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INTEGRALS WHICH ARE CONVEX FUNCTIONALS, II

R. T. ROCKAFELLAR

Formulas are derived in this paper for the conjugates
of convex integral functionals on Banach spaces of measurable
or continuous vector-valued functions. These formulas imply
the weak compactness of certain convex sets of summable
functions, and they thus have applications in the existence
theory and duality theory for various optimization problems.
They also yield formulas for the subdifferentials of integral
functionals, as well as characterizations of supporting hyper-
planes and normal cones.

Let T be an arbitrary set, let j?~ be a σ-field of subsets of T
(the "measurable" sets), and let dt denote a nonnegative, σ-finite
measure on ^ \ We shall be interested in functionals of the form

(1.1) If(u) - \ f(t, u(t))dt, ueL ,

where L is a linear space of measurable functions from T to Rn,
and / is a function from Γ x Rn to R1 U {+ °°} such that the function
ft = f(t, •) is convex on Rn for every te T. A functional of the form
// is obviously convex (with values in R1 U {+°°}), provided that it is
well-defined in the sense that, for every u e L, f(t, u(t)) is a measur-
able function of t which majorizes at least one summable function
of t.

In our preceding paper with the same title [16], rather general
spaces L were considered, but here the cases L = L~(T) and L = LX

%{T)
dominate. (We denote by Lζ(T) = Lζ(T, ^ dt), 1 ^ p ^ +oo, the
Banach space consisting of all (equivalence classes of) measurable
functions u: T'-+ Rn such that the realvalued function t —• | u(t) |, where
| | denotes the Euclidean norm in Rn, belongs to Lp(T,^~,dt) the
norm of the function t-+\u(t)\ in LP(T, J^dt) being the Lζ(T)-norm
of u.)

We assume as in [16] that / is a normal convex integrand on
T x Rn, in other words,

(a) ft is for each t a lower semicontinuous convex function
from Rn to Rι U {+°°} which is not identically +°o, and

(b) there exists a countable collection U of measurable functions
from T to Rn, such that /(ί, u(t)) is measurable in t for every u e U,
and U(t) Π D(t) is dense in the (nonempty, convex) set

(1.2) D(t) = {xeRn \f(t, x) < + oo}
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for every te T, where

(1.3) U(t) = {u(t)\ueU] .

This assumption guarantees, in particular, that f(t, n{t)) is a measurable
function of t for every measurable function u:T—+Rn [16]. The
naturalness of the class of normal convex integrands is shown by a
number of characterizations in [17]. (A somewhat different approach
to the measurablity question has been taken by Ioffe and Tikhomirov
in [6], where (T, ̂ ~, dt) is a Lebesgue space but R* is replaced by a
separable Banach space. Results in [17] indicate that the two ap-
proaches are equivalent where their domains overlap.)

Condition (b) is always satisfied if ft is actually independent of
t. It is equivalent, in the case where the interior of D{t) is non-
empty for every ί, to the condition that f(t, x) be measurable in t
for each xeRn [16]. Condition (b) is also satisfied, of course, in
the important case of a "discrete" measure space, where dt assigns
unit mass to each point of T; then the functional // in (1.1) is given
by a series:

Let / * be the integrand conjugate to /, that is

(1.4) /*(*, x*) - sup {<x, x*> - f(t, x) I x € R*} ,

where <(., •> denotes the inner product in Rn. Then / * is a normal
convex integrand [16], and / is in turn the integrand conjugate to / * .
We have shown in [16, Theorem 2] that, if f(t, u(t)) is majorized by
a summable function of t for at least one choice of ueLζ(T), and
similarly /*(£, u*(t)) is majorized by a summable function of t for at
least one u* e Li(T), where (1/p) + (1/Q) = 1> then the convex func-
tionals If on Lζ(T) and //* on Lq

n(T) are well-defined and conjugate to
each other with respect to the pairing

(1.5) <u, ̂ *> = ί <u(t), u*(φdt .

Thus one has

(1.6) IAuη = sup {(u, u*y - I » | u e Ll(T)} , u* e L%{T) ,

(1.7) If(u) = sup {ζu, u*> - I^u*) I u* e Ll(T)} , u e L'(T) .

This result leaves an open question, however, in the case of p = co,
since in general L\(T) cannot be identified with the dual space
LZ{Tr of LZ{T).

What is the nature of the convex function // on LZ{T)* which
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is conjugate to // on LZ{T)1 This question is of more importance
than might be expected judging from the "obscurity" of the space

In applying the methods of functional analysis to optimization
problems, such as problems in optimal control and the calculus of
variations, one often finds it convenient to work in L~(Γ) or one of
its subspaces (e.g., a space of continuous functions), where T is a
real interval or a region in Rn. Many of the functionals and mappings
one encounters in such cases have nicer continuity or differentiability
properties with respect to the "uniform" norm on LZ{T) than with
respect to the other Lζ(T) norms. Unfortunately, there is also a
disadvantage to working in LZ{T): it is more difficult to use argu-
ments based on duality. This drawback is serious when dealing with
convexity, since duality methods are especially natural in such situ-
ations. Thus, even if L°Z(T)* is not a convenient space to work with
directly, it can be helpful to have a formula for // on L™(T)* in
terms of /, because this may facilitate reasoning based on the general
theory of conjugate convex functions.

By definition, one has

(1.8) i;(v) = sup {v(u) - If(u) I u e L~(Γ)}, v e L~{T)* ,

assuming that // is well-defined on Lζ{T). Formula (1.6) (when valid)
implies that 1/ reduces to If* on Lι

n{T), if L\{T) is identified in the
canonical way with a subspace of LζiT)*.

Our basic result below (Theorem 1) is that // is the direct sum
of //* on Li(T) and a certain "singular" component, which is a posi-
tively homogeneous, convex functional on the measure-theoretic com-
plement of Lι

n{T) in LZ{T)*. We give a condition, generalizing
Theorem 4 of [16], under which the "singular" component is trivial,
so that // is identically + °o outside of Lι

n(T) and hence reduces entirely
to If*. This property implies the weak compactness in Lι

n{T) of all
the convex level sets of the functional //* (see Corollaries 2A and
2B). The sufficient condition for weak compactness which is obtained
in this way may be regarded as a generalization of Nagumo's Theo-
rem [12] in the calculus of variations, and it is also related to recent
work of Olech [13, 14] in the same area. Furthermore, it generalizes
a result of Castaing [2, Lemma 7.1] as formulated by Valadier [21,
1.15]. The latter corresponds to the case where ft is for each t the
support function (and ft* the indicator function) of a nonempty, com-
pact, convex subset of R*. (For extensions in this case to spaces
more general than Rn, see [2], [3], and [4]). (Note added in revision:
since the writing of this paper, Valadier [22, p. 14-16] has inde-
pendently proved, in effect, a slightly weaker form of our compact-
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ness result, Corollary 2B, and Castaing [5, Theorem 6] has established
a generalization in which Rn is replaced by a reflexive Banach space.
We have also proved a converse of Corollary 2B in [20].)

After establishing these basic results in §2, we extend them in
§ 3 to the situation where T is a topological space, L~(T) is replaced
by a space of continuous, iϊ^-valued functions on T, and Ln(T)* is
correspondingly replaced by a space of unvalued measures on T.
The argument is based on a general theorem about the images and
inverse images of convex functions under continuous, linear trans-
formations between locally convex, topological vector spaces.

A refinement is then given in § 4 under the assumption that the
multifunction D:t—> D(t) in (1.2) is "fully lower semicontinuous."
A theorem of Michael [9] concerning continuous selections is essential
to the proof. The refined formula yields in § 5 a characterization of
the weak* closure of certain convex sets of measures on T (Corollaries
5B, 5C) and a corresponding compactness criterion (Corollary 5D).
The latter extends a lemma which Olech [13, 14] uses as the basic
tool in deducing the existence of solutions to problems in optimal
control.

Throughout the paper, we give applications to the theory of
subgradients. If // is regarded as a function on LS(Γ), the sub-
gradients of // at the point ueLζ(T), with respect to the pairing
(1.5) between Lζ(T) and Lq

n{T), (1/p) + (1/q) = 1, are by definition the
elements u* e Lq

n{T) such that

(1.9) If(u') ^ If(u) + <y - u, M*> for every v! ,

or equivalently

(1.10) If*(u*) = O , u*> - If(u) .

The set of all such subgradients is denoted by dlf(u). Formulas (1.4)
and (1.6) (when the latter is valid) imply at once that a function
u*eLq

n(T) belongs to dlf(u) if and only if

(1.11) f*(t, u*(t)) = <u(t), u*(Φ - At, u{t))

for almost every t, or in other words,

(1.12) u*(t) e dft(u(t))

for almost every t.
If p = oo, and one considers the pairing between L~(T) and

JL~(Γ)*, rather than Lι

n{T), the subgradient set dlf(u) consists by
definition of the set of linear functional veLn(T)* such that

(1.13) i;(v) = v{u) - If{u) .
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The formula for 1/ on L~(T)* yields a description of the sub-
gradients of If in the more general case. Similarly, the conjugacy
formulas in § 3 and § 4 yield descriptions of the subgradients of inte-
gral functionals on spaces of continuous functions.

2* Basic results. Recall that, in analogy with the Lebesgue
decomposition of measures, every linear functional v in L~(T)* can
be expressed uniquely as the sum of an "absolutely continuous"
component va and a "singular" component v8. The "absolutely con-
tinuous" linear functional va corresponds to an element u* of Lι

n(T),
in the sense that

(2.1) va(u) = jr<^(ί), u*(φdt , u e L~(T) .

On the other hand, the "singular" linear functional vs has the pro-
perty that, given any finite, nonnegative measure τ equivalent to dt
and any e > 0, there is a measurable subset S of T such that τ(T\S) < ε,
and vs(u) = 0 for every u is L~(S). (Here we identify L"(S) with
the subspace of L~(T) consisting of the functions which vanish almost
everywhere outside of S). One has

(2.2) IMI = I K I I + I I * . | | - ! \u*(t)\dt + \\v.\\.
JT

\
T

The set of all "singular" functionals vs in L™{T) is a closed subspace
which may be regarded as the measure-theoretic complement of Lι

n(T).
This decomposition of L"(T)* may be derived from general results

concerning Riesz spaces, but it also can be obtained by representing
Ln(T) (via the theory of commutative Banach algebras, applied to
L?(T)) as the space of all continuous functions from T to Rn, where
T is a certain (extremally disconnected) compact Hausdorίf space. In
the latter case, r and the elements of L»(Γ)* can be regarded as
finite, regular Borel measures on T, and the ordinary Lebesgue de-
composition theorem can be invoked.

As usual, we denote by δ0 the indicator of a convex set C, that
is, the convex function which vanishes on C and is identically + oo
outside of C. For CcL^(T), the convex function δS on LΓ(Γ)*
conjugate to dc is given by

(2.3) δ$(v) = s u p {v(u) \ueC} .

Thus δ$ is the support function of C, and δ$ is positively homo-
geneous.

THEOREM 1. Assume that f(t, u(t)) is majorized by a summable
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function of t for at least one ueL~(T), and that f*(t, u*(t)) is ma-
jorized by a summable function of t for at least one u* e Lι

n{T).
Then If is well-defined on Ln(T), and the convex function I* on
LZ{T)* conjugate to If is given by

(2.4) Pf(v) = I^u*) + δ*(v.) , u 6 LΓ(T)* ,

where u* is the element of Ll(T) giving the "absolutely continuous"
component of v, vs is the "singular" component of v, and

(2.5) C={ue L~(T) | If{u) < + « > } .

Proof. As pointed out above, the hypothesis implies by [16,
Theorem 2] that If and If* are well-defined on L~(T) and Lι

n(T),
respectively, and that formulas (1.6) and (1.7) hold for p — oo and
q — 1. Thus for every w* G Lι

n(T) and every measurable subset S of
T one has

( /*(«, u*(t))dt = supjί [<u(t), iι*(t)>
(2.6) } s X]s

-f(t,u(t))]dt\ueL~(S)

by (1.6) and the definition of / * . Fix i>eL?(T)*, and choose any
real number a such that

(2.7) a < IAu*) = \ f*(t, u*(t))dt ,
JT

where u* satisfies (2.1). Let ΰ be any element of L~(T) such that
/( >^( )) is summable, i.e., any element of the set C in (2.5), and
let d > 0. Let τ be any finite, nonnegative measure equivalent to
dt. The "singularity" of vs implies the existence of a nondecreasing
sequence of measurable sets Sk in T such that

τ(T\Sk) > Ilk ,

and v, vanishes on L~(Sk). Taking S to be Sk for k sufficiently
large, and S' — T\S, we have

(2.8) ί /*(ί, u*(t))dt < a ,
Js

(2.9) \ [<n(t), u*(φ - f(t, ΰ(t))¥t > -δ .

We now calculate from (1.8) and (2.6) that
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I?(v) = sup \v(%) - \f{t, u(t))dt - ^ / ( * , u(t))dt I u e L~(Γ)}

= sup \va{u) - [f(t, u(t))dt I u e LΓ(S)|

(2.10) + sup {va{u) + v.(u) - \s/(t, u(t))dt | u e L~(S'

*(ί, u*(t))dt + sup{vs(%)

)> /(ί ())]dί| e LΓ(S

Taking u to be the element of L^(S') which agrees with ΰ on S'
but vanishes on S, we see from (2.10) that

i;(v) ^ ί
(2.11) J s

- f(t, ΰ(t))]dt ,

and hence by (2.8) and (2.9)

(2.12) i;(v) ^a + vs(ΰ) - δ .

Inasmuch as a was any number satisfying (2.7), and 3 was any
positive number, we conclude from (2.12) that

If*(v) ^ IΛu*) + vs(ΰ) .

Moreover, this holds for any ΰ e C. Thus

If{v) ^ If*(u*) + sup {vs(ΰ) \ΰeC}

- IΛu*) + δi(v.) .

To prove the opposite inequality, we observe simply that

If*(v) = sup {<u, u*> + vs{u) - If(u)}
ueC

^ sup {(u, u*y — If(u)} + sup vs(u)
ueC ueC

= iAuη + δ$(v.).

This establishes Theorem 1.

COROLLARY lA. Assume, in addition to the hypothesis of Theo-
rem 1, that the convex set C is a cone. Then in formula (2.4) one
has

I*(v) — If*(u*) tf vs(u) ^ 0 for every ueC ,

= + oo otherwise.



446 R. T. ROCKAFELLAR

Proof. If C is a convex cone, then the support function of C is
the indicator of C*, the convex cone polar to C.

A noteworthy case of Corollary 1A occurs when /(£, •) is for
every t the support function of a nonempty closed convex set Q(t) c
R%. Then C is a cone by the positive homogeneity of f(t9 •)• The
function f*(t, •) is the indicator of Q(ί), and hence //* on L\(T) is
the indicator of the convex set W consisting of all summable func-
tions u* such that u*(t) e Q(t) for almost every t. The hypothesis of
Theorem 1 is satisfied if and only if WΦ 0 , in which event If on
LZ{T) is the support function of W (regarded as a subset of Z£(T)*),
so that If is the indicator of the closure of W in the weak topology
induced on L~(T)* by Z£(T). Thus, if WΦ 0 , the latter closure
of W is by Corollary 1A the direct sum of W and a certain "singular
cone." A different version of this result will be given in Corollaries 5B
and 5C.

Another important case of Corollary 1A occurs when C is all of
Ln(T). We shall cover this case in a slightly stronger way (by
avoiding a direct summability assumption on /*) in Corollary 2A.

COROLLARY IB. Under the hypothesis of Theorem 1, an element
veL~(T)* belongs to the subgradient set dlf(u) if and only if (1.12)
holds, where u* is the function in Un(T) corresponding to the "αδso-
lutely continuous" component va of v as in (2.1), and the "singular"
component vs of v attains its maximum over the convex set C in (2.5)
at the point u.

Proof. In view of formula (2.4) and the general inequalities

If*(v) ^ v(u) - If{n) ,

/*(ί, %*(«)) ^ <u(t), u*(φ - /(ί, u{t)) ,
δ$(v) ̂  v(u) if If{u) < + oo ,

which follow from the definitions, relation (1.13) holds if and only if
(1.11) (or equivalently (1.12)) holds, and, at the same time, the
supremum in (2.3) is attained at the given point u.

THEOREM 2. Assume that ΰeL~(T) and r > 0 have the property
that f(t, ΰ(t) + x) is a summable function of t whenever \x\ < r, x e Rn.
Then f*(t,u*(t)) is majorized by a summable function of t for at
least one u* e Lι

n(T), so that the hypothesis of Theorem 1 is satisfied.
Moreover, in this case If is continuous (in the I/Z{T) norm) at u
whenever \\u — ΰ\\ < r, and in formula (2.4) one has

(2.13) δ*(vs)^v3(u) + r\\v,\\.
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Proof. Let r ' be any number in the open interval (0, r). Let
xu •••, xm be elements of Rn with \xt\ < r , such that the convex hull
P of {xl9 •••,#„} includes every x such that \x\ <* r'. Let

k(t) = max /(ί, ΰ(t) + &<) ,
i = l, ,m

Then k is summable on T. lί we Rn satisfies |w — ΰ(t)| ^ r ' for a
certain £, then w — ££(£) e P, and there exist nonnegative real numbers
\, ' , λ** such that λi + + λm = 1 and

w = λx(^(ί) + Xj) + + λw(%(ί) + xm) .

The convexity of ft then implies

(2.14) /(ί, w) S \f(t, ΰ(t) + Si) + + λw/(ί, ϋ(ί) + a?w) ^

Thus, whenever ueLn(T) satisfies \\u — ΰ\\ ^ r', we have

(2.15) f(t, u{t)) £ k{t) for almost every t .

Now for each t let Q(t) = dft(ύ(t)), in other words,

(2.16) Q(ί) - {α;* e i?w | /*(ί, «*) = <ϋ(ί), ^*> - /(ί,

Since / t is finite on a neighborhood of ΰ(t) in jβ*, Q(ί) is nonempty
compact convex set whose support function is given by

δξ[t)(x) = max {<x, x*> I x* e Q(t)} - /'(ί,

(2.17) = lim [/(ί, ΰ(ί) + λa;) - f(t, ΰ(t))]/X

^ f(t, ΰ(t) + x ) - / ( ί , ΰ ( ί ) )

[15, §23]. Since the limit of a sequence of measurable functions is
measurable, formula (2.17) implies that δ%ιt)(x) is for each fixed x a
(finite) measurable function of t. It follows then from [17, Theorem
3] that the multifunction Q:t-+Q(t) is measurable in the sense of
Castaing [2]. According to a selection theorem of Kuratowski and
Ryll-Nardzewski [8] (quoted as Corollary 1.1 in [17]), there exists a
measurable function u*: T--+Rn such that u*(t) eQ(t) for every t. In
view of (2.17) and the fact that f(t, w) ^ k(t) if | w - u(t) \ ̂  r', we
have

O*(ί), xy ^ δ*U)(x) ^ k{t) - f{t, u{t))

whenever |ίc| < r'. Therefore

(2.18) r ' I u*(t) I - sup I <u*(f), xy \ ̂  k(t) - f(t, ΰ(t)) .

Since k and /(•,©(•)) a r e summable, we may conclude from (2.18)
that u* e Lι

n{T). Furthermore, according to the definition (2.16) of
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Q(t), u* satisfies

/*(«, u*(t)) = <ΰ(t), u*(t)> - f(t, ΰ(t)) .

Thus /*(•, %*(•)) *s summable, and the hypothesis of Theorem 1 is
satisfied by this u* and the function ΰ.

In particular, If is a well-defined convex functional from L~(T)
to .B'U {+«>}. If weL r satisfies \\u-ΰ\\^rf, then (2.15) holds,
so that If(u) ^ α, where

a = ί

Therefore i) is bounded above on a neighborhood of u, iί \\u — u\\ < r',
and it follows that // is continuous at every such ueLn(T) [1,
Chap. 2, p. 92]. Of course, rf was any number such that 0 < r' < r,
and hence we may conclude that If is finite and continuous at u, if
11 u — ΰ 11 < r. In particular, \\u — ΰ\\ < r implies that ueC, so that

δc(vs) = s u p {vs(u) \ueC}

β ( u ) 11|u - ΰ\\ < r} = vs(ΰ) + r \\vs\\ .

Theorem 2 is thereby proved.
The following corollary generalizes Theorem 4 of [16], where we

imposed the more restrictive condition that f(t, x) be (finite and)
essentially bounded as a function of t for every x e Rn.

COROLLARY 2A. Assume that f(t, x) is a summable function of
teT for every xeRn. Then If on L~(T) and If* on Lι

n(T) are well-
defined convex functionals conjugate to each other with respect to the
pairing (1.5), and If is finite and continuous throughout L™(T).
Furthermore, the conjugate function 1/ on L~(T)* reduces to If* on
Ln(T), in the sense that

i;(v) = iAuη

if v is an "absolutely continuous97 functional corresponding to a
function u* e Lι

n(T), while I*(v) — +°° for every other v.

Proof. The hypothesis of Theorem 2 is satisfied in this case
with ΰ(t) = 0 and r arbitrarily large.

COROLLARY 2B (Weak Compactness). Let g be a normal convex
integrand on T x Rn whose conjugate g* has the property that g*(t, y)
is summable in t for every y e Rn. Then Ig is a well-defined convex
functional from Un(T) to Rι U {+0 0}, not identically +°°. Moreover,
for every aeL~(T) and aeR1 the convex level set
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(2.19) {u e Li(T) \ Ig(u) + ζu, α> + a ^ 0}

is weakly compact (that is, compact with respect to the weak topology
induced on Lι

n{T) by L~(T)).

Proof. Let / = g*, Then g = /*, and Corollary 2A may be
applied. Let aeL~(T) and aeR1. Since // is continuous at a, the
set

(2.20) {v e L~(T)* \ I/(v) + v(a) + a ^ 0}

is weak* compact in L~(T)*. According to a result proved simultane-
ously by J. J. Moreau [11] and the author [19]. In view of Corollary
2A, the set (2.20) can be identified with the set (2.19). The weak
topology on the space Un(T), regarded as a subspace of L™(T)*, is
the restriction of the weak* topology on Lζ(T)*, and hence the set
(2.19) is weakly compact in Li(T).

REMARK. Corollary 2B can also be derived, using special convexity
arguments, from the Dunford-Pettis criterion for weak compactness
in L\{T). This has been shown recently by Valadier [22, p. 14-16].
Still another method of proof can be based on the lemma of Olech
[13, 14] which is discussed below (see the remark following Corollary
5D). If T is a compact subset of Rn and dt is Lebesgue measure,
Olech's lemma, slightly generalized, can be applied to the epigraphs
Q(t) of the functions g(t, •), and one can deduce in this way that the
set (2.19) is compact relative to the weak topology on Lι

n(T) induced by
the elements of Lζ(T) corresponding to continuous on T. Corollary 2B
itself can be obtained by an extension of this argument, if dt is
replaced by an equivalent finite measure, and L~(T) is identified with
a space of continuous functions on a compact space T as described at
the beginning of this section.

COROLLARY 2C. The subgradient formula given in Corollary IB
is also valid if there exists a function ΰeL~(T) satisfying the hy-
pothesis of Theorem 2. Moreover, for every such ΰ the subgradient
set dlf(ΰ) may actually be identified with a nonempty, weakly compact
subset of Lι

n(T): a functional veLζ(T)* belongs to dlf(u) if and only
if the "singular" component of v vanishes, and function u* e L\{T)
corresponding to v satisfies (1.12).

Proof. The first assertion follows from (2.4), just as in the
proof of Corollary IB. The second assertion is obvious from (2.13)
and the fact that, since If is finite and continuous at ΰ by Theorem
2, the set dlf(ΰ) is nonempty and weak* compact in L~(T)* [10].
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3* Application to spaces of continuous functions* Henceforth
we assume that T is a σ-compact, locally compact Hausdorff space,
that ^~ is the cr-field of Borel sets, and that dt is a (nonnegative)
regular Borel measure on ^ 7 (The theorems below, and their corol-
laries, remain true if J7~ is replaced by its completion relative to dt,
although the wording of the proofs then needs to be changed slightly.)
We denote by Cn(T) the space of all continuous functions u: T-+Rn

vanishing at °o, under the norm

| |u | | = max{|w(ί)| \teT] .

The dual of the Banach space Cn(T) is identified as usual with Mn(T),
the space of all finite, regular, unvalued Borel measures on T. Un-
less otherwise stated, the absolute continuity or singularity of a
measure in Mn{T) refers to its relationship to the measure dt.

Suppose If is well-defined on L~(T). Then the functional

(3.1) Jf{u) = ( f{t, u{t))dt , u e Cn(T) ,

is also well-defined and, being a convex functional on Cn(T), it has
a certain conjugate on the space Mn(T), namely the convex functional
J* defined by

(3.2) J/(μ) = sup \^u{t)dμ - \f(t, u{t))dt \ u e Cn{T)}, μ e Mn(T) .

Our aim is to derive a formula for J* from t h e formula for I* on

Let A be the mapping which assigns to each function ueCn(T)
the corresponding equivalence class in LZ{T). The adjoint of A is
the linear transformation A* which assigns to each v e LJ(Γ)* the
unique measure μeMn(T) such that

v(Au) = [ udμ, u e Cn(T) .

Regarding // as a functional defined for equivalence classes, rather
than individual functions, we have

Jf = If A (composition) .

Therefore J/ can be obtained from J/ and A* by the following
general result, which is a corollary of theorems proved in [18] and
basic facts about conjugate functions (for the finite-dimensional case,
see [15, §16]).

THEOREM 3. Let F and G be arbitrary, locally convex Hausdorff
topological vector spaces with duals F* and G*. Let g be a lower
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semicontinuous convex function from G to Rι U {+°°}> and let 9* be
the conjugate of g on G*. Let A be a continuous linear transfor-
mation from F to G, and let k = gA. Let A*g* be the convex
function on F* defined by

(3.3) (A*0*)(2/*) = inf {g*(z*) | A*z* = y*} ,

(where the infimum is + °° by convention if {z* \ A*z* = y*} is empty).
If k is not identically +co, the convex function k* on F* con-

jugate to k is given by

(3.4) k*(y*) = lim inf (A*g*)(yT) ,

where the limit is taken over all nets converging to y* in the weak*
topology {or any other topology on F* compatible with the duality
between F and F*). If there is a point in the range of A at which
g is finite and continuous, then k* = A*g*, and the infimum in
(3.3) is attained for each y* such that the set in (3.3) is nonempty.

Proof. Since g is lower semicontinuous, g is in turn the con-
jugate of g*, in other words

g(z) = sup {z*(z) - #*(z*) I z* e G*} .

It follows from this that

g(Ay) = sup {(A*z*)(y) - g*(z*) | z* e G*}

= sup {y*(y) — (A*g*)(y*) \ y* e F*} .

Therefore the function k = gA is the conjugate on F of A*g* onί 7 *.
If k is not identically + co, we may conclude from the fundamental
theory of conjugate convex functions [10] that k* is the lower semi-
continuous hull of A*g* so that fc* is given by (3.4). If g is finite
and continuous at some point of the range of A, we obtain the
formula

k*(y*) = sup {y*(y) - g(Ay) \yeF}

= min {g*(z*) | z* e G*, A*z* = y*}

from the special case of Theorems 1 and 3 of [18] in which the
function / in those theorems is taken to be the linear functional y*.

COROLLARY 3A. Under the hypothesis of Theorem 3, if there
is a point of the range of A at which g is finite and continuous,,
then for every yeF the subgradient set dk{y)(zF* is the image of
the subgradient set dg(Ay) in G* under the transformation A*.

Proof. The inequalities
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k*(y*) ^ y*(y) - k(y) ,

g*(z*) ^ z*{z) - g(z) ,

hold by definition, with equality if and only if y* e dk(y) and z* e dg{z).
On the other hand, here we have

k(y) = g(Ay) ,

k*(y*) = min {g*(z*) \ z* e G*, A*z* = y*} .

Thus y* belongs to dk(y) if and only if there exists a ^ e G * such
that A*z* = y* and

g*(z*) = (A*z*)(y) - g(Ay) = z*(Ay) - g(Ay) ,

that is, z* e dg(Ay).

THEOREM 4. Assume that ΰ e Cn(T) and r > 0 have the property
that f(t, ΰ(t) + x) is a summable function of t whenever \x\ < r,
x 6 Rn. Then Jf is a well-defined, lower semicontinuous, convex
functional from Cn(T) to R1 U {+ °°}, and Jf is finite and continuous at
every ueCn(T) such that \\u — ΰ\\ < r. Furthermore, Jf on Mn(T)
satisfies

Jf(μ) = min {If*(dμ'/dt) + 8%{μ - μf) \ μ' e Mn{T) abso. contin.}
(3 5)

^ \ΰdμ - Jf{ΰ) + r | |v| | ,

where v is the singular component of μ and

(3.6) E = {u e Cn(T) \ Jf(u) < + < * > } .

Proof. The first assertion is clear from Theorem 2. (// is lower
semicontinuous on LZ{T), since (1.7) holds for p = °o and q = 1).
To prove (3.5), we apply Theorem 3 with F = Cn{T), G = L~(Γ), and
A taken to be the canonical mapping from Cn(T) to L~(T) described
at the beginning of this section. This yields the fact that

J?(μ) = (I/A)*(iu) - A*If(μ)

- min {//(v) I v G L?(Γ)*, A*v - //} .

Using the formula (2.4) for If, we can rewrite the last expression as

min {If.(u*) + δi(v

where u* e Lι

n{T) corresponds to va. Of course A*va = μ', where μf is
the absolutely continuous measure in Cn(T) with dμr/dt = u*. Thus

(3.8) Jf(μ) = min {If*(dμ'/dt) + ϋΓ(μ - //') | ̂  e CW(Γ) abso. contin.} ,
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where

K(μ - μ') = min {δ$(w) \ w e L~(Γ)* singular, A*w = μ - μ'} .

Here the singularity restriction on w can be omitted without affecting
the value of K; this follows from (3.2) and the fact that for any
ueCn(T), any absolutely continuous μ'eMn(T), and any weL™(T)*
with A*w = μ — μf, we have

ί u(t)dμ - [ f(t, u{t))dt = ζAu, dμ'/dt> - If(Au) + w(Au)

^ If*(dμ'/dt) + δ?(w) .

We now apply Theorem 3 again, but with // replaced by the indicator
function δc. Our hypothesis implies that An is an interior point of C,
so that δc is finite and continuous at a point belonging to the range
of A. Since δE(u) = δc(Au), we therefore have

δ%{μ - μ') = (δ0A)*(μ - μ') = (A*δ$)(μ - μ')

= min {δS(w) I w e Lζ(T)*, A*w = μ - μ'} = K(μ - μ') .

Thus δ% can be substituted for K in (3.8), and this establishes the
desired equality (3.5).

To get the inequality in (3.5), we note first that the inequality

- [ f(t, ΰ(t))dt

holds for any absolutely continuous μfeMn{T). On the other hand,
we have

- μ') ^ \ ud(μ - μ') + r \\μ - μ>\\ ,

because ueE whenever ueCn(T) and \\u — u\\ <L r. Adding these
inequalities, we see that

(3.9) If*(dμ'ldt) + 8%{μ - μ') ^ ( ΰdμ - Jf(ΰ) + r\\μ - μ'\\

for every absolutely continuous μr. The inequality in (3.5) follows
from the equation in (3.5) when both sides of (3.9) are minimized
with respect to μ'.

COROLLARY 4A. Assume that f(t, x) is a summable function of t
for every xeRn. Then the functional Jf on Cn{T) is well-defined,
finite, continuous and convex. The conjugate functional J* on Mn(T)
is given by
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(3.10) Jf*(μ)= \ f*(t, dμ/dt)dt

if μeMn(T) is absolutely continuous, whereas J*(μ) = +°° if μ is
not absolutely continuous.

Proof. The hypothesis of Theorem 4 is satisfied for ΰ(t) = 0
and every r > 0. Then 8%{μ — μ') is + oo \ί μf Φ μ and 0 if μ' = μ.

COROLLARY 4B. Under the hypothesis of Theorem 4, a measure
μeMn(T) belongs to the subgradient set djf(u), where ueCn(T), if
and only if there exists an absolutely continuous measure μ'eCn{T)
satisfying

(3.11) — ( ί ) e dft(u(t)) for almost every t ,
dt

such that the linear functional on Cn{T) corresponding to μ — μr

attains its maximum over the set E at u.
In fact, if u has the property that the function f(t, u(t) + x) is

summable in t for every x in some neighborhood of 0 in Rn, then the
set djf(u) is nonempty and weak* compact in Mn(T), and it consists
of all the absolutely continuous measures μ satisfying

(3.11') —(t) G dft(u(t)) for almost every t.
dt

Proof. This is obtained from formula (3.5) by an imitation of
the proofs of Corollaries IB and 2C.

EXAMPLE. Let T be compact (and hence of finite measure), and
let φ be the continuous, real-valued, convex functional on C^T)
defined by

(3.12) Φ{u) = log ( euWdt, u e Cλ(T) .

The convexity of φ is clear from the fact that

(3.13) Φ(u) = - 1 + min {Jf(u + a) - a \ a e R1} ,

where / is the (normal) convex integrand on T x Rι given by

(3.14) /( ί , x) = e*.

What is the functional on M^T) conjugate to Φ? From (3.13) and
the definition of the conjugate functional Φ*, we have
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Φ*(μ) = sup ί ί udμ - Φ(u)\

= 1 + sup sup \ \ udμ — Jf(u + a) + a >

= 1 + sup sup 11 (%' — a)dμ — Jf(u') + α

= 1 + supα[l - ^(Γ)] + sup ί ί v/dμ -
aeR1 u'eC^T) KJT

p
u'eC^T)

and consequently

Φ*(μ) = 1 + Jf*(μ) i
( 3 Λ 5 ) = + 0 0 if M τ ) ^ i .

We now calculate Jf from Corollary 4A. The integrand conjugate
to / is given by

f*(t, x*) = α;*(logx* - 1) if x* > 0

(3.16) = 0 if a?* = 0 ,

if x* < 0 .= +co

Therefore J*(μ) = +°°, unless /̂  is nonnegative and absolutely con-
tinuous, in which case

Jf{μ)= \ p(t)[log P(t) - l]dt
(3.17)

= V(t) log p(t)dt - μ{T) ,

where p = dμ/dt (OlogO interpreted as 0). It follows that

Φ*(t*) = ί P(t) log p(t)dt if μeP,p = dμ/dt ,
(3.18) J r

= +00 if /^gP,

where P is the set of all absolutely continuous probability measures
in M^T). The integral

(3.19) ( p(t) log [l/p(t)]dt - - ί p{t) log p(t)dt ,

where p is a probability density, plays an important role, of course,
in information theory and statistical mechanics.

We note, incidentally, that the set of probability density functions
p satisfying

( pit) log [l/p(t]dt S a
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is for each real number a a weakly compact convex subset of L](T).
This is seen by taking g in Corollary 2B to be the normal convex
integrand / * in (3.16).

REMARK. Theorem 3 and Corollary 3A can also be used to derive
from the results in § 2 various theorems concerning the "continuous"
infimal convolution of convex functions, as studied by Ioffe and
Tikhomirov [6, 7] and Valadier [22]. In this case one takes F = Rn

and G = Ln(T), and A is the mapping which assigns to each xe Rn

the corresponding constant function u{t) = x in L~(T). Then IfA =
φ, where

<P(x) = [ f(t, x)dt, x e Rn .
JT

4* Integral representation of the singular component. The
formula for Jf in Theorem 4 can be improved in cases where a
special expression is available for δf. When the multifunction

D: t — D{t) = {x e R n \f(t, x)< + oo}

is suitably well-behaved (see below), such an expression can be given
in terms of integrals of the recession function of / * . The latter is
by definition the function h on T x Rn such that

(4.1) h(t, w) - lim [/*(ί, x* + Xw) - f*(t, x*)]/X ,

whenever x* e Rn satisfies f*(t, x*) < + ^ . The fact that f*(t, •) is
a lower semicontinuous, convex function, not identically + °°, implies
that h(t, •) is a well-defined, lower semicontinuous, positively homo-
geneous, convex function from Rn to R1 (j {+oo}, vanishing at 0 [15,
§8]. Indeed h(t, •) is the support function of D{t):

(4.2) h(t, w) = δ*[t)(w) = s u p {<x, w}\xe D(t)}

[15, Theorem 13.3].

LEMMA 1. The recession function h of f* is a normal convex
integrand on T x Rn.

Proof. Since / is a normal convex integrand, the multifunction

ί - ^ G ( ί ) - {x,a)\f(t,x)^a< - }

is measurable from t to Rn+ι [17, Theorem 3], and hence there exists
a countable collection of measurable functions
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t —-(Xi(t), a
{
(t)), iel,

such that G(t) is the closure of

{(««(«), α«(ί))|ίe 7}

for each t [17, Theorem 1]. Then the set {Xi(t)\iel} is a dense

subset of D(t) for each ί. From (3.11) we have

h(t, w) = sup ζxi(t), wy ,
i e 7

and this implies the normality of h [17, Theorem 4].

COROLLARY. // there exists a bounded, measurable function u
such that u{t) e D(t) for every t, then the integral

h(t, w{t))dθ
T

is well-defined for every nonnegative measure θ e MX(T) and every
measurable function w: T—> Rn summable with respect to θ.

Proof. One has h(t, 0 ) Ξ 0 and h*(t, u{t)) = 0, so that the inte-
gral Ih on the L\ space associated with θ is well-defined by [16,
Theorem 2].

To state the main result of this section, we recall that the
multifunction D: t —> D(t) is said to be lower semicontinuous from T
to Rn if, whenever U is an open subset of Rn and tQ is an element
of T such that D(tQ) Π U Φ 0 , there exists a neighborhood V of tQ

such that D(t) n U Φ 0 for every teV. We shall say that D is
fully lower semicontinuous if D is lower semicontinuous and, in ad-
dition, one has x0 e cl D(tQ) whenever there are neighborhoods U and
V of x0 and t0 such that the set {te V\D(t)ZD U) is dense in V. If
the multifunction t-+c\D(t) is upper semicontinuous (that is, the set
{(t, x) I x e cl D(t)} is closed in T x iϋw), lower semicontinuity of D implies
full lower semicontinuity. In particular, D is fully lower semicon-
tinuous if cl D(t) is a fixed set independent of t.

THEOREM 5. Assume that T is a compact space with no nonempty
open sets of measure zero, and that the multifunction D: t —> D(t) is
fully lower semicontinuous, with int D(t) Φ 0 for every t. Assume
further that

\ I / ( ί , x) \dt< + oo
JV

whenever V is an open subset of T and x is a point of Rn having a
neighborhood U such that U c D(t) for all te V.
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Then Jf is a well-defined, lower semicontinuous, convex functional
from Cn(T) to Rι U {+°°}. The convex set E in (3.6) has a nonempty
interior consisting of the functions ueCn(T) such that

(4.3) u(t) e int D{t) for all teT ,

and Jf is continuous on this interior. Furthermore, J* on Mn(T) is
given by the formula

(4.4) Jf(μ) = ί /*(£, dμ/dt)dt + ( h(t, dv/dθ)dθ ,
JT JT

where h is the recession function of /* , v is the singular component
of with respect to dt, and θ is any nonnegative measure in ikfL( T) with
respect to which v is absolutely continuous.

The proof of Theorem 5 uses the following characterizations of
lower semicontinuity and full lower semicontinuity, as well as an
auxilliary representation theorem, stated below as Theorem 6.

LEMMA 2. Let D: £ —> D(t) aRn be a multifunction such that D(t)
is for each t a convex set with int D(t) Φ 0 , and let

(4.5) G = {(t, x)\xe int D(t)} c Γ x Rn .

(a) D is lower semicontinuous if and only if G = int G;
(b) D is fully lower semicontinuous if and only if G — int cl G.

Proof, (a) Suppose that D is lower semicontinuous, and let
x0 e int D(t0). It is possible to choose open subsets Ui of D(t0), i~
1, •••, m, such that the set

(4.6) C7 = int Γl cote, •••,»»}

is a neighborhood of x0. Since D is lower semicontinuous, there are
neighborhoods V{ of tQ such that D{t) Π Ϊ7< ̂  S for t e VΊ. Let V =
Vi Γ) Π y«. For ί e 7 we can find points x* e D(ί) Π EΛ for i =
1, , m, and then

Z)(ί)z>cote, . . . , a;m}z) J7 ,

the first inclusion holding because ί)(ί) is convex. Thus V x Z7 is a
neighborhood of (ί0, ̂ o) in G, and we may conclude that G is open.

Conversely, suppose that G is open. Let U be an open set such
that D(tQ) Π U Φ 0 . Since D(ί0) is convex and has a nonempty in-
terior, there is a point x0 in [intD(t0)] Π ί/. The open set G f][T x U]
contains (ί0, x0), and hence it contains (t, x0) for all t in some neighbor-
hood of t0. Thus there is a neighborhood V of t0 such that D(ί) Π U Φ 0
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for every te V. This shows that D is lower semicontinuous.
(b) Suppose that D is fully lower semicontinuous. Then G — int G

by (a), so that to prove G = int cl G it suffices to prove that G z)int cl G.
Let (ί0, #o) e int cl G. We can find points zu , zm in i2Λ such that

α0 e int co{slf •••, z«} »

(£0, 2») 6 int cl G for all i .

Then we can choose open neighborhoods ΪT* of ^ and F of t such that
F x Z7t c cl G and the set Z7 in (4.6) is a neighborhood of x0. The set

y. = {ί I D(t) n UtΦ 0 }

is dense in V because V x Ϊ7f c cl G, and F* is also open by the lower
semicontinuity of D. Since the intersection of a finite family of open
dense subsets of F is again dense in F, the set

V = {t G TI D(t) Π Ή =£ 0 for i = 1, , m}

is dense in F. Of course Z>(£) Z)U for te V, as already argued in (a).
Thus F x U is an open set such that {te V\ D(t) 3 U) is dense in F,
and it follows from the definition of full lower semicontinuity that
xι e cl D{Q for every xλ e U and tx e V. In particular U a c\D(t0), and
since D(t0) is convex this implies xoe int D(t0), i.e., (tQ,x0)eG

We assume now that G = int cl G, and we prove from this that
D is fully lower semicontinuous. Our assumption implies of course that
G is open. Therefore D is lower semicontinuous by (a). Let (ί0, #0)
have an open neighborhood F x 17 such that the set {t e V\ D(t) z> U) is
dense in F. Then F x £7cclG, so that F x *7c intclG = G. Thus
(tQ, x0) e G and a fortiori xQ e cl D(tQ). Therefore D is fully lower semi-
continuous.

Proof of Theorem 5. First we show that there exist functions
ueCn(t) satisfying (4.3). Suppose that t0 is any point of T, and that
xoe int D(t0). The multifunction t~^clD(t) is lower semicontinuous,
since D is, and hence by E. Michael's theorem on continuous selections
[9, Theorem 3.2] there is a function ue Cn(T) such that u(t0) = xQ and

(4.7) u{t) e c l D(t) f o r a l l t e T .

Then for some neighborhood F of t0 we have

(4.8) %(£) e int JD(ί) for all teV

by Lemma 2(a). Thus T can be covered by a collection of open sets
F, for each of which there is a function ueCn(T) satisfying (4.7) and
(4.8). The compactness of T allows us to extract a finite subcovering
VU ",VM. Let
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u = (1/mXu, + ... +Um) ,

where u{e Cn(T) satisfies (4.7) and (4.8) for V{. For each t the points
Ui(t) all belong to cl D(t), and at least one belongs to int D(t). From
the convexity of D(t) we therefore have u(t) e int D(t), so that u
satisfies (4.3).

We demonstrate now that, if u satisfies (4.3), the function f(t, u(t))
is summable in t e T. Let t0 be any point of T. Since u(t0) e int D(Q
and D is lower semicontinuous, there exist by Lemma 2(a) a neighbor-
hood V of t0 and an r > 0 such that [u(t0) + x] e int D(t) whenever
te V and \x\ < r. Then, according to the hypothesis of the theorem,
/(£, w(ί0) + a?) is summable in te V whenever \x\ < r. Let S be a
closed neighborhood of t0, S c V, such that | M(£) — u(t0) | < r for t e S,
such a neighborhood exists because T is compact and u is continuous.
The hypothesis of Theorem 4 is satisfied with T replaced by S and
ΰ(t) = u(t0), and from the fact that \\u — ΰ\\ < r in CΛ(S) we may
conclude that f(t, u(t)) is summable in te S. Thus each point t0 of Γ
has a neighborhood S over which the function t—>f(t,u(t)) is sum-
mable. T can be covered by a finite number of such neighborhoods,
because of compactness, and therefore f(t, u(t)) is summable in te T
as claimed.

Observe next that each ue Cn(T) satisfying (4.3) actually possesses
the stronger property that, for some r > 0, one has

(4.9) [u(t) + x] e int D(t) for all x such that \x\ < r .

This follows from Lemma 2(a). In this event f(t, u(t) 4- α, ) is summable
in t e T for | x \ < r, as we have just proved. Thus the hypothesis of
Theorem 4 is satisfied if the ΰ in that hypothesis is taken to be any
function satisfying (4.3). In this way we obtain the fact that Jf is
a well-defined, lower semicontinuous convex functional from Cn(T) to
Rι U {+ °°} such that Jf is finite and continuous at each element u
of Cn(T) satisfying (4.3).

Our next step is to show that the functions satisfying (4.3) con-
stitute the interior of the set E in (3.6). They are certainly contained
in int E by the above. On the other hand, let ΰ be a function inti?.
Then there is an r > 0 such that f(t, u(t)) is summable in te T for
every u e Cn(T) with \\u — ΰ\\ < r. Fix any t0 e T. Let xL, , xm

be elements of Rn such that | x{ | < r and

(4.10) u(t0) e int co{ΰ(t0) + x19 , ΰ(t0) + xm) .

Since ΰ is continuous, there is a neighborhood V of tQ such that the set

(4.11) U = int Π co{ϊZ(£) + ^ , . , w(ί) + α;m} ,
v
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is a neighborhood of u(tQ). We have f(t, ΰ(t) + x{) summable in te T
because || (ΰ + α?*) — ΰ \\ < r, so that f(t, ΰ{t) + x{) is finite for almost
every t. Thus the set

(4.12) {t 6 VI «(ί) + α?< e D(ί) for i = 1, • , m}

has complement of measure zero in V. In view of our hypothesis
that T contains no nonempty open sets of measure zero, the set (4.12)
must be dense in V. Of course, if t belongs to (4.12) we have

D(t) =) co{ΰ(t) + x19 , ΰ(t) + xm} z> U .

Thus the set {t e V \ D(t) z> U} is dense in V. Since V x U is a
neighborhood of (ί0, i6(ίo))» this implies that it(ί0) e int D(t0), because D
is fully lower semicontinuous. Here tQ was any point of Γ, so it follows
that ΰ satisfies (4.3).

Using these facts, we now show that the desired formula (4.4)
for Jf can be reduced to a more special representation result, which
we establish separately below as Theorem 6. Let

K= {ue Cn(T) I u(t) e cl jD(ί), Vί e T} .

Clearly u belongs to int if if and only if u satisfies (4.3), and thus,
by what we have just proved, int E — intiΓ. Therefore δ% = δ%, and
the formula in Theorem 4 gives us

(4.13) Jf{μ) = min {If*(dμ'/dt) + δ%(μ - μ')\μ' e Mn{T) abso. contin.}

Theorem 6 furnishes an integral representation of <?£- which can be
substituted in (4.13):

(4.14) δUμ - μ') = ( δξw(d(μ ~ μ')ldθf)dθf ,

where Q(t) = cl D(t), and θf is any nonnegative measure in M^T)
with respect to which μ — μ' is absolutely continuous. Since μf is
absolutely continuous with respect to dt, we can take dθ' be of the
form dt + dθ, where θ is an arbitrary, singular, nonnegative measure
in M^T) with respect to which the singular part v of μ is absolutely
continuous. By virtue of (4.2) and the fact that δ%{t) — δq{t)J the
right side of (4.14) then becomes

(4.15) ( h(t, dμ/dt - dμ'/dt)dt + ( h(t, dvjdθ)dθ .
JT JT

The second integral here actually remains unchanged if θ is replaced
by a measure which is not singular. Thus if θ is an arbitrary, non-
negative measure in M^T) with respect to which v is absolutely
continuous, the expression (4.15) gives δ%(μ — μf). Substituting this
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in (4.13), we see that

J?{μ) = min {If*(u*) + Ih(dμ/dt - u*) \ u* e Lι

n(T)}
(4.16) r

; + 1 h(t, dvjdθ)dθ .

The proof of formula (4.4) is completed by the observation that

/ * ( ί > U * ( ί ) ) + h{
(4 17)

^ /*(ί, w*(ί)) + (dju/d* - w*(ί)) - /*(ί,

since h is the recession function of /t* [15, Corollary 8.5.1], and hence

(4.18) /jr ί^*) + Ih(dμ/dt - u*) ^ If*(dμ/dt)

for every u* e L\{T).

EXAMPLE. Let v be an atomic measure in Mn(T) assigning
"weights" di e Rn to the points U for ί e I (a finite or countable index
set). Under the hypothesis of Theorem 5, if the points tt have
measure zero with respect to dt, one has

j;(v) = - inf {Jf(u) I u e Cn(T)} + Σ h(tif a,) .
iel

This is seen, for instance, by taking H o be a probability measure
in MX(T) such that #(£<) > 0 for every iel. Since v is singular with
respect to t, one has

j*(v) = f /*(£, θ)dί + Σ M«i, Oiur^θiU)
JT t e i

by formula (4.4). On the other hand, one has

ί f*(t, O)dt = J/(0) = - inf {Jan) I u e Cn(T)}
JT

by (4.4) and the definition of J/ , while

h(tif θiQ-'di) = θ(U)-ιh(ti, ad

by the positive homogeneity of the recession function h.
We proceed now to establish the auxilliary representation theo-

rem that was employed in the proof of Theorem 5.

THEOREM 6. Assume T is compact. Let Q: T—*Rn be a lower
semicontinuous multifunction such that Q(t) is for every t a non-
empty, closed convex set. Let ft = f(t, •) be the indicator of Q(t), so
that / * is the support function of Q{t), and let

(4.19) K= {ue Cn(T) \ u{t) e Q(t), VteT} .
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Then K is a nonempty closed convex subset of Cn{T), f and f* are
normal convex integrands on T x Rn and the support function of K
on Mn(T) is given by the formula

(4.20) δi(μ) = \ Pit, dμ/dθ)dθ, μeMn(T) ,
JT

where θ is any nonnegative measure in MX{T) with respect to which
μ is absolutely continuous.

Proof. It is obvious that K is closed and convex, and the non-
emptiness of K is asserted by the selection theorem of Michael [9,
Theorem 3.2]. To show that / and / * are normal convex integrands,
it suffices by [17, Theorem 3] to show that the multifunction Q is
measurable. The measurability of Q follows in fact from lower
semicontinuity, as has been observed by Castaing: for any closed set
W(zRn, one has

{teT\Q(t)Π WΦ 0 } = U Π{teT\Q(t)f] W?Φ0} ,
fc = l m = l

where W™ is the open set defined by

WΓ = {xeRn\lzeQ(t), \z\^k,\x-z\ < 1/m} .

The sets {teT\ Q{t) f] WΓ Φ 0} are open, because Q is lower semi-
continuous, and hence {te T\ Q(t) Π W Φ 0} is a Borel set.

Fix any μ and θ as in the theorem. The functions f(t, u(t)) and
f*(t, w{t)) are summable with respect to θ for any ueK and w = 0,
so that If on L~(T, ^~, θ) and If* on Lι

n(T, ^ 7 θ) are convex functional
conjugate to each other. This implies in particular that

If*(dμ/dθ) = sup {<>, dμ/dθ>θ - If(u) \ u e L~(T, j^7 θ)} ,

or, in other words,

( /*(ί, (dμ/dθ)(t))dθ - sup ( <>(£), (dμ/dθ)(t)>dθ
(4.21) ]τ ueκ' ]τ

^ sup I ζu(t), (dμ/dθ)(φdθ ,

where K' is the set of all bounded, measurable functions u: Γ—> Rn

such that u(t) e Q(t) for every t.
On the other hand, let u0 e K' and a e Rι be such that

(4.22) a < [ <uo(t), (dμ/dθ)(t)>dθ = ( uodμ .
JT JT

We shall construct a u e K such that
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a < \ <u(t), (dμ/dθ)(φdθ = [ udμ ,
JT JT

and this will prove the theorem.
Let β > 0 be large enough that | uo(t) | < β for every t. Choose

any ε > 0 such that

(4.23) a < [ uQdμ
JT

2βe .

There exists by Lusin's Theorem a compact set S c Γ , such that uQ

is continuous relative to S, and

(4.24) [ I dμ/dθ \ dθ < ε, S' = T\S .
JS'

Let QΊ T->Rn be the multifunction defined by

Q'(t) = {uo(t)} i f t e S ,

- { z e Q ( t ) \ \ z \ < β} i f t ί S .

Then Q'(t) is for every t a nonempty, convex set, z e Qr{t) implies
\z\ < β, and the multifunction cl Q': t-+c\Q'(t) is lower semicontinu-
ous. (To see the latter, let U be any open set in Rn, and let Uβ

be the open set consisting of all x e U such that \x\ < β. Then

{teT\ Unc\Q'(t) Φ 0}

= {teT\ UΠQ'(t) Φ 0}

= {ί e TI Q{t) Π Uβ Φ 0}\{t e S \ uo(t) g U) .

The latter set is open because Q is lower semicontinuous, S is closed,
and ô is continuous relative to S.)

In view of the lower semicontinuity of cl Q', there exists by MichaePs
Theorem [9] a function ueCn(T) such that u(t) eel Q'(t) for every t.
In particular ueK, \\u\\ ^ β, and u agrees with u0 on S. We then
have

I udμ = \ uodμ + \ (u — uo)dμ
JT JT JS'

^ ί uodμ — 2/9 f I dμ/dθ \dθ > a
JT )S>

by (4.23) and (4.24).

REMARK. Another refinement of Theorem 4, differing somewhat
from Theorem 5, can be obtained by applying Theorem 6 to the
epigraph multifunction

Q: t -> e p i / ί = {(x, a) e Rn x Rl\a~^ f(t, x)} ,
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provided that this multifunction is lower semicontinuous and T is
compact. The support function of epi/* can be expressed in terms
of f* and its recession function h, as is well known, and this again
yields formula (4.4).

5* Corollaries of the representation theorems* We now intro-
duce some terminology for the purpose of stating a corollary of
Theorem 5 about subgradients.

Let N: T—> Rn be a multifunction such that N(t) is for each t
a convex cone containing the origin. A measure v e Mn{T) will be
called N-valued, if one has (dv/dθ)(t) e N(t) except for a set of θ-
measure zero, where M s a nonnegative measure in Mγ(T) with
respect to which v is absolutely continuous. (Note that this defi-
nition does not depend on the particular θ, inasmuch as N(t) is closed
under multiplication by nonnegative scalars.) We shall be interested
in the case where, for each t, N(t) is the normal cone [15] to the
convex set c\D(t) at a point u(t) e cl D(t), in other words,

(5.1) N(t) = {x* e Rn \<x - u(t), x*y ^ 0, Vxe D{t)} .

COROLLARY 5A. Under the hypothesis of Theorem 5, a measure
μeMn(T) belongs to the subgradίent set dJf(u), where ueCn(T), if
and only if dμ/dt satisfies (3.11'), u(t) belongs to cl D(t) for every t,
and the singular component v of μ is N-valued in the above sense,
where N(t) is the normal cone (5.1) to cl D(t) at u{t).

Proof. If djf(u) is nonempty, then u belongs to the convex set
E, and consequently

(5.2) u(t) e cl D(t) for every t,

because the interior of E is nonempty and consists of the functions
satisfying (4.3). Since the inequalities

(5.3) f*(t, (dμ/dt)(t)) ̂  <u{t), (dμ/dt)(φ - f(t, u{t)) ,

(5.4) h(t, (dv/dθ)(t)) ^ <u{t), (dv/dθ)(φ ,

hold by (1.4) and (4.2) for any function u satisfying (5.2), we see
from formula (4.4) that a measure μ belongs to djf(u), i.e., satisfies

if and only if (4.7) is true, (5.3) holds with equality except for a set
of (dt-) measure zero, and (5.4) holds except for a set of ^-measure
zero. Of course, equality in (5.3) means that (dujdt){t) is a sub-
gradient of f(t, •) at u(t). Equality in (5.4) means (for u(t) e cl D(t))
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that (dv/dθ)(t) belongs to N(t), inasmuch as h(t, •) is the support
function of D(t) by (4.2).

To state a corollary of Theorem 5 which characterizes the weak*
closures of certain convex sets of measures, we recall that the re-
cession cone of a convex set C in Rn is by definition the set of all
vectors y e Rn such that C + yaC [15, § 8]. (Some authors call this
the asymptotic cone of C.)

COROLLARY 5B. Let Q:T-+Rn be a measurable multifunction
such that Q(t) is for each t a nonempty, closed, convex set, and let
ft = f(t, •) be the support function of Q(t). Assume that the hypothesis
of Theorem 5 is satisfied by f (which is a normal convex integrand).
Let W be the convex subset of Mn{T) consisting of all the absolutely
continuous measures μ such that

(5.5) ^~{t) e Q(t) for almost every t.
dt

Then Jf is the support function of W on Cn{T), and the following
conditions on a measure μ e Mn(T) are equivalent:

(a) μ belongs to the weak*-closure of W;
(b) (5.5) holds, and the singular component of μ is N-valuedr

where N(t) is the recession cone of Q(t);
(c) for every ueCn(T), one has

(5.6) ί udμ ^ ί f{t, u{t))dt .
JT JT

Proof. The normality of the convex integrand / is equivalent
to the measurability of Q [17, Theorem 3]. The conjugate integrand
/* gives the indicator of Q(t) for each t, and the recession function
h of /* gives the indicator of the recession cone N(t) of Q(t) for
each t [15, §14]. The equivalence of (b) and (c) then follows from
the formula for Jf in Theorem 5. On the other hand, If on L~{T)
and If* on Lι

n(T) are conjugate to each other by Theorem 2 (whose
hypothesis is satisfied by an interior element ΰ of the set E in Theo-
rem 5), so that

( f{t, u(t))dt - sup f ( <u(t), u*iφdt - ( δQ{t)iu*it))dt)

(5.7) ]τ )]T )τ S

= sup < \ udμ I μ e W > .

Thus // is the support function of W, and this implies the equiva-
lence of (a) and (c).

The recession cone N(t) in Corollary 5B is, of course, the polar
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of the effective domain D(t) of the support function ft of Q(t). The
next corollary is an alternative form of Corollary 5B in the case
where N(t) is independent of t and contains no lines.

COROLLARY 5C. The conclusions of Corollary 5B remain valid
if, instead of assuming that Q is measurable, and that the hypothesis
of Theorem 5 is satisfied by f, one assumes the following: T is com-
pact (with no nonempty open sets of measure zero),the set D(t) has a
nonempty interior which is independent of t, and for each x in this
interior f(t, x) is summable (measurable) function of t.

Proof. Since D(t) has a fixed nonempty interior Do, the multi-
function D:t—*D(t) is fully lower semicontinuous. Furthermore, /
is a normal convex integrand: condition (b) of the definition of nor-
mality in § 1 is satisfied if U is taken to be the set of all constant
functions with values in D[, where D[ is any countable, dense subset
of Do. The hypothesis of Theorem 5 is thus satisfied, and Corollary
5B can be applied.

These results enable us to describe a large class of weak* compact
subsets of Mn(T).

COROLLARY 5D. Let the assumptions of either Corollary 5B or
Corollary 5C be satisfied, and let W denote the set of all measures
μ G Mn(T) for which condition (b) of Corollary 5B holds. Then the
set

(5.8) Wa,a = iμ e W I ί adμ ^ o\

is weak* compact in Mn(T) for any aeCn(T) satisfying

(5.9) -a(t) e i n t D(t) for every teT ,

and any real number a.

Proof. To derive this from the preceding corollaries, one need
only verify that Wa>a is bounded. Let J denote the support function
of WatCC on Cn(T). Then J ^ Jf. From Theorem 5 (whose hypothesis
is satisfied under the assumption in 5C as well as 5B, as just de-
monstrated) we see that // is finite on a neighborhood of — a. On
the other hand, we have J(a) ^ a by hypothesis. The convexity of
J then implies that J is finite on a neighborhood of the origin. Thus
every linear functional on Mn(T) corresponding to an element of Cn(T)
is bounded above on Wa>a, and hence Wa,a is bounded.

REMARK. Corollary 5D generalizes a lemma developed by Olech
[13, 14] for proving the existence of solutions to optimal control
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problems. If T is metrizable in Corollary 5D, then Wa}(X is sequen-
tially weak* compact; hence in particular every sequence of absolutely
continuous measures μkeMn(T) such that

(5.10) ^p(t) e Q(t) for almost every ί,
at

(5.11) \ a(t)dμk ^ a for every k,
JT

has a subsequence μk. converging in the weak* topology to a measure
μ which satisfies condition (b) of Corollary 5B. Olech's lemma [14,
p. 515] states this fact in a slightly weaker form in the case where
T is the closure of a bounded Euclidean domain G, and the hypothesis
of Corollary 5C is satisfied. (Olech's assumption (1.6) is equivalent
to the existence of a constant function a satisfying our condition
(5.9). He asserts only that the restrictions of the measures μk. to
G converge to the restriction of μ to G in the weak topology induced
on Mn{T) by the closure of the subspace of Cn(T) consisting of the
functions with compact support in G. However, his arguments imply
convergence as described above, and they can even be extended to
the case of arbitrary compact ϊ7, if sequences are replaced by nets.
These arguments do not cover the case where int D{t) is variable.)

We conclude by noting that Theorem 6 yields a result analogous
to Corollary 5A.

COROLLARY 6A. Under the hypothesis of Theorem 6, the normal
cone to the convex set K at a point ue K is the set of all N-valued
measures μeMn(T), where N{t) is for each t the normal cone to Q(t)
at u(t).

Added in proof. See [23] for additional references and results
along the lines of this paper.
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