
noncyelic. This is impossible, so we conclude that

(12.4) FE NP #= D .

Choose an element B of & _7;(Q,) with B <]Q. Suppose B is
faithfully represented on some element of U(B*; 2), where

B*re S N7(Q),

B < B*. Let R be the element of U(P,Q,; 2) given by Theorem 12.2(ii),
with BQ < N(R). In this case, [, Q.] centralizes R, so

(B, QINB=1.

This is impossible since B 2 Z(Q,). Thus, B is not represented faith-
fully on any element of U(B*;2). We can thus choose Z in Z(Q)NQ?
such that Z centralizes a maximal element R, of MU(Q;2). Hence,
C(Z) 2P, RN,y and we assume without loss of generality that
PR, is a group. It follows that N(BNR,) contains a S, ,-subgroup
of . By C,,, we can choose a maximal element R, = R¢ of U(Q; 2)
such that PQ is permutable with R,. Thus, (*) holds in this case,
too.

We will next show that there are a prime ¢ and an elementary
subgroup € of & of order ¢* such that

(i) & is normal in a S,-subgroup of K.
(12.5) (ii) & centralizes every element of U(E; 2).
(iii) €< F(®).

If B, N F(R) is noncyclic, we may take ¢ = p, so suppose that B, N F(K)
is cyclic. We can then choose ¢ in 7(F(R)), ¢ # p such that B, does
not centralize the S,-subgroup §, of F(®). Let Q be a S,-subgroup
of & permutable with . Then 0,(QF) 2 F,, so by (*), [0,(2%), Bl
centralizes every element of M(0,(0%); 2). Let Q* be the largest
subgroup of 0,(Q%) which centralizes every element of U(0,(Q%; q)).
Clearly, Q* <{Q%, so Q*NE, JQP. If Q* N F, is noncyclic, € is
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clearly available. Suppose Q* N E, is cyclic. Then in particular,
B. N [0,(2%), Bo] is cyclic. We will show that this is not the case.

Let € = N(O, Q%)) and let £ be the largest subgroup of 0,(Q%)
which centralizes every element of U(Q; o — {q}). Let & = N(Z(Q)).
Then <%, & = ¥*. By Corollary 6.2, P= &, so P<= L. Since P,
does not centralize &, by hypothesis, [$¥,, B] is noncyeclic.

Let & satisfy (12.5.i), (12.5.ii) and (12.5.iii). It follows easily
from the definition of 7= that & centralizes every element of U(E; r)
for all primes » = 3, q. Thus, 8 =<9 |9 U(; ¢)> is a solvable ¢'-
group, and & < N(8). It follows that every element of MU(F) is con-
tained in N(®) = M, say. Hence, ¥ (p) & .2 *(®), by Theorem 10.6.
It then follows that every element of M(T) is contained in M, so
T =M and by Theorem 10.7, N(X) = M, C(I) = M for all involutions
I of . This is not the case. We have shown that Hypothesis 12.2
is not satisfied.

Let o be the set of all primes ¢ = 5 such that £ normalizes some
nonidentity g-subgroup of ©.

HyrorHESIS 12.3. There is a prime p =5 such that p||A449)]
for some 2-subgroup § of .

By Hypothesis 12.3 and Lemma 5.51, there is a normal subgroup
$ of T such that p ||A4(D)|. Let & = N(9) and let & be a S, ,-sub-
group of & which contains £. Let 0 be a S,-subgroup of &, Let
9, =0, 2('@0) N, By = PN 0,. p(*@o)' Thus, [‘@o; Bl = 9, <K <, and P,
does not centralize ©,. If geo and Q is a maximal element of
MU(Z; q), then since neither Hypothesis 12.1 nor 12.2 is satisfied, it
follows that & +(Q) = @. This implies that £, centralizes 2,
by Theorem 6.1. Since p =5, 9, contains an element B of Z *(T).
Thus, B centralizes every element of MU(DB; {2, 3}). It follows that
A AeNR)> is of odd order. This is not the case, so Hypothesis
12.3 is not satisfied.

HypoTHESIS 12.4. There is an element B of % *(<) which central-
izes every element of U(DB; o).

Suppose Hypothesis 12.4 is satisfied. Then {(H|HeMU(R)> is of
odd order. Since this is not the case, Hypothesis 12.4 is not satisfied.

HypoTHESIS 12.5. o &7,

Suppose Hypothesis 12.5 is satisfied. Let p be the largest prime
in ¢, and let geo. Since & 45%) #+ @, we can choose an ele-
ment I of ¥* which centralizes a S,-subgroup of & and a S,-subgroup
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of . Hence, if P is a S,-subgroup of & which is normalized by Z,
then N(P) contains a S,-subgroup & of & which is normalized by <.
Also, ' centralizes &, so ¥’ contains no element of Z*(T). Hence,
Z(%') is cyclie, so by a well known property of 2-groups, ¥’ is eyclic.
Clearly, &' #= 1, since ¥ does not centralize &, while each Sylow sub-
group of & which is normalized by ¥ dominates £. If 2,(%') is weakly
closed in Z, then T < N(R,(T'))', so that T centralizes &. Hence,
2,(') is not weakly closed in . Let 2,(%') = 8 =<Z), and choose
G in & so that 3°c%,Z2°=Z, # Z,3° = B,. We may assume that
8< %% Let € be an elementary normal subgroup of £¢ of order 8
which contains 3,. Let @ = C¢(Z) so that |G| =4. We assume
without loss of generality that & < . Then &, normalizes &, but
3, does not centralize &. We may choose E in & so that C.(E) is
not centralized by Z,. Since Hypothesis 12.3 is not satisfied, a S, ,-
subgroup of C(E) is o-closed. Hence, there is an element ¥ of
% A7 (Z°) which normalizes a g-subgroup &, of & with Z, ¢ C(&,).
This is not possible, since Z centralizes every element of U(Z; g). We
have shown that Hypothesis 12.5 does not hold.

Let 0, =0Nm,;,v=1,2. Since Hypotheses 12.1, 12.2, 12.3 fail,it
follows that o = 0, U 0,, and since Hypothesis 12.5 fails, o, %= ¢&.
Let p be the largest prime in o,, and let 3 be a S,-subgroup of O.
Let & be a normal elementary subgroup of S of order p>. Maximality
of p guarantees that for each ¢ in g, — {p}, & centralizes every ele-
ment of U(E; ¢). A routine argument shows that & centralizes every
element of U(E; o). It follows that & centralizes every element of
of U; {p, 8)), so L=<9/9eHN@)> is a solvable p’-group. Thus
N®) 2%, and it follows that {(9|HeU(Z)> is of odd order. Since
this is not the case, we have derived the desired contradiction.

Received May 18, 1970. I am indebted to Professor J. H. Walter and Dr. Anne
MacWilliams for pointing out several gaps.
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