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ON THE RATIO ERGODIC THEOREM FOR SEMI-GROUPS

H. FoNG AND L. SUCHESTON

For a semi-group I" of positive linear contractions on L,
of a o-finite measure space (X, Y ), strongly continuous
on (0, ), there are two ratio ergodic theorems: one, due
to Chacon and Ornstein, describes the behavior at infinity;
the other one, due to Krengel-Ornstein-Akcoglu-Chacon, de-
scribes the ‘‘local’’ behavior. In the present paper we at-
tempt to generalize these results to the case when the semi-
group is only uniformly bounded. Then the space X decom-
poses into two parts, Y and Z, called the remaining and the
disappearing part, and both ratio theorems are shown to
hold on Y. The ratio theorem at infinity fails on Z.

This generalizes the situation described in the discrete case by
the second-named author, and by A. Ionescn Tulcea and M. Moretz.
We have not studied the “local” behavior of the ratio on Z.

1. Definitions, Let I" = {T,:t = 0} be a semi-group of positive
linear operators in L, of a o-finite measure space (X,.>; p). We
assume that I” is bounded: sup;.,|T.|, < o; and that I" is strongly
continuous on (0, «): i.e., for each fe L, and each s > 0, we have
lim, ., | T.f — T.f], = 0. It is then known (cf. [5], p. 616) that I" is
strongly integrable on every interval [a,8],0 < a < B < o; more
precisely, for each fe L, and 0 < a < 8 <, the integral ﬂTt fdt is
defined and is an element of L,(X,.%; ¢). Hence for each fel,
there is a scalar function T,f(x), measurable with respect to the
product of Lebesgue measure and g, such that for almost all ¢, T f(x),
as a function of z, belongs to the equivalence class T,f([5], p. 686).
Moreover, there is a set E(f), p(E(f)) = 0, dependent on f but in-
dependent of ¢, such that if x¢ E(f) then T,f(x) is integrable on

every finite interval [a, 8] and the integral ﬁTt f(x)dt, as a function
‘5 a
of 2z, belongs to the equivalence class g T.fdt. Thus for each u > 0

and each fe L,, the integral SuTt f(x)d¢, denoted S,f(x), is defined for
every x ¢ E(f). '

All sets introduced in this paper are assumed measurable; all funec-
tions are measurable and extended real-valued. All relations are assumed
to hold modulo sets of y#-measure zero. The indicator function of a set
A is written 1,. We write suppf for the set of points at which the
function f is different from zero. For a set A < X, L,(A4) denotes the
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class of functions f in L,(X) with suppfc A4; A is said to be closed
(under T) if T{L.(A)}c L,(A4).

2. Behavior at infinity. The following Theorem 2.1 is a con-
tinuous parameter version of the Chacon-Ornstein theorem; Theorem 2.1
is included in a result of Berk [3], and was also recently obtained by
Akeoglu and Cunsolo [2]. The following proof shows that the result
is in fact contained in that of [4].

THEOREM 2.1. Let I' = {T,:t = 0} be a semi-group of positive

linear contractions in L, such that I" is strongly continuous on (0, ).
Let f,geL,g=0. Then, as u — o, the ratio

@.1) D.(f, @) = S.f@)/S.o()

converges to a finite limit a.e. on the set

def
Alg) = {w: sup Sug(») > 0} .

Proof. For fe L, let f(x) = S,f(x). For each u > 0, write u =
n + r, where n = [u],0 < r < 1. Writing T for T,, we have

u n—1 (k+1 ntr
SJ=&MW=szﬁHﬂ T, fdt

k=0 n
=EWWﬁﬂmfmw
k=0 0 0
and hence
2.2) S.f@) = 3, TH@) + TS.)@) -
We may assume that f is nonnegative; then 0 < S,f(x) < f(x) and

0 S,9(x) £g(x) ae,, 0 <r<1. Thus, for v sufficiently large, we
have on A(g)

3 Tf(a) 3, T*7()
2.3) = < D(f, 9)(@) £ .

This completes the proof, since the Chacon-Ornstein theorem and
Lemma 2 [4] imply that the first and last terms in (2.3) converge to the
same finite limit on the set {x: > 5, T*g(x) > 0} = A(g).

For a bounded semi-group I, we have the following decompo-
sition of the space X.
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ProPOSITION 2.1. Let I' = {T,: t = 0} be a bounded semi-group of
positive linear operators in L,. Then the space X decomposes into Y
and Z with the following properties: Z is T.-closed for t = 0;

0 % fe L:(Y) implies lim inf ST, fdpe>0;
(2.9) oo
feL(Z) implies lim th | Fldp=0.
t—co

Proof. This result in the discrete parameter case was obtained
by the second author in [11]. To prove the proposition, we apply
the discrete case result to T = T,, obtaining the decomposition X =
Y + Z with the properties

0 % fe L#(Y) implies lim inf ST,, Fdpe >0 ;
2.5) e
feL(Z) implies lim ST,, 1 Flde=0.

Suppose that fe L and lim inf ST, fdp = 0; then given €€ 0, there is

t—oo

an s > 0 such that 0 < STsfdpe < e. For ¢t > s, we have

0 = |Tosap = [T (T.p)ap
STl Tof s esup| Tyl

which shows that lim,... Sthd;z = 0; in view of (2.5), (2.4) is now
proved. That Z is T.-closed for each ¢t = 0 is an easy consequence
of (2.4).

The next proposition permits us to construct a semi-group I” of
positive linear contractions related to I”; the ratio ergodic properties
of I" are then studied via 7.

ProposITION 2.2. Let I' = {T,: t = 0} be a bounded semi-group oy
positive linear operators im L,, strongly continuous on (0, ). Then
there is a function e such that

2.6) ecLi, suppe=Y,Tfe=c¢ for t > 0.

Proof. We may assume that Y ¢ ¢ for otherwise the proposition
is obviously true. Let
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H={heL. T¢h=nh, t>0};
D={1/2"n=0,1,2,--};
G={g:9=f—T.f,feL,reD.

Let sp(G) denote the linear span of G. We first show that H = {0}.
Let he L. be such that Sg-hdp = 0 for every gesp(G). It follows

from g(f— T,f)-h = 0, holding for each fe Ly, re D, that

2.7 Trh =h,reD.

The strong continuity of I" on (0, ) now implies that (2.7) holds
for any > 0. Assume ab contrario that H = {0}; then A = 0, and
sp (G) is dense in L,. Thus given fe L (Y), and ¢ > 0, there is a
function g e sp (G) such that |f — g|, <e. We note that g is a linear
combination of functions of the form f; — T..fs where f;e L, r;e D,
1 < j < m; hence letting » = min {r, r,, ---, 7.}, We have

2.8) lim 0+ 2 Tig| = 0.
Thus
limninf | Trf ], < limnsup nt :g Tif )
< li:nn“1 gTig 1 + &-sup | T,
=c¢-.sup | T,|, -

This contradicts relation (2.4) and the assumption Y +# ¢, since ¢ > 0
is arbitrary and I" is bounded. Now let 0 = he H and write k =
h* — h~, where h* = max (k,0), A~ = —min (2,0). We may assume
h* # 0; otherwise we replace & by —h. We have T/h* = k™ for t >
0. Let A’ =lim, T h*; clearly, 0= h’e L: and, by the monotone
continuity of T} (cf. [9], p. 187), we have T}h' = h' for reD. It
now follows from the strong continuity of I" that T}r' = ' for ¢ >
0. Let 7 be a probability measure equivalent with g, and let s be
the supremum of numbers m(supp #) where h ranges over H™*, the
class of nonnegative functions in H. There exists a sequence of
functions h,c H* with zw(supph,) —s. If ee L{ is a proper linear
combination of the h,’s, and E = suppe, then ec H*', ECY and
w(E) = s. We next show that £ = Y. We note that F is T;*-closed,
t > 0. Indeed, there are functions f, | 1z and constants ¢, > 0 such
that ¢,f, < e. Hence (supp T.f,) C E, and by the monotone conti-
nuity of T/, (supp T;1;) C E. Applying the duality relation we can
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now see that E° = X — K is T,-closed, ¢ > 0. If T/ is the restriction
of T, to L,(E°), then I" = {T/:t = 0} is a semi-group of positive linear
operators in L,, strongly continuous on (0, «). Under [”, E° decom-
poses into sets Y’ and Z’ according to Proposition 2.1. Since E° is

closed under T, for ¢ > 0, we have S Lfdy = th fdy for fe L(E°) and
t > 0. Hence fe L(Z) implies lim, ST{ | f| dpe=1lim, STt | f|dp=0, and

O$feLNY~E)MMESMnmﬁvqu:mMMJﬂﬁm>0.Cm—
sequently, Y=Y — E and Z’' = Z. Thus if E # Y, then Y’ is non-
null, and hence the first part of the proof, with I” replacing I,
shows that there is a function e, 0 % ¢, € LL(E°), and T/*e, = e, t >
0. Since Ti*e, =1, T/ e, we have T/ e, Z ¢,,t > 0. Lete =lim, T e;
then ¢'e H* and (suppe’) N E° is nonnull. Thus e+ ¢ e H* and
w(supp (¢ + ¢’)) > s, which contradicts the definition of s. Hence
suppe = Y and the proposition is proved.

Assume that I" = {T,: ¢t = 0} satisfies the hypothesis of Proposition
2.2. Let e be a solution of (2.6); we may assume that 0 <e <1 on
Y. T, may be extended to a positive linear map on _#Z*, the cone
of nonnegative measurable functions on (X, .%): for each fixed ¢ =
0, if fe.Z*, T.f is defined as lim, T.f, where f,e L, and f, ] f
a.e. The extended operators T, also satisfy the semi-group property
on _Z*; i.e.,

(2'9) Tt+sf = Tt(Tsf)!fe ~//+’ t’ S 2 0 .,
For each t = 0, we define an operator V, on L; by the relation
(2.10) Vif =eT(flle+ 1),

and extend V, by linearity to L,. One shows, as in [11], that I” =
{V.:t = 0} is a family of positive linear contractions in L,. That I”
is a semi-group is a consequence of (2.9), (2.10), and the fact that Z
is T.-closed, ¢t = 0. Let K= {g9:9 = f-e,fe L,}. For a fixed s> 0 and
g=f-ecK,feL, we have

N\
v —V;1=|4( g —-n( g
Vg gh=|e te+1z) ¢ e+lz)

=lele | T(f1p) — T(f 1) |,

which, by the strong continuity of I", tends to zero as ¢—s. The
case of a general ge L(Y) follows by approximation, since K is a
dense subspace of L,(Y) and | V.|, < 1. Finally, because V,g = V,(g9-1;)
for ge L,, we conclude that I” is strongly continuous on (0, ).

2.11)

1
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Theorem 2.1 may now be applied to I": if f'e Lf, g’ e L}, then
lim, ... S:V,f’(x)dt/ S:Vtg'(x)dt

exists a.e. on the set {x: sup,., Sthg’(x)dt> 0}. For arbitrary measur-
0

able nonnegative functions f and g, we write f’ = f-e,9' = g-e. If
f'eLf, ¢ e L}, then for sufficiently large u,

S:th’(x)dt S:e(w)-th(x)dt
S:Vtg'(x)dt - S:e(w)-Ttg(x)dt

(2.12) = D,(f, 9)(x)

def
on Y N A(g), where A(g) = {®: SuD,so S,9(x) > 0}. Thus the last ratio
in (2.12) converges to a finite limit a.e. on the set Y N A(g). The
above discussion is now summarized in the following theorem:

THEOREM 2.2. Let I' = {T,;:t = 0} be a bounded semi-group of
positive linear operators in L,, storongly continuous on (0, «). If f,
g are measuradble functions such that f-e, g-e € L, then lim,_.(D,(f, 9))
exists a.e. on the set Y N A(g).

We say that the ratio theorem holds (for I') on a subset B of
X if whenever fe L, ge L{,lim,_. D, (f, g)(x) exists a.e. on the set
B N A(g); otherwise we say that the ratio theorem fails on B. We
showed that the ratio theorem holds on Y. We now show

THEOREM 2.3. Let I' = {T,:t = 0} be bounded semi-group of posi-
tive linear operators im L, strongly continuodufs on (0, ). If there
is a function ge L (Z) such that the set C(g) = {x: sup,so S.9(x) = o}
is nonnull, then the ratio theorem fails on every monnull subset of

C(9)-

Proof. Theorem 2.3 in the discrete parameter case was given in
[7]; (see also [11] and [6]). The method of proof in [7] extends to
the continuous case. Assume that the ratio theorem holds on a non-
null subset 4 of C(g), where ge L (Z). In particular, lim,_ .D,(f, 9)(x)
exists a.e., on A for every fe L,. Let R be the operator from L,
into _#, the space of real-valued measurable functions on (X, %),
defined by Rf(x) = 1,(x)-lim,_.. D,(f, g)(x). Since S,g(x) — « on A, we
have for each ¢ > 0
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[ T.o@ds
R(T\g)(x) = lim S———
“*“S T.g(@)ds
(2.13) Ou ¢ utt
S T.g(w)ds S T,g(w)ds g T.g(@)ds
= lim | -~ +
b SOng(x)ds SO T.g(x)ds SOTSg(x)ds

v
[

on A. On the other hand, since | T,g|,—0 as ¢t — o, we may choose
a subsequence (T, g) with X7, T, ge L,. Then 0= 37, R(T, 9) =
R, T, 9) < o p-a.e.; hence lim, R(T, g) = 0 p-a.e., but this con-
tradicts (2.13).

3. Local behavior. Akcoglu and Chacon [1] have shown that
for a semi-group I" = {T,:t = 0} of positive linear contractions in
L,(X, .7, 1), there is a decomposition of the space X into an ‘initially
conservative part’, C, and ‘initially dissipative part’, D. The set C
may be defined as {z: S,f(x) > 0 for all « > 0}, where f is any strictly
positive function in L/(X,.% ¢). We note that this decomposition
remains valid for bounded semi-groups. The main result in [1] can
be stated as follows:

THEOREM A. Let I' = {Ty:t=0} be a semi-group of positive
linear contractions wn L,(X, .o p), strongly continuous on (0, ). If
e L,, gf e L, then lim,, , (S,f(x))/(S.9(x)) exists a.e. on the set C{g>0}.

We recall from § 2 that for a bounded semi-group I = {T,: t = 0}
of positive linear operators in L,, strongly continuous on (0, «), we
can construct a semi-group I” = V,:t = 0} of positive linear con-
tractions related to I” defined by (2.10). Theorem A is thus applicable
to I”. Let X=C+ D = C’" + D’ be the initial decompositions corre-
sponding to I" and I” respectively.

Theorem A applied to I” shows that if f'eL, ¢’eL;, then
lim“oguVaf’(m)ds/gung’(x)ds exists a.e. on the set C’' N {g’ > 0}. For
arbitraxo'y measurabole nonnegative functions f and g, we let f’ = f.e,
9 =g-e. If f',9'eL;, then

[Vr@ds ew-|Trwds g 0

S:ng’(x)ds - e(x)-g T,g(x)ds — S.9(@)

3.1)

on the set {x: Sung’(x)ds > 0 for u > 0}, which contains the set C' N
0
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{g' > 0}, as shown in [1], Lemma 2.3. Thus lim,,, (S,f(x))/(S.9(x))
exists a.e., on the set C' N (¢’ > 0}.

It is clear from ¢’ = g-e that {¢ >0} ={g>0NY. We next
show that ¢’ =CNY. Let C be defined in terms of some fixed
function ge L,, g > 0. For each u > 0,

(3.2) S:ng(x)ds - S:T,gy(w)ds + S:ngz(x)ds :

The last integral in (3.2) vanishes a.e. on Y since Z is T,-closed,
s = 0. Hence S T.g(x)ds = S Ty(x)ds >0 on CNY. Let ¢ = gy-e.
0 0

Then Sung'(x)ds = e(x). Sungy(x)ds >0foru>00onCnN Y. This shows
that C’>CN Y. Next, since V,g(x) =0 a.e. on Z for any ge L,
C’ may be obtained as the set {xS V.g@)ds > 0 for u > O} for any

0

ge L} such that g >0 on Y. Let ¢ =g-e. Then ¢ >0 on Y and
hence g V.g'(x)ds > 0on C’,u > 0. Since S V.9 (x)ds = S e(x)- T,g(x)ds,
0 0 0

we conclude that Sung(ac)ds> 0 a.e. on C', 4 >0. Hence C'cCNY.
0
We have proved:

THEOREM 3.1. Let I' = {T,:t = 0} be a bounded semi-group of
positive linear operators in L,, strongly continuwous on (0, ). If f, g
are monnegative measurable functions such that f-e, g-ec L, then
lim,,, (S.f(®))/S.9(x)) exists a.e. on the set {g > 0}NCNY.

Of course, the restriction of the above statement to C is not a
loss of generality, since on D the ratio D, is of the form 0/0. The
local behavior of D, on Z does not seem to be easy to ascertain by
the methods of the present paper.
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