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CONVEXITY PROPERTIES OF A GENERALIZED
NUMERICAL RANGE

JOHN DE PILLIS

A numerical range W,(A) of a bounded linear operator
A on Hilbert space 5% is defined to be the set of complex
numbers W,(4) = {tr(AM): dimension M = n} where M runs
over all orthogonal n-dimensional projections on 572, and
tr(-) is the trace functional. It is known that W,(4) is
always convex (the Hausdorff-Toeplitz theorem tells us that
Wi(A) is convex). In what follows, we replace the trace
functional by the more general elementary symmetric func-
tions, and derive certain convexity results.

The classical Haudorff-Toeplitz theorem has it that for any bounded
linear operator A on Hilbert space 57, the numerical range

W(A) = KAz, ): ||=|| = 1}

is a convex subset of the Complex plane(cf. [4], [9], [10]).

Let P, denote the orthogonal projection P,; y — {y, x>z onto the
one-dimensional subspace spanned by x. Then {Az, x> can be shown to
equal tr(4P,), the trace of the operator AP, (equivalently {Az, z) =
tr(P,AP,), the trace of the compression of A to the space sp[x] span-
ned by z.)

In light of the above interpretation, it is natural to ask whether
the set

(1.1) W.(A) = {tr(AM): dimension M = n},

where M runs over all n-dimensional orthogonal projections on 257,
is convex; as a convenient ambiguity, we use the symbol M to
represent both the n-dimensional subspace M and the orthogonal pro-
jection on 5% whose range is M. This question seems to have been
raised first by Halmos [5], and consequently answered in the affirma-
tive, by C. A. Berger [1], [6]. The convexity of W,(4) when A is
normal was proved by R. C. Thompson [11, Theorem 2], which appeared
almost simultaneously with Berger’s thesis [1].

In this paper, we extend the notion of %#'* order numerical range
(1.1) by replacing the linear trace functional tr(-) by the more
general elementary symmetric functions

El(') = tr(’): EZ(’): M) Er(')y ) En(') = determinant(-) y
defined on the compressions of the operator A to m-dimensional sub-
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spaces of 57~ That is we shall study the set complex of scalars
(1.2) W, .(A) = {E.(AM): McC 57, dimension(M) = n} .

First, a quasi-convexity is shown for the set (1.2) for » = » and with
A replaced by A + z for large complex z (Theorem 5.2). Then, we
present a convexity statement (Theorem 6.1) for those linear operators
which exhibit a certain kind of strong convergence (Definition 3.4).

It is somewhat surprising that the badly nonlinear elementary
symmetric functions allow for any convexity properties relative to
(1.2) at all, but we are able to prove as our principal result, the
following property of W, ,(A). (See Theorem 6.2.)

THEOREM. Let A be any bounded linear operator on Hilbert space
&7 and let r and n be any positive integers such that 1 < r < n.
Then for E.(AM) and E.(N) in W, ,(A), the entire line segment

NE(AM) + A—NE(AN): 0 < x < 1}

18 also in W, (A) provided the n-dimensional subspaces M and N are
mutually orthogonal. More specifically, for every pair of mutually
orthogonal n-dimensional subspaces, M and N, and for every \e(0,1),
there exists an n-dimensional subspace U, such that

1.3 \NE(AM) + 1—-NE.(AN) = E,(AU)) .

Due to the constructive nature of our proof, we are able to show
the interesting fact that U, may be chosen once and for all so that
(1.8) remains valid for each r =1, 2, «--, n.

We proceed to the development of these results now.

2. Preliminaries. Throughout, 57 will be a Hilbert space
(finite or infinite dimensional) with inner product ¢ -, - >. For each
r=1,2, ..., we construct the vector space

Ao =spl@ AT A o AT, Ty By o0, 2, € 57

spanned by all decomposable r-vectors x, A x, A -+ A %,, Where the
vectors ,, %, +++, %, run over 5~ We use the wedge A to deonte
the exterior (Grassmann) product and the symbol

sp [«], xe 7

denotes the vector subspace generated by all z in o4 (See Vala
[12].)

An inner product may be defined on 4”57 by requiring that for
decomposable vectors x, A @, A +++ A2, and y, A Y A -+ A ¥y, in
A 27,
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(2.1) <x1/\ :Bz/\ e /\ xr, yl/\ ?/2/\ e /\ yr> = det (<wiy y.7>) y

the determinant of the » x » matrix with i entry <{=;, y,>. (See
[8, Ch. XVI].)

Let A be any bounded linear operator on 5% Then a (bounded)
linear operator C,(A), the ™ compound of A, is defined on 4”57 by
the equation

2.2) CAA@ NN -+ N&,) = Av, N AT N\ -+ - N\ A,

for all 2, %, +++, 2, in SZ

As a notational convenience, we shall introduce @, ., the (%)-
element set of order-preserving functions o sending {1,2, ---, r} into
1,2, .--, 7, --+m}, where 1 £ r < n. More exactly,

Qn»r :{0: {132y ---,'r}——->{1,2, e T, "'an}}

where 1 < 0(1) < 0(2) < --- < a(r) £ n.
As an immediate use of this set @, ., we set down the following
useful property:

PRrROPOSITION 2.1. Let M be an m-dimensional subspace of 57
having o.n. basis & = {e, €, ++-, €,}. Then for each integer 7,
1< r <, the ()-element set

gw‘ = (60(1) AN AN VANE It U< an,'r}

s o.n. n A" 34 Moreover, if M s the orthogonal projection on S#°
with range M spanned by &, then C.(M) is the orthogonal projection
on A7 with range spanned by the o.n. set .

Proof. The fact that &, is o.n. in 4757 is immediate from (2.1).
Similarly, by extending & to an o.n. basis for all of 57, the second
assertion of our proposition follows from (2.1) and (2.2). (See also de
Pillis [3].) This ends the proof.

Given the m-element set {x, %, ---,2,} in 54 Then for each
0€eq,,, z, will be that vector in 4”57 defined by

(2.3) Ty = Loy N\ Loy /\ 200 /N Loy o

Now let A be any bouded linear operator on 5# Let M be (the
orthogonal projection onto) a finite dimensional subspace of 5# Then
for each r=1,2, ---, n E(AM), the r® elementary symmetric func-
tion of AM is defined by

2.4 E.(AM) = tr (C.(AM)) ,
the trace of the operator C,(AM) on A"S#
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The existence of the trace presents no problem since M is finite
dimensional (hence, C,(AM) is finite dimensional on 475#). In fact
we offer the following more explicit form for E,.(AM):

PROPOSITION 2.2. For A a bounded linear operator on 57, and
for M an n-dimensional subspace with o.n. basis {e, e, ++-,¢e,}, we
have the equality
(2.5) E(AM) = 5 (CAAM)e, & -

0EQy,y

Proof. The trace of any bounded operator B on Hilbert space
may be written as

> {Be,, e;> where {e;};.,
iel

is any o.n. basis of 5% Since C.(AM) = C.(A)C.(M) (see 2.2)) is
zero on all but a finite-dimensional subspace C.(M) of A 57, it
suffices to consider the sum above relative to the finite o.n. basis
{e,; 0€@Q,,} of C.(M) (see Porposition 2.1). That is,

E(AM) = tr (C(AM)) = > <CAAM)e, €)

where {e, ¢, ++-, ¢,} is an o.n. basis of M, and {¢: 0€@Q,,} is an o.n.
basis of C.(M). The proof is done.

REMARK. It is to be noted that
(2’6) Er(AM) = Z <Cr(AM)ga, §a> = %‘4 <Cr(A)§ay §0> ’

0€Qp,y

so that the appearance of M = sp[e, e,, -+ -e,] becomes superfluous in
(2.5). To see this, observe that C.(AM) = C.(A)C.(M) (from (2.2)),
and that C.(M)e, = ¢,.

REMARK. Let us write tr (AM) in the form
@2.7) tr (AM) = 3} <{Ae,, e

where {e, e, +++,¢e,} is any o.n. basis of M. Then the extended
Hausdorfi-Toeplitz theorem of Berger [1], [6] tells us that the set
W.(A) of all such n-term sums, is convex. Can we then conclude
that the set W,.(4) of all (})-term sums (2.6) is also convex (by
replacing A in (2.7) with C,(A) and replacing e; with ¢,) ? The answer
is the convexity W, ,.(4) cannot be so deduced from the convexity of
W ,.(A) since in (2.7), all n-element o.n. sets {e, e, ---, ¢,) of 57 are
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permitted. Contrariwise, in considering W, ,.(4) given in (1.2), the
set of all sums of the form (2.6), only those o.n. sets {e,, ¢, +--, ez},
R = (}), are permitted where each ¢; is a decomposable unit vector of
4727 Recall that 4757 is the span of all decomposable vectors
T, A% A+ A2, so that in general, not every unit vector is de-
composable.

Now let M be an r-dimensional subspace of 57 with o.n. basis
{e, € +<+,e.}. Let A be a bounded linear operator on 5# and let z
be complex. Then

2.8)’ {C(A+2)e, Nes N\ »os Ne,, e, Neg N\ +++e)

is the 7™ degree polynomial

(2-8) S S KO A)e, e

7=0 0eQ,,.'J-

For j =0, we define >,.q, ,{Ci(4)e,, e,) to be the number 1. The
equivalence of (2.8)" and (2.8) follows from the orthogonality of the
set {e, ¢, -+, ¢,} along with use of (2.1) and (2.2).

Finally, we define Berger bases for a pair of r-dimensional sub-
spaces M and N in 27, after C. A. Berger, who proved [1], [6], that
such pairs of bases always exist for any such M and N.

DEFINITION 2.3. The orthonormal bases {z, ,, +++, %,} C M and
{Yy Yoy =+, Y.} © N will be called Berger bases (relative to M and N)
if and only if <x;, y;,> = 0 whenever 7 = j. (Note: No constraint is
placed on {x;, ¥;).)

3. Convergence properties of A. In what follows, A will be
a fixed bounded linear operator on Hilbert space 5~ and x is a unit
vector in S#

DEFINITION 3.1. The unit vector 2, e 5~ is defined for each suf-
ficiently large complex z by the conditions that

(1) (A+z)xz = <(A+Z)£I/'z, x>x y
and
(2) {z,y 2) > 0.

REMARK. Since A is bounded, sufficiently large complex z may
always be found so that A + z is invertible; that is, so that a unit
vector 2z, always exists which is sent by A + z to a scalar multiple
of the fixed unit vector . We note that if Condition (1) above ob-
tains for some unit vector x,, then it obtains equally well for the
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vector w - ,, where w is any complex scalar of modulus one. Hence,
Condition (2) is presented to allow a unique z,; as we shall now see,
x, has the further property that x#, — 2 as z— . In fact, we pre-
sent a stronger statement of convergence in the following lemma:

LEMMA 3.2. Given the bounded linear operator A and wnit vectors
x and x, defined in Definition 3.1. Then

21 — [z, D) —>0 as z— oo .

Consequently, x,— % as z— oo.

Proof. We write the expression {(A4+2)x,, x> in two ways:
(3.1) UA+2)z, 2. = (AT, 2> + 2.
Substituting {(A+2)x,, 2>z for (A+2)x,, yields

(3.2) {(A+2),, ) = {Ax,, zDlx, ¢, + 2|z, oD .
Subtraction of (3.2) from (3.1) gives us

(3'3) Z(l - |<xz9 x>l2) = <szy x><x’ wz>—<szr w2> .

From (3.3) it follows that {(x,, > — 1 as z — o; to see this, divide
through by z and let z go to infinity. This, in turn, implies that

3.9) r,— 2 as R—> oo .

Again from (3.3) we may deduce that z (1—|<{=,, 2>|?) =0 as 2 — oo}
use the continuity of both A and the inner product along with (3.4)
to show that the right-hand side of (3.3) goes to zero as z— oo,
The lemma is proved.

For later convenience, the following notations are introduced:

DEFINITION 3.3. Let {x, 2, ---, #,} be any finite set spanning
subspace M of Hilbert space 5% Let A be the compression to M of
some bounded operator on 5% (That is, A = P,AP,, where P, is
the orthogonal projection onto M.) By x,, we mean that unit vector
of M defined in Definition 3.1 relative to z,. That is,

(A+2)2, = {(A+2),, z )2, ,
and
{x, x> >0.

We then define the vectors g, in 4”57, and «; in 457, for j =
1,2, ---, r by the following equations:

(a) %z:xl/\xz/\"'/\xr—l/\x37
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and
(b) Ti=2 A A e ANx;, foreachj=12 .- 7.

We shall have oceasion to use the notion of an operator A having
power r on a vector x, the definition of which follows now.

DEFINITION 3.4. Let A be a bounded linear operator on Hilbert
space M. Let x be a unit vector of M and let x, be the unit vector
defined above (Definition 3.1). Then A is said to have power r on %

if
lim z#(1 — <&, 2)") = 0.
A simple restatement of Lemma 8.2, using the terminology of
Definition 3.4, is the proposition:

ProposiTION 3.5. For any bounded linear operator A on 57 and
for any unit vector xe 57, A has power one on .

One important instance occurs where A has power » on x for all
integer values of » =1, 2, -... Specifically, we have

PROPOSITION 3.6. Suppose x is an eigenvector for A. Then A
has unbounded power on x. That is, for all r =1,2, ««+, m, <<+,
71— K, 2)f) — 0.

Proof. Observe that for all z,#, = 2 whenever 2 is an eigen-
vector of A.

4. Induction hypothesis. In the following section, we shall
refer to and hence extend the induction hypothesis which we now

present.

Induction Hypothesis. Given a bounded linear operator A on S#
Given n-dimensional subspaces M and N of 57 with Berger bases
{x, %, +++, x,} and {y, ¥, -+, ¥}, respectively. Let the o.n. set
{4, Us, + <+, u,} be defined by requiring of each wu, e sp [;, ¥;], that

MAz;, x) + 1=\ <Ay, v = {Au;, ;)
for arbitrary but fixed A e (0, 1). Then
Mcj(A)@as xa> + (1_7\’) <Cj(A)?‘/~a, qq> = <Cj(A)%a’ %a>

for each j =1,2, .--, r—1, and for each c€@, ;.
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REMARK 4.1. In the “earliest ” possible case, j =1, r = 2, the
induection hypothesis reduces to the classical Hausdorff-Toeplitz theorem
relative to the Berger bases for M and N. In what follows, we shall
prove that under certain restrictions on A, or on the subspaces M
and N, the induction hypothesis may be extended from the cases
ij=1,2 «+¢, r—1 to the cases j=1,2, «--, r—1, 7.

REMARK 4.2. The fixed o.n. sets {v;}, {y;} and {;} meet all the
conditions described above if the operator A is replaced by A + z,
where z is any complex scalar (i.e., 2z is a complex scalar multiple
of the identity operator).

5. A quasi-convexity result. We now extend our induction
hypothesis to a convexity result involving the operator A + z
(Theorem 5.2).

REMARK 5.1. Let F be some scalar-valued function on the unit
sphere of 57, which has convex range. That is, for all A e (0, 1),

and for all #, ¥y in 5# such that ||z|| = ||y|| =1, there exists u,
[|#|] =1 such that
(5.1) M (x) + A—N)F (y) = F(u) .

Now let 9,6, 2) and p.(0, 2) be two complex valued functions of z,
whose values have the same argument 6 for each z; the common
argument, 6, necessarily depends on z. Then

(5.2)
A0, ) F (%) + L=N)p:(0, 2)F (y) = (Apy(0, 2) + (1—=N)p:(0, 2))F (u,) ,

where u, is a unit vector depending on z.

To verify (5.2), divide both sides by xp.(4, 2) + (1—N)p.(6, 2).
The fact that p,(0, 2) and p.(0, 2) each factor as ¢ times positive
scalars, reveals the lefthand side of (5.2) as a convex combination of
F(x) and F'(y).

THEOREM 5.2. (A quast convexity theorem) Suppose the induction
hypothesis obtains for each j=1,2, «++,r—1. Let M and N be r-
dimensional subspaces of 57 with Berger bases {®, @, +--, %,} and
{Ysy Yoy + ¢+, ¥}, respectively. Then for every meighborhood U (o) of
mfinity, there exists a z€ U(co) such that

MCA+2., 2.5 + (L= NCA+ ., 1> = C(A+Du,, w)

where %, and Y. are defined above (Definition 3.3) and
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7_@;=u1/\u2/\"‘/\ur—1/\uzy

where w, 1s a unit vector of sp [x., v.].

Proof. Recall that x, is that unit vector such that
(A+2)w,espla,] ,

where <x,, ©,> > 0. (Definition 8.3.) Thus, (A+2)x, is orthogonal to
sp [%, %, +++, %,_,]. From the definition (2.1) of the inner product on
A"2#, we have

>‘-‘<Cr(A+z)g7u @z>
(5.3) =MA+2)T N =+ A (A+DTy A (A+2)T, BN =00 ATy A 3
= XC,_(A+2)2,_;, T, D{(A+2),, 2. .

Similarly, we may write
) (L—NCAA+2Ys, 0> = L= NCos( A+ 2y Yo XA+, 1D
We add (5.3) and (5.4) to obtain

MC(A+2)z, 2> + (L—MC(A+2)y., 4>

(5.5) = MC,(A+2)2, ., T, DL(A+2)T,, 2.)
+ A=K Co i (A+2)Y sy Y- (A+2)Y:, U2

We assert that for each neighborhood U(ec) of infinity, a ze U(co)
may be found so that the (complex) arguments of the two monic
(r—1)st degree polynomials,

{C,(A+2)2,,, x,p and {C,_(A+2)Yr—, Yr-v)

(see (2.8)), agree. In fact, their quotient, call it f, is an analytic
function in a neighborhood of infinity; moreover, f(z) converges to
one at infinity. By the open mapping theorem for analytic functions
(c.f. [2: pg 175], [7]), open neighborhoods (of analyticity) of infinity
will be sent by f to open neighborhoods of the positive number one.
Therefore, every neighborhood of infinity will be sent by f to open
neighborhoods of the positive number one. Thus, every neighborhood
of infinity contains a z such that f(2) > 0; moreover, f(z2) is as near
to one as we please. That is, every neighborhood U(ee) of infinity
contains a z for which the arguments of

(5'6) <C1'-—1(A + z)g’r—ly @r—1> and <Cr(A + z)g_{r—ly %/r~1>

are equal. Replace the symbols »,(d) and p.(f) in (5.2), Remark 5.1,
by the polynomials of (5.6), and replace F'(z) and F'(y) by {(4+2)z,, x>
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and {(A+2?)y., ¥.), to obtain the following equivalent expression for
the right hand side of (5.5):

.7)
[Mcr—l(A-Fz)%_n 2, + 1=AC, (A +2)Yrsy Yrs
a(?) b(2)
= [a(2) + b(2)] (A +R)u., u.p

>:i<(A+z)u,, U, ,

where u, in sp [x,, ¥.,] is a unit vector satisfying the equation

_a® b(2) _ ‘
7+ 0 (AT 8 + g (A Ay, v = (At au, w)

This, in turn, is equivalent to the equation

() b(2) _
(5.8) @ + b(z)<sz, €.y + mz‘lyu Yy = {Aw;, U
for a(z) and b(z) defined in (5.7).

We note that the quotients a(z)/(a(z) + b(z)) and b(2)/(a(z) + b(z))
approach the values » and (1—2\), respectively as z— . (To see this,
divide numerators and denominators by z"~* and pass to the limit as
22— c0.) Since x, — 2, and y, — vy, (Lemma 8.2) as z— <, we have

(5.9 {Au,, u,) —> {Au,, u,) as z—> o .

(Recall that u, is a unit vector of sp [x,, ¥,] satisfying the equation
KAz, »,) + 1=\ AY,, y.) = {Au,, w,).)

We couple the statement of our induction hypothesis (see (2.8)
and Remark 4.2) with (5.7) to replace the left-hand factor of (5.7)
by the r—1 degree polynomial

(5°10) <C,._1(A+Z)%1/\ A Upgy Uy N oo /\ur—-1> = <Cr—1(A+z)74l’r—11 7~"’r—1> ’

where each unit vector %; in sp[x;, :],7 =1, 2, -+, —1 has the pro-
perty that

MAz;, x> + 1=\ AY;, ¥y = {Aug, u) -
This yields the simplified form
(5.11) Cr—(A+2) Uy, o D (A+2) U, U

which is equivalent to (5.5) and to (5.7).

Notice that (A +2)u, is a certain linear combination of the
vectors x, and y,. This is so because u, € sp [x,, ¥.] and (A+2) sends
%, into sp [#,] and also sends y, into sp[y,] by definition (Definitions
3.1 and 8.3). Thus, (A+2)u, is orthogonal to sp [u, s <+, u,_.];



CONVEXITY PROPERTIES OF A GENERALIZED NUMERICAL RANGE 777

orthogonality is guaranteed by the fact that

{w, %y oo, @) and {y, Yo, =+, Y}

are Berger bases for M and N, respectively (Definition 2.3). Accord-
ingly, we may write (5.11) as follows:

(5.12)
<C«,-(A+z)u1 VANCEEIVAN WUp—y AN WUzy Uy VANRERIVAN Up—y AN uz> = <CT(A+z)7_({’zy 7(’_‘2> *

If we combine (5.12) with (5.5), we obtain the final equality
(5.13)
MC(A+2)2,, 2.) + (1=MC(A+2)Y., Y.p = CAA+R)U, .

Statement (5.13) above completes the proof of the theorem.

6. A convexity result for W, ,(A4). In this section, we combine
the quasi-convexity result (Theorem 5.2) with the notion of A having
sufficient integer power on certain x (Definition 3.4) to obtain a con-
_ vexity theorem for A (Theorem 6.1). As a consequence, we obtain
our main convexity result (Theorem 6.2) which holds for arbitrary
but fixed linear operator A so long as the subspace M and N are
mutually orthogonal.

THEOREM 6.1. Let M and N be r-dimensional subspaces of Hilbert
space 57 having o.n. Berger bases {, X, +++, 2.} and (Y, Y, *++, Yr}s
respectively. Suppose the bounded linear operator A, when restricted
to each of these subspaces has power r on x, and y,; that s,

(1) lim 2" (1~ [Kw, #,)f) = lim 2"(1—~Ky., y.)[) = 0.

If an o.n. set {u,, u, -+, u,} satisfies the equations

(il)  MAw, 2> + A=MN<KAY, v = Au, ud, 1 = 1,2, <o, 7.
Sfor arbitrary but fixzed Ne (0, 1), then necessarily,

(6.1) MKC (A, 2,) + A—=NKC(A)Y, Y = LCAA) %, U
whenever

(i) lim 2(L — Ku,, ) = 0

where the unit vector u, satisfies the equation

(iv) XAz, 2.p + 1-MAy., ¥v.) = {Au,, u,) .
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Proof. Consider the function
(P(Z) = 7"<Cr(A+z):§z9 gz> + (1-7\’)<CT(A+z)?£z’ 2!z> - <C1'(A+z)7:!.'=9 yz> .

Now 2, esp [z, %2, +++, x,] must be of the form

r—1

x, = 21 a:%; + &, ©,)%,
&
for certain scalars a,, a,, ++-, a,_,. Thus

ﬁl/'z = xl/\ b /\ wrf—-]_/\wz
r—1
= ZA (@, A\ oo A @y N r;) + <xz, xr>(x1 N oo N2y N\ @)
=0+ <z, T, )2, ,

where each term in the summation involving a,, @, -, a,, equals
zero due to repetitions of #; in the Grassmann product

By /N see ANTpy N O
We substitute {x,, »,)z, for z, into our expression for ¢(z) to obtain
(6.2)
P(2) = MC(A+2)x,, 2.0t + (L—NC(A+2)Y,, Yr)B:—CAA+ Ry, %)Y,
where

(6‘3) &, = ,<xz’ xr>12: L. = l<yz, yr>l2 and Y. = ’<uz: ur>]2 .

If we substitute the explicit polynomial expressions for each of the
three inner products in (6.2) (see (2.8)), we obtain the following ex-
pression for ®(z):

(6.4)

i Z &I [)“<Ca'(A)%n ‘fﬂ>az+(1—>")<cj(A)ym yo>182_<cj(A)%a’ 7,{'0>7z] .

J=0 aeQ,.,j

Our induction hypothesis allows us to replace {C;(A4)u,, %, in (6.4) by
A'(Cj(A)%” %7> + (l—)")<CJ(A)yw ya> ’

at least for the cases j=1,2, ¢+, -+, r—1, and for all ceQ,,;
Effecting this substitution, (6.4) yields the following form for @(z):
P(2) = Z M —7,) + (1—=M)(8.—7.]
65  + DEX @) + R Y87
—(constant term)
+ MCAA,, 8% +A=NC (A, Y08~ {Co ANty w DY,
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where for each 7 =1,2, «-., r—1,

X, =% 5 G zy, and Yy = (1)) 5 Cid)ge ) -

Assumptions (i) and (iii) together guarantee that for £k = 1,2, .., 7,
the quantities

o, —v,), and 248, — 7.)

tend to zero as z— . (Write a, — 7, =(1-7,)— (1—a,), and
B, — % = =) — (1—4.).)

We then constrain the growth of z in accordance with Theorem
5.2, so that @(z) = 0 as 2— . From hypothesis (i), «, and g, —1
as z— oo; from hypothesis (iii), v,—1 as z— . Thus, we may
conclude that the “constant” term of ®(z) (see (6.5)), which tends
to

MKCAA)z,, &) + A=MLKCAA)Y,, Y- — Co(A)hr, %0

approaches the value zero. The proof of the theorem is done.

We now present our main result which, as a corollary to Theorem
6.1, holds for all bounded linear operators A on 5%, and all r =
1,2, +--,n, provided the n-dimensional subspaces M and N are
orthogonal.

THEOREM 6.2. Let M and N be n-dimensional subspaces of S#
such that M s orthogonal to N. Then for any bounded linear oper-
ator A, and for any M€ (0, 1), there exists an n-dimensional subspace
U, in M+ N such that for each r =1,2, +--, n,

MNE(AM) + (1-NE(AN) = E,(AU)) .
Note that U, does not depend on r.

Proof. Let

Z = {xly Ly o0y Ly =00,y xn}
and
7 = {yly Yoy 2y Yry ** % yn}

be o.n. bases of M and N, respectively, which triangularize the com-
pression operators A: M — M and A: N— N. That is, let x, be an
eigenvector for the (finitedimensional) compression of A to M. Choose
2,—, as a unit eigenvector of A restricted to the orthogonal comple-
ment of z, in M; consequently, A(x,_,)esp[2,_, #,]. Similarly, z,_,
is a unit eigenvector of A restricted to the orthogonal complement
of sp[x,_, #,], and so on, until for each 7 =1,2, .-+, n,
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(6.6a) A(x;) €SP [®)y Tjpgy o0y By] o

By the same reasoning on N, {y, %, *++, ¥,} is an o.n. basis of N
such that

(6.6b) A(’y,) €8p [yj, Yirty ***5 Ya] «

Due to the orthogonality of M and N, 2 and % are Berger bases.
Moreover, corresponding r-element subsets {x,.), %,q), ***, %} and
Moy Yoy ***y Yo} for each o€Q,, are Berger bases for their
respective linear spans, which we denote as follows:

M, = sp [%swy Towy ***5 o]
No = Sp [yv(l)y Yoy ** yv(r)]

for each o€ @,,,.

Note that z,,, and %, are eigenvectors for (the compression of) A
on the spaces M, and N,, respectively: This follows from (6.6a) and
(6.6b). Thus, A has unbounded power on #,., and ¥,,, when restricted
to M, and N, (Proposition 3.6). Consequently, for z, and y, of Defini-
tion 3.3 (see also Lemma 3.2), 1 — Kz, %) =1 — K¥,, Yo )l? = 0,
since z, = %, and ¥, = ¥,,» Moreover, the u, defined in hypothesis
(iv) of Theorem 6.1, can be chosen to equal u,.,, where

>"<Axo('r)y xa(r)> + (1_7\')<Ayo(r)y ya(r)> = <Auv(r)y ucr(r)> .

This implies that z2*[1 — [Ku,, %, )}l =0 so that all hypothesis of
Theorem 6.1 are fulfilled by each of the orthogonal subspaces M, and
N, as ¢ runs over Q,.,. Therefore, we may write for each c€Q,,,,

that

67 MOy 2. + AAKCAA s, Yo = <Col( Atk %)

where {u,, U, +++, %,, ++-, ,} is an o.n. set satisfying the equations
MAz;, x> + =N Ay, yi) = CAwsy wip, ©=1,2, <oeym .

If we sum each side of (6.7) over all e @, , (see Proposition 2.2 and
(2.6)), we obtain

ME(AM) + 1—NE,(AN) = E, (AU ,

where U, = sp [4;, s, *++, U,, +++, %,]. The theorem is proved.

REMARK. It is an open question as to whether W, ,(A4) ks always
convex. It may be conjectured that if 27 > dim 57, then convexity
is automatic since, in this case, every vector of A”S5# is automatical-
ly decomposable. (See Remarks following Proposition 2.2.)
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