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A GEOMETRIC APPROACH TO THE FIXED
POINT INDEX

RoGER D. NUSSBAUM

J. Leray defined a local fixed point index for functions
defined in what he called convexoid spaces. From the stand-
point of analysis, the most important example of a convexoid
space is a compact subset C c X, X a locally convex topologi-
cal vector space, such that C = Ui, C;, where C; are compact,
convex subsets of X or a homeomorphic image of such a C.
In this paper a simple geometric approach is given (see Lemma
2 below) by means of which a fixed point index can be defined
for functions with domain in a class of spaces % which con-
tains the spaces C mentioned above and also the compact
metric ANR’s. The usual properties of the fixed point index
are established, and it is shown that they axiomatically deter-
mine the index for the class of spaces & .

As far as we know, none of the approaches to the fixed point index
which have been published since Leray’s work have been shown to apply
to spaces C of the type above. For instance, A. Granas [9] has re-
marked that if a compact space C is r-dominated by an open subset
of an letvs, then the Leray-Schauder index for compact maps on open
subsets of an lctvs gives a fixed point index for maps of open sub-
sets of C into C. But without metrizability the spaces considered here
are not necessarily r-dominated by open subsets of an letvs. F. Browder
[3] has shown that if a compact Hausdorff space admits a ‘‘semicom-
plex structure,”’” then a fixed point index can be defined for functions
with domain in the space. However, to show that given topological
spaces admit semicomplex structures, the metrizability of the spaces
has almost invariable been used. Thus Browder has shown that com-
pact, metric ANR’s admit semicomplex structures, and Thompson [19]
has established the same thing for metric HLC* spaces. But a finite
union of compact, convex sets in an lctvs need not be metrizable. In
any event, we shall avoid questions about semicomplex structure and
obtain our fixed point index from the classical one for compact, finite
dimensional polyhedra.

1. Let us begin with some notation. Let C be a compact sub-
set of a locally convex topological vector space (letvs) X, always
assumed Hausdorff. We shall write Ce &, if there exists a finite
closed covering {C;:1< 7 < n} of C by compact, convex sets C; C C,
ie if C = U, C;, C; a compact convex subset of X. If Ce &, Gc C
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is an open subset of C, and f:G— C is a continuous map such that
{xe G: f(x) = x} is compact (possibly empty), then we shall define in
this section a fixed point index <.,(f, G) for f.

We take as a starting point Dold’s development of the classical
fixed point index [6]. If Y is a compact Hausdorff space, Dold calls
Y a Euclidean neighborhood retract (ENR) if there exists an open sub-
set 0 of some Euclidean space R", a continuous map ¢: Y — 0, and a
continuous map 7: 0 — Y such that r-¢ = identity on Y. Notice that
since any finite dimensional letvs F (always assumed Hausdorff) is
linearly homeomorphic to R" for some n, we may as well assume that
Y is imbedded in F in the above definition of ENR. For our work
here, the most important example of an ENR will be a compact sub-
set C of a finite dimensional letvs F such that C = Ui, C; for some
compact, convex subsets C; < F. The fact that C is an ENR follows
from two theorems. First, Dugundji has shown [7] that a closed,
convex subset of a Banach space X is an ANR (see [1] for definitions).
Since F' is finite dimensional it can be taken to be a Banach space,
so any closed, convex subset of F is an ENR. Second, a classical
theorem states that if Y, and Y. are subsets of a metrizable space
Yand Y,, Y,, and Y, N Y, are ANR’s then Y, U Y, is an ANR (see
[1] for a proof). In our case these results combine to show C is an
ENR.

Now let Y be a compact Hausdorff ENR, G an open subset of Y,
and f:G— Y a continuous map such that {xe G: f(x) = } is compact.
Then there is a unique integer valued function %,(f, G) having the
following properties. (O’Neill has shown uniqueness of the fixed point
index for compact polytopes [17]. Since for any ENR E, there exists
a polytope P, and continuous maps j: E — P, r: P— E such that r.j =
identity on E, the methods of § 2 show uniqueness for ENR’s).

1. (The additivity property). Let Y, f, and G be as above. If
S ={xeG: f(x) = x}, assume that S c G, U G,, where G, and G, are
disjoint open subsets of G. Then i,(f, G) = & (f, G,) + ix(f, Gz). Fur-
ther, if 7,(f, G) = 0, f has a fixed point in G.

2. (The homotopy property). Let G be an open subset of a com-
pact, Hausdorff ENR Y. Let I = [0, 1] = the closed unit interval and
let F: G x I— Y be a continuous map. Assume that S = {(z, ) e G x
I F(x, t) = «} is compact. Then if we define F\,(x) = F(z, t), i,(F,, G) =
ty(F, G).

3. (The normalization property). Let Y be a compact, Hausdorft
ENR and let f: Y— Y be a continuous map. Then %,(f, Y) = A(f),
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where A(f) is the Lefschetz number of f, using singular homology
with rational coefficients.

4. (The commutativity property). Let Y, and Y, be compact,
Hausdorff ENR’s and let G, and G, be open subsets of Y, and Y, res-
pectively. Let f,:G,— Y, and f,: G;— Y, be continuous maps. Setting
H, = f7Y(G,) and H, = f;(G,), assume that S, = {x € H: (f.f)(x) = «} is
compact. Then S, = {xe H,: (f.f;)(x) = x} is compact and iy (f3f, H) =
e (i oy )

Notice that if Y, f, and G are as inland f(Y)CY' CY,Y an
ENR, then i.(f, &) = ix.(f, GN Y'). This follows from 4 by using
the inclusion 7: Y'— Y.

In order to generalize the above fixed point index to our context,
we need some lemmas. First, we introduce some further notation.
We shall denote subsets of {1, 2.--., n} by J, K, L, M and we define
|J| to be the number of elements in J. If C is a compact Hausdorft
space, and C = |Ji., C;, where C; is a compact subset of C for 1 <17 < n,
then for L C {1, 2---, n}, we shall write C;, = Nic. C:.

With the aid of this notation we can state our first lemma, which
is the basis of all our further work.

LEMMA 1. Let C be a compact, Hausdorff space such that C =
r,C;, C; a compact subset of C. Let ZZ be a finite open covering of
C. Then there exists a finite open covering 7~ = {V;;:J C {1, 2+-+, n},
1 <1< k;} (i.e., indexed by ordered paris (J, %), J a subset of {1, 2, - -+, n},
i an integer for which 1 <17 < k,, k; an integer depending on J) such
that (1) 7 is a refinement of Z& (2) V,,; is empty if C; is empty
and V;; N C;is nonempty if V, ;s nonempty. (3) If k&, cl(V,;)N
C.isempty. 4 If |L|= |K|but L p K, V,;N Vg,; is empty.

Proof. We construct {V,;} by induction on |J]|, starting with
|J| = n. The inductive assumption at the (n-r)™ step, 1 < r = n, is
that there exists a collection of open sets

(Vo JC(L, 2 oonymh || =7, 1S 0 < Fy)

which satisfies 1-4 above and is such that U=, UL Vi D Uisizr Coe
The object is to define open sets V,; for Jc{l, 2, ---, n} for which
|J]=7r—1and 1=<9=<Fk; and such that {V, 2 |J|=r - 1,1t <k}
satisfies 1-4 and gives an open covering of U ;2,—. C,-

Step 1. If |J| = n, let {V,:1 < ¢ < k;} be the collection of Ue %
which have nonempty intersection with C,. This collection may be
empty.
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Step 2. Assume for some 7,1 <r <mn, we have constructed
(Vi ld| =7 1 <1< k;} which satisfies the inductive hypothesis. If
r = 1, we are done, so assume > 1. For each K< {1, 2, ---, n} with
|K|=r—1, let Ax = Cx — Uzi2» Uizize, Vi.: and notice that if j¢
K, Ax and C; are disjoint compact sets (since, for j¢ K, C,rNC; =
Cxuiyy and | KU {j}| = 7). It is also clear that A, N Ay is empty for
all K’ such that K’ -+ K, since Ar, € C; for je K’ — K and Ax N C;
is empty. It is thus not hard to see that there exist open neighbor-
hoods Oy of Ax for all K< {1,2, ---, n} with | K| = — 1 such that
cl(0Ox) N C; is empty for j¢ K and cl(Ox) N cl(Ox.) is empty for all K,
K' with |[K|=|K'|=7r —1 but K= K'.

Next, for a given K< {1, 2, ---, n} with |K| = r — 1, consider all
Lc{1,2, +--, n} such that |L| >r — 1 but L o K. For each such L,
select € K such that j¢ L. If (L, 7) is such a pair, we know by in-
ductive assumption that cl (J5z, V.,;) N C; is empty so there exists an
open neighborhood W, ; of C; D Cx such that cl (UUZ V) N W
is empty. We set Wx = N5y W.s), Where the intersection is taken
over all ordered pairs (L, j) as above. We define Tx = O N Wy, an
open neighborhood of Ag.

Let {Vg. 1 <17 < ki) be the collection of sets of the form Ty N
U, Ue %, such that Ax N U is nonempty. This collection may be
empty. Clearly {Vi.:1 <1 < kx} is an open covering of Ax. Observe
also that {V,;:|J|=r—-1,1=<¢<k,;} gives an open covering of
Usr C;. By induction we certainly have an open covering of
Uy, C;o If xeCq for |[K|=7r—1and v& U, Vi then by defi-
nition € Ax so that xe Vg, for some 7.

It remains to check conditions 1-4 for the new covering. Since
Vs | K| =7 — 1, was selected so Vi ; C U for some Ue 7/, condition
1 holds. Condition 2 holds trivially: If Cx is empty, Ax is empty
and {Vi1 =<1 < ki) is empty. If Vi, is nonempty, Vi, = UN Tk
for some Ue % such that U N Ax is nonempty. If |L|=|K| but
L D K, we want to show V, ;N Vg ; is empty. If |K|>r — 1, the
result is true by inductive hypothesis. If |K|=r—1, and |L|>7r—1,
select k€ K such that k¢ L. By our construction we have V., Wi C
Waiw and W Nel(UfE V,,) is empty, so that in particular V, ;N
Vx,;isempty. If |[K|=|L|=r — 1, then again by our construction,
Ve;N V.;COgN O, is empty. In either event, 4 is satisfied. Final-
ly, to show 3 it suffices to show that if | K|=r—1andj¢ K, el(Vx)NC,;
is empty. Since Vi ; C Ok, and cl(Ox) N C; is empty, this follows im-
mediately from our construction.

This completes the inductive step. After n repetitions, the desired
covering is obtained.

Our next lemma provides the justification for proving Lemma 1.
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Lemma 2 is the basic result upon which all work in this section depends.

LemMMA 2. Let C be a compact subset of an lctvs X and suppose
C=Ur C,C; a compact, convex subset of X. Then given any con-
tinuous seminorm q and € > 0, there exists a continuous, finite dimen-
sional map r: C— C such that if xeC; for 1 <1< n, then r(x)e C;
also and q(r(x) — x) <e. (By finite dimensional we mean that the
range of 7 lies in some finite dimensional subspace of X).

Proof. ForeachzeC, let U, = {ye C:q(y — v) < ¢/2}. This gives
an open covering of C, and by the compactness of C, there exists a
finite subcovering %= = {U,, U,,, -+, U,,}. Clearly, if Ue Z and =, y €
U, then g(x — y) < e&. By Lemma 1, there exists a refinement 7" =
(Vyaodc{1,2, -+, 0}, 1 < ¢ < k;} satisfying conditions 1-4 of Lemma
1. By condition 2, for each nonempty V,, seleet P;;€ V,,NC,; also
define P;; = 0 if V,;is empty. Let {¢,:J {1, 2, -+, n}, 1 =1 =< k;}
be a partition of unity subordinate to V,; (with the convention that
$ss = 0 if V,; is empty), so that supp (¢,,:) C V,,: and 3;,: 65,:(x) = 1
for ze C. Define r(x) = >.;; ¢;,:(x) P, ;. It is clear that » is a contin-
uous, finite dimensional map. Also, it is easy to show that g(z—7r(x)) <
e. Forq(x — r(®) = ¢(Cs,:8s,:@) (@ — P;y)) = 3ir:65,4x)q(@ — Py), and
if ¢;4(x) = 0, x€ V,;, so that g(x — P,,) = ¢ and 3, 6,:(®)q(@ — Py,) =
> 6r.i()E = &

The nontrivial statement (and the reason for introducing {V,.})
is that »(x) e C; if x€ C;. Thus suppose 2z C;. Iffor Lc {1, 2, .-+, n},
14 L, we know by property 3 of the covering that el (V. ;) NC; is
empty, so that ¢, ;(x) = 0 (since supp ¢,,; C V. ;). Thus we have r(z) =
Sivierdr,i(®)Pr,;.  Since P, ;e C, C C;, this is just a convex combi-
nation of points in C; and hence lies in C..

Notice that the proof of Lemma 2 only uses properties 1-3 of the
covering {V,}.

Before proceeding with our main line of development, let us state
a proposition which indicates again the usefulness of Lemma 1. The
following proposition is standard if C is a compact metric ANR, and
it plays a key role in some developments of the fixed point index for
compact, metric ANR’s. Since we shall not need this result, we shall
not give a proof except to say that it follows straightforwardly from
Lemma 1. We refer the reader to Hanner’s article [10], where theo-
rems along the the general lines of the following proposition are proved
for metric ANR’s.

PROPOSITION. Let C be a compact subset of an letvs X and suppose
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C = UL C;, C; compact, convex. Let a be a finite open covering of
C. Then there exists a finite open covering B of C which is refine-
ment of a and has the following property: If N, denotes the nerve
of B, them there exist continuous maps fz: C — N; and g;: Ny — C such
that gs ofs is homotopic to the identity I on C. Furthermore the homo-
topy F,: C— C,0=t<1, F, = g,0fs, F, = I, can be chosen so that for each
ze C,3Uc a for which Fy(x)e U for 0 <t < 1.

With the aid of Lemma 2 we can define our fixed point index.
Let C be a compact subset of an letvs X and G an open subset of C.
Suppose that C = Ur., C;, C; compact and convex. Let f:cl(G)—C
be a continuous map such that f(x) = « for x€ 0G = ¢l (G) — G. Since
{x — f(x): x€ 0G} is a compact set not containing 0 and X is an lctvs,
there exists a continuous seminorm ¢ such that q(f(z) —2) =¢>0
for x€ 0G. We shall say that a continuous map g:cl(G)— C is an
admissible approximation with respect to < f, {C;} > (C; as above) if
(1) There exists a continuous seminorm ¢ such that q(f(z) —x) = >0
for € 0G and q(f(x) — g(x)) < ¢ for x€dG. (2) For all xzecl(G), if
f(x)e C;, then g(x)e C; (3) g is finite dimensional map, i.e. the range
of g lies in a finite dimensional subspace of X. With the notation
above we take C/, 1<% < m, to be any finite dimensional compact,
convex subset of C; such that ¢(G) c U, C/ = C'. (If g is as above
and V is any finite dimensional vector space containing the range of
g, we can define C/ = C;N V). By our previous remarks C’ is a com-
pact ENR. Notice that g: ¢l (G) — C’, and by condition 1 on g, g(z) =
for € 0G. Thus we see that i.(g9, G N C’) is defined. We shall show
below that if we define i,(f, G) = ¢ (9, G N C’), this gives a well de-
fined definition.

THEOREM 1. Let C be a compact subset of an letvs X and assume
C =UL. E, E; a compact, convex set. Let G be an open subset of C
and f:¢el(G)— C a continuous may such that f(x) = x for x€ oG. Let
q be any continouous seminorm and € > 0. Then there exists an ad-
missible approximation 6 with respect to < f, {E;} > such that q(0(x) —
f®) <& for all xecl(G). Furthermore, suppose C = U, C; and
C = Uj3-.D;, C; and D; compact and convex. If g is an admissible
approvimation with respect to < f, {C;} >, h is an admissible approxi-
mation with respect to < f,{D;} >, Ci,1 <1 =<m, is a finite dimen-
stonal compact, convex subset of C; such that g(G) c U, C; = C’ and
D;, 1 <7< m,is a finite dimensional compact, convex subset of D; such
that MG) c Ui, D; = D', then ic(9,GN C) =15k, GN D).

Proof. Let ¢ be as above and let p be a continuous seminorm
such that p(f(x) — ) = 6 > 0 for x€ 0G. Define ¢’(x) = max {p(x), ¢{(x)}
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and ¢’ = min {¢, 6}; of course ¢’ is a continuous seminorm. By Lemma
2, there exists a continuous map r: C— C such that

1) q'(r(x) — x) < ¢ for all xzeC

(2) r(x)eE; if xe E,; for all xcC and 1 <1 = ¢.

(8) » is a finite dimensional map.

We define 0(x) = »(f(x)). It is immediate that ¢ is an admissible ap-
proximation with respect to < f, {E;} >.

Now let g be an admissible approximation with respect to < f, {C;} >
and & an admissible approximation with respsct to < f, {D,;} >. Thus
there exist continuous seminorms ¢, and ¢, such that ¢.(f(x) — z) < ¢,
. (f(@) — g(@) < &, @(f(®) — ) = &, and g¢(f(x) — g(x)) < e for all
x€ dG. We define §(z) = max {q.(%), ¢-(%)}, a continuous seminorm, and
¢ = min {e, &}. Notice that C = Y, U-. C; N D;, C; N D; a compact,
convex subset of X. If weset E;; = C;N D;, by the first part of this
theorem, there exists an admissible approximation 6 with respect to
< f,{E;;} > such that §(f(x) — 6(x)) < ¢ for we cl(G).

Before proceeding further, let us recall the elementary theorem
that if A and B are compact, convex subsets of a topological vector
space X, then {sx + 1 — 8)y: 0 <s < 1,x¢c A, ye B} is a compact, con-
vex subset of X. In particular, if A and B are also finite dimensional,
this shows cocl (A U B) (cocl denotes convex closure) is compact, convex,
and finite dimensional. In our case let ¥V and W be finite dimensional
subspaces of X such that range (9) © V and range (k) W and de-
fine C' =C;,NV and D} = D;,N W. Let U be a finite dimensional
subspace of X such that range (0) c U and define E}; = E;; N U.
Now define F” = U, Uj-. [eocl (C; U CY U Ej ;) U coel (D U D} U E} ).
By our above remarks, F” is finite union of compact, convex, finite
dimensional sets, and hence an ENR. It is also easy to see that F’'c C,
C’'U D' C F’ and 4(G) U 9(G) U (G) < F’. We thus see that i,.(g, G N
), 47(0, G N F"), and iz (h, G N F”) are defined. Because g(GNF’) c C’
and (G N F)c D, it follows (by the commutativity property) that
10(9, GNC)=1p(9, GNF') and similarly for hA. Thus to show that
t0(9, GNC") = ip(h, GN D'), it suffices to show 1,(g, GNF') =
100, GNF") =ip(h, GNF"). We prove that i,.(g, GNF") =i..(0, GNF"),
the proof for % being the same. Consider the homotopy sg(x) +
1—s)0x),0=s=<1,zeccl(GN EF’"). For zecl (GNEF"), we know that
f(x) e E; ; for some 1, j, so 0(x) € E} ;, g(x) € C/, and sg(x) + (1 — s)f(x) €
cocl [E; ;UC/]CF’. Also, since ¢,(f () — sg(x) — (1—3) 0 (%)) < sq,(f () —
9(®) + (1 — 8)q,(f(x) — 0(x)) <e, and since ¢,(f(x) ~x)=¢, for
xe oG, sg(x) + (1 — s)d(x) = ¢ for zecl(GNF')— GN F'. Thus the
homotopy is permissible and 4..(g9, G N F') = .0, G N F").

DEFINITION. Suppose that Ce %, C C X an letvs, G is an open
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subset of C, and F:cl(G) — C is a continuous map such that f(z) = =
for x€0G. Let {Ci:1 <1 < m} be a covering of C by compact, con-
vex sets C; < C and let g be an admissible approximation with respect
to < f,{C;}>. Let Ci,,1=<1=<n, be any finite dimensional compact
convex sets such that C; c C; and ¢g(G) c U7, C; = C’. Then we de-
fine i(f, G) = ic(9, G N C').

Theorem 1 shows that g exists and that our definition does not
depend on the particular admissible approximation g or the particular
C;. Notice that if C happens to be an ENR, so that i,(f, G) is already
defined, then our definition reduces to the usual. To see this, just con-
sider the homotopy F(z,s) = (1 — s)f(x) + sg(x), zecl(G),0 <s<1.
Since g is an admissible approximation, if f(x) € C;, then g(x) € C;, so that
F(z, s) € C;. Furthermore, condition 1 on g guarantees that F(z, s) =« for
re@G,0=s=<1. It follows that i,(f, G) = i.(9, G), and since g(G) € C’,
the commutativity property implies i.(g, G) = %x.(g, G N C’).

It is now easy to show that the various theorems about the fixed
point index for ENR’s extend to our context.

THEOREM 2. Suppose Ce F#,, G 1is an open subset of C, and
f:el (@) — C is a continuous map such that f(x) # x for x€ 0G. Then
of 1(f, G) %= 0, f has a fized point in G. If S={xeqG: f(x) =2} C
G, U G,, where G, and G, are disjoint open subsets of G, then i,(f, G) =
wo(f, G) + to(f, Go)-

Proof. Suppose i,(f, G) = 0. Since Ce #, there exist compact,
convex sets C;, 1 < ¢ < =, such that C = U=, C;. By Theorem 1, for
any continuous seminorm p and & > 0, there exists an admissible ap-
proximation g with respect to < f, {C;} > such that p(g(z) — f(z)) <e
for zecl (G); and furthemore i,(9, G N C’) = ix(f, G) = 0, where C' =

7. C} and C; are any compact, convex finite dimensional subsets of
C;, such that g(G) — C’. By the usual additivity property there exists
xe G N C' such that g(x) = x, whence p(f(x) — x) < e. It follows that
if, for any continuous seminorm p and ¢ > 0, we define C,, = {x¢
cl (G): p(f(x) — x) < ¢}, C., is a nonempty, compact set. Also, the
collection {C.,: p a continuous, seminorm ¢ > 0} has the finite inter-
section property, since N, C.,,; C C,,, where ¢ = min{e;:1 <1 =< n}
and ¢(x) = max {p;(x):1=< 7 < n}. Thus there exists x,e NC., and
since p(f(x,) — x,) = 0 for all continuous seminorms, f(x,) = x,.

To prove the second part of the theorem, note that f(x) = « for
x€ oG U 0G, U 0G,, so that exists a continuous seminorm p and ¢ > 0
such that p(f(x) — x) = ¢ for x€ 0G U 0G, U 0G,. By Theorem 1, there
exists an admissible approximation g with respect to < f, {C;} > such
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that p(f(x) — ) < ¢ for zecl (G), and we have i,(f, G) = i (9, GNC"),
1o(f, Gi) = (9, G; N C"), as usual, 7 = 1, 2. By the additivity property
for ENR’s, (9, G N C") = ic(g, G, N C") + 10.(9, G. N C").

With the aid of Theorem 2 a slight, but useful generalization of
our previous definition can be given.

DEFINITION. Suppose that Ce #, G is an open subset of C, and
f:G— C is a continuous map such that S = {xe G: f(») = %} is com-
pact. Then we define i,(f, G) = i,(f, V), where V is any open neigh-
borhood of S such that cl (V) c G.

This definition makes sense, for if V, and V, are two open neigh-
borhoods of S above such that cl(V;) C G, define V=V, N V,. Then
if we set U, = V; — el (V)i(f, Vi) — w(f, U)) = 4(f, V), by Theorem
2. Also we have i,(f, U;) = 0, since f has no fixed points in U; and
Theorem 2 would imply f had fixed points in U, if 4.(f, U;) # 0. This
shows i(f, V) = i(f, V).

Henceforth we shall use this generalized definition. It is clear
that Theorem 2 immediately generalizes to this context, the only dif-
ference in hypotheses being that we only assume f is defined on @
and S = {z€ G: f(x) = ¢} is compact.

THEOREM 3. Suppose that Ce F,, G is an open subset of C,I =
[0, 1], the closed unit interval, and F: G x I— C ts a continuous map
such that S = {(z, t)e G X I: F(x, t) = «} is compact. Then if we de-
fine F;: G— C by Fi(x) = F(x, 1), io(Fy, G) = i(F,, G)-

Proof. Define m: G X I — G by n(z,t) = x. It is clear that x is
a continuous map, so n(S) = T is a compact subset of G. Let V be
an open neighborhood of T such that cl(V)c G. Since {F(z,t) —
x: (x, t)e 0V x I} is a compact set not containing 0, there exists a con-
tinuous seminorm p and & >0 such that p(F(z, t) — x) =¢ for (x, t) e
0V x I. Suppose C = Ui, C;, C; compact and convex. By Lemma 2
there exists a continuous, finite dimensional map r: C — C such that
for all ze C, p(r(z) — 2) <¢e and for all 2eC and 1<i<n r()eC,; if
xeC,. We set C" = Ui, cocl »(C;), an ENR, and we define H(zx, t) =
r(F(x, t)) for xecl (V), te I. By definition we have i(F,, G) = i.(F,, V)
and i,(F,, V) = i.(H,, VN ('), since H, is an admissible approximation
with respect to < F, {C;} > and H,(G) < C’, where C’' is of the re-
quired form. Now by the ordinary homotopy property for ENR's,
i (H,, VN C') = io(H, VN C).

COROLLARY. Suppose that Ce #, G is an open subset of C, and
F:clG x [0, 1] is a continuous map such that F(x, t) # x for xeoq,
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0=<t=<1. Then i(F, G) = isF), G).

THEOREM 4. Suppose that Ce F, and f:C— C is a continuous
map. Then H,(C) (singular homology with rational coefficients) is a
finite dimentional vector space for all n and H,(C) = 0 except for finite-
ly many n. Furthermore, if A(f) = Dz (—1)™tr(f «, 1), the Lefschetz
number of f, then A(f) = i.(f, C).

Proof. Since Ce &, suppose C = U, C;, C; compact and convex.
By Lemma 2, there exists a continuous finite dimensional map »: C — C
such that r(x)e C; if xe C;. As before we define C' = |, cocl (C,),
an ENR. Recall that for any ENR E (or in fact any compact, metric
ANR [1]) H,(E) is a finite dimensional vector space and H,(E) =0
except for finitely many #. In our case let us view r as a map from
C to C’ and let 7: C" — C be the inclusion map. Since ir is homotopic
to I, the identity on C, by the homotopy s(ir) + 1 —s8)[,0 =<s < 1,
() n = TuuTsn = Iy . It follows that 4, ,: H,(C") — H,(C) must be
onto, so H,(C) is a finite dimensional vector space and 0 for almost
all n.

To show the second part of the theorem, note that irf is an ad-
missible approximation to < f, {C;} > so by definition we have ¢,(f, C)=
te(rfi, C') = (by the normalization property for ENR’s) A(rf%). Since
irf is homotopic to f (by the homotopy s(irf)(®) + (1 — s)f(x), 0 <
s £ 1), A(f) = A@irf). However, we have tr(@rf)s ) = tr(te (rf)s.n) =
(s ntin) = tr((rf%x,,), by the commutativity property for the
trace operator ¢r on linear operators between finite dimensional vector
spaces. This shows A(rfi) = A(irf) = A(f).

The proof of the commutativity property is a little more involved
than that of Theorems 2-4. First, we need some simple lemmas.

LEMMA 3. Let K be a compact subset of an lectvs X and f: K— Y
a continuous map of K into an letvs Y. Then given any continuous
seminorm q on'Y and € >0, there exists a continuous seminorm p on
X and 6 > 0 such that for all x, ye K with p(x—1y)<é, ¢(f(x)— f(y))<e.

Proof. For each x¢ K, there exists a seminorm p, and 6 > 0
such that if ye K and p,(y — x) < 6., ¢(f (v) — f(x)) < ¢/2. Let N,=
{ye K: p,(y — ®) < 0,/2} an open neighborhood of x in K. The open
sets N, give an open covering of K, and since K is compact there
exists a finite subcovering N,, -+-, N, . Let p(x) = max,;c, {p.,(®)}
and 25 = min,;, {0,,}; of course p is a continuous seminorm. For
convenience let N, = N;, p,, = p;, and d,, = d;. If we take »,yc K
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with p(x — y) < d, we can assume z € N, for some 7. Thus p;(x — x,) <
0:/2 and pi(y — @) = Py — @) + Pi@ — T) = PY — ¥) + Pi(® — ) < 0.
It follows that q(f(x) — f(=;)) < ¢/2 and q(f(y) — f(x;) < &/2, so that
q(f(y) — f(x)) > e.

LEMMA 4. Let K be a compact subset of an lctvs X. Let G be
an open subset of K. Then given any compact subset V C G, there
exists a continuous seminorm p and € > 0 such that {ye K: x€ V with
ply — ) <&} =N, (V)N KCG.

Proof. For each xe V there exists a continuous seminorm p, and
e, > 0 such that {ye K:p,(y—2x) <e,}CG. Let N, ={ye K:p,(y—ax)<
€,/2}. Since K is compact there exists a finite subcovering N, , N,,, - -,
N,, of the open covering {N,} of V. As before we define p(x) =
max, g;<, {P.;(¥)} and 2¢ = min,;, {¢..}. Then if ye N, (V) N K, so that
there exists x€ V such that p(y — x) <e, select 7 such that ze N,,.
Then p(y — ») < ¢ implies p,,(y — 2) < &,,/2, and since p(x — ;) < &,,/2,
0.,(y — @) < &, whence yeG.

THEOREM 5. (Commutativity property). Assume that C,e . %,
C.can letvs X, k=1,2. Let G, < C, be open subsets of C, and let
fi: G, — C; and f: G, — C, be continuous maps. Define H, = f7(G,) and
H, = f;Y(G,) and assume that S, = {x € H: (fof)(x) =1} is compact. Then
S. = {we Hy: (fif2)(x) = a} 1s compact and i, (fofi, H)) = to,(fifo He)-

proof. The fact that S; is compact is immediate, since f: S, — S.,
fii 8 — S, (fif)(@) = « for ze S, and (fi.fo)(y) = y for ye S,.

Let G, and G, be open neighborhoods of S, and S, respectively
such that c¢l(G) c G,. Let H, = {veG:f(x)eG,) and similarly for
H,. It is clear that H; is an open neighborhood of S; and ¢l H; c H;,
so that (fuf)(@) = & for wecl H, — S, and similarly (f.f.)(x) = & for
wecl H, — S,.. By Theorem 2, i, (f.fs, H) = ic(fofs, H,) and similarly
for f.f:» Thus we may as well assume at the start that f; is defined
on ¢l (G;), S, is a compact subset of H, = {x€ G.: fi(x) € G}, S. is a com-
pact subset of H,, (fif)(x) # @, for zecl H — S, and (f.f.)(x) # = for
xecl H,— S,. Let U, be a compact neighborhood of S; such that
U,c H; and let V; be an neighborhood of S; such that cl V; c H,,
f(V)c U, and fu(V))cU,. Theorem 2 implies i,(f.f,, H) = to,(f2f3 V1)
and i,(f.fe, Hy) = 1c,(f.f2, Vo), s0 it is enough to show that i, (fof,, V) =
o, (f1Sey Vo)e

Since (fof)(®) — ¢ # 0 for xecl (H) — V, (a compact set), there
exists a continuous seminorm p, on X, and ¢, > 0 such that »,((f.f)(®)—
x) = ¢, for xecl(H,) — V,. Similarly, there exists a continuous semi-
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norm p, on X, and &,>0 such that p,((f.f:)(x) — z) >¢, for xe ¢l (H,) — V.
By Lemmas 3 and 4 there exist a continuous seminorm ¢, on X, and
6, > 0 such that {ye C;: we U, with q,(y — x) <d.} = N,..,(U)NC,C H,
and for all y,zeecl (G, such that ¢,(y — 2) <0, p:.(fi(¥) — f1(2)) < &/
For the same reasons there exist a continuous seminorm ¢, on X, and
8, > 0 such that N,,,,(U.) N C, C H, and for all y, z€cl(G,) such that
0:(y — 2) <0y, D.(fo(y) —f2(2)) <&,/>- Because C,, C, ¢ F, C,=U,C,,;and C,=
Ur.C.;, C.; and C,; compact, convex sets. By Lemma 2 there
exists a continuous, finite dimensional map 7,: C, — C, such that for all
weC, r(x)eC,; if xeC,;, p(ri(x) — ) <&/s and ¢,(r,(x) — ) <0J,. For
the same reason there exists a continuous finite dimensional map
7y Cy — C, such that for all € C,, r,(v) € C,,; if x € C,, ;, Da(1:(®) — ) < &,/2
and gu(r(x) — x) <d,. As usual we define C; = Ur,coclr(C,;) and
C; = U=, cocl ,(Cs; ;).

We now define two supplementary functions, g, = r.f,|H, and
9: = rfa| Hye Since qy(r.fi(x) — fi(x)) < 6., fi(x) e U, for zeecl V,, and
N,,.:(U:) N C. C H,, we see that g,(cl V) € H,. For the same reasons
we observe that g.(clV,) ¢ H,. If we set 0, = g7'(H;) and 0, = g;*(H,),
the above observations show that ¢l V, < 0, and ¢l V, © 0,. We claim
that (9.9)(x) = « for x€ 0, — V, and (g.9,)(x) # = for 20, — V,. To
prove this for g,9,, recall that for all x € 0, (so ».f,(x) € H, and f,(z) € G)),
Q:(7.f1(x) — fi(x)) < 0.. By the assumption on é, this implies p,(for.f2(x) —
fofi(x)) < &,/., while the assumption on r, guarantees that p,(r for.fi(x) —
farofi(@)) < &/, Thus we see that for xe0, p,(g0.(%) — fofi(x) <&,
and since p,(f2fi(®) — ) = ¢, for xecl H, — V,, it follows that g.9,(x) = «
for xe 0, — V.. The proof for g,g, is the same. This observation shows
that 7,(9:9:, 0,) and % (9.9, V,) are defined and equal and similarly for g,g,.

Our next claim is that i (g, Vi) = %0 (fofs, V). To see this we
consider the homotopy F: cl V,x I—C, defined by F(x, t) = (1 — t)r . fo((1—
Or.fi(@) + tfi(®) + (1 — Orofi(2) + tfi(x)) and we apply Theorem 3.
We have to show that this homotopy is permissible. First note that
for all zeecl(V), fi(x) e U, and q,(r.f,(x) — fi(x)) < 0.. It follows that
(1 — Orofi(w) + tfi(w) € N, .(U) N C. © Hy,e (Of course (1 — t)r.f,(x) +
tfiw)e C,, since if f,(w) e Cy;, r2fi(x) € C,; and hence (1 — t)r.fi(x) +
tfi(x)e Cy; for 0 <t < 1). This shows that fi((1 — t)r.fi(®) + tfi(x)) is
defined for zeecl V, and applying the usual reasoning we see that
F(x,t)eC, for xeecl V,,0 <t < 1. It remains to show that F(z, t) = «
for xedV,,0 <t <1. We have seen above that g,(r.f.(x) — fi(x)) < &,
and it follows that ¢,((1 — &)r.fi(x) + tfi(®)) — fi(®@) < (1 — £)8, < b..
It follows that p,(f:((1 — t)r.fi(x) + tfi(®)) — fofi(®)) < &/, and since
p(ri(y) — y) <&/, for yeC, we conclude that p,(F(z,t) — fofi(x)) <
(1 — t)e, + te/s or p(F(2, t) — fofi(x)) <&, Since p,(fofi(x) — @) = ¢ for
x €0V, our homotopy is permissible and i (fof,, Vi) = %0,(9:9:, V1)- By
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the same reasoning we also find ip,(f.fs, Va) = %0,(0:8: Vo).

To complete our proof it only remains to show that %c,(gg,, Vi) =
%0,(9:9:, V2). However notice that g,9, is an admissible approximation
with respeet to < g¢.g,, {C.,;} > and ¢.g.(V,) < C/, where C/ is of the re-
quired form. By our definition it follows that ¢,(g.9:, V1) =%c(g:9:, V.0
C/). By the same reasoning we also see that i,,(g.9:, V2) = i(6.95, V2N
C)). If we consider h, = ¢,|C!/ N H, and h, = ¢,|C, N H,, it is easy to
see that h:C/ N H,—C,, h:C; N H,—C/!, k7(C; N H;) = 0, N C/ and
hH(C! N H) =0,NC,. Since we have already shown that ¢.g,(x) = @
for €0, — V, and el V, € 0,, we thus see that i,/ (hh, hi'(H. N C;)) is
defined and equals 4,/ (h:h, V. N C/). For the same reasons we see that
to/(ube, h'(H, N CY)) = ig,(hihs, V21 C;).  Since the ordinary commuta-
tivity property implies ic:(h:hs, h7'(H; N C})) = ig)(hihe, h'(H, N CY)), We
are done.

2. In this section we shall define a fixed point index for con-
tinuous maps defined in topological spaces which are homeomorphic to
retracts of spaces Ce . #, The method we shall use is not new, and
we include this treatment for the sake of completeness. The basic
technique of this section seems first to have been explicitly stated in
its essentials by A. Deleanu [5]. A number of other authors, among
them Dold [6], Browder [4], Granas [9] and Nussbaum [16] have also
used variants of the same idea.

We begin with some notation. If D is a compact, Hausdorff space,
we write De & if there exists Ce.#,, a continuous map j: D — C,
and a continuous map 7: C — D such that »j = I, the identity on D.
If G is an open subset of D and f: G — D is a continuous map such that
S ={x e G: f(x) = x} is compact, it is clear that T={r e r(@): (Jfr)(®) =
a2} < r7%(S), and since r*(S) is a compact subset of r7(G), it follows
that T is a compact subset of r*(G). Thus i.,(5fr, r(@)) is defined.
If we write jfr = (5f)(r) and formally try to apply the commutativity
property to r:C— D and jf:G—C, we find that 2,(jfr, r (@) =
ip(rif, G) = i5(f, G). Thus it is natural to try to define i,(f, G) =
(i fr, r(@). Our first theorem shows that this definition is well-
defined.

THEOREM 6. Suppose that De & and for k =1, 2 suppose that
C.e F, and j,: D—C, and r,: C,— D are continuous maps such that
riJs = Ip, the identity on D. Let G be an open subset of D and f:G— D
a continuous map such that S = {xeG: f(x) = x} is compact. Then

Uo,(J.S 71, TH@) = o, (Jef T2, 77(G)).

Proof. Write j.fr. = (Jor)(J.fr.) and define h, = j,r;: C,— C, and
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hy = 3. fr:r7(G) —C,. It is easy to check that A;'(C) = r;*(G) and
T (r7N(@)) = r7(G), so it follows by Theorem 5 that g (k:h,, r7(G)) =
1¢,(hihe, v7(G)). However hoh, = j,fr.jyr, = 5.f7,, so we have the desired
result.

Thus we can define i,(f, G) = i;(jfr, r(G)) (same notation as
before). As immediate consequences of Theorems 2 and 3 we obtain
the following theorems, whose proofs we omit.

THEOREM 7. Suppose that De &, G ts an open subset of D, and
f:G— D is a continuous map such that S = {x e G: f(x) = x} s com-
pact. If i,(f, G) = 0, then f has a fixed point in G. If Sc G, U G,
where G, and G, are disjoint open subsets of G, then i.(f, G)=1.(f, G)+
to(f, Go)

THEOREM 8. Suppose that De &, G is an open subset of D, I =
[0,1], and F: G x I — D is a continuous map such that S = {(z, t)e
G x I F(z, t) = x} s compact. Then ©,(F,, G) = ip(F,, G).

THEOREM 9. Suppose that De # and f: D — D is a continuous
map. Then A(f), the Lefschetz number of f, (singular homology with
rational coefficients) is defined and A(f) = ip(f, D).

Proof. By definition there exist Ce %, and continuous maps
j:D—C and r:C— D such that rj = I,, the identity on D. Since
vy = Ip, r4..: H,(C) — H,(D) is onto and H,(D) is a finite dimensional
vector space and 0 for almost all n. Again by definition 7,(f, D) =
(3 fr, C); and since i,(jfr, C) = A(jfr), it suffices to show A(f) =
A(7fr). However we have A(5f7r) = Duse (—1)"r((7f)%.a7«..) = (by the
properties of trace) >, (—1)"t7 (74 ,u(5F)x.n) = 2inzo (D)™t f s o = A(f).

THEOREM 10. Assume that D,, D,e . , G, and G, are open subsets of
D, and D, respectively, f,: G, — D, and f;: G.— D, are continuous maps.
Let H, = fTY(G,), H, = f7Y(G,), and assume that S, = {x € H,: (fof)(x) = x}
is compact. Then S, = {x € Hy: (f.f2)(®) = o} s compact and 1, (fof,, H,) =
1o, (fuf2y Ho)e

Proof. The same proof as before shows S, is compact. Since
D,e 7,k =1, 2, there exist C, € %, and continuous maps j,: D, — C,
and r.: C, — ; such that »,j, = I,,, k =1,2. We have to show that
o (Gufofiry, YT (HY)) = to,(dufifors, 77 (Hy)).  Define g, = jufiry: 77(Gy) — G,
and g, = 7.for: 774(G,) — C,. It is easy to check that ¢7'(r7'(G.)) =
r7'(H) and ¢;'(r7'(GY) = r7'(H,); also we see that g.g, = j.fofir, and
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9.9: = Jofiforse It follows by Theorem 5 applied to g, and g, that
1:(:'1(.7‘1.7(‘2.](‘17'1, rT'(H)) = ng(jzflfz'rz, 7 (H,))-

REMARK. The method of proof we have used shows that there is
a unique integer-valued function 7,(f, G) (defined for De & ,G an
open subset of D, and f:G— D a continuons map such that {x € G: f(z) =
x} is compact) which satisfies Theorems 7-10. For as we have already
remarked there is a unique such function defined for ENR’s D. The
methods of § 1, using Theorem 1, the homotopy property, and the com-
mutativity property, show that the index function is determined by
its value for ENR’s when D¢ .#,. Finally, we saw in this section
that the commutativity property completely determined our definition
in terms of the index for D e . #,.
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