5-DESIGNS IN AFFINE SPACES

W. O. Alltop

Abstract

The n-dimensional affine group over $G F(2)$ is triply transitive on 2^{n} symbols. For $n \geqq 4,4 \leqq k \leqq 2^{n-1}$, any orbit of k-subsets is a $3-\left(2^{n}, k, \lambda\right)$ design. In this paper a sufficient condition that such a design be a 4-design is given. It is also shown that such a 4-design must always be a 5 -design. A 5-design on 256 varieties with block size 24 is constructed in this fashion.

We shall call (Ω, \mathscr{D}) a $t-(v, k, \lambda)$ design whenever $|\Omega|=v, \mathscr{D}$ is a family of k-subsets of Ω and every t-subset of Ω is contained in exactly λ members of \mathscr{D}. The design is nontrivial provided \mathscr{D} is a proper subfamily of Σ_{k}, the family of all k-subsets of Ω. If G is a nontrivial t-ply transitive group acting on Ω, then an orbit of k subsets under G yields a t-design. The design is nontrivial if G is not k-homogeneous (transitive on unordered k-subsets). The first known 5-designs arose from orbits under the quintuply transitive Mathieu groups M_{12} and M_{24}. Other 5-designs on 12, 24, 36, 48 and 60 varieties have been discovered (see [2; 3; 4]). In [1] a 5-design on $2^{n}+2$ varieties is constructed for every $n \geqq 4$. Here we shall discuss 5 -designs on 2^{n} varieties, giving one example for $n=8$.

Let Ω be an n-dimensional vector space over $G F(2), n \geqq 4$. Let L be the linear group $G L(n, 2)$ acting doubly transitively on $\Omega-\{0\}$ and T the group of translations $t_{\alpha}: \omega \rightarrow \omega+\alpha$. The group $A=\langle L, T\rangle$ is the triply transitive affine group on Ω. Let Σ_{4}, Σ_{5} denote the families of 4 -, 5 -subsets of Ω respectively. $\left(\Omega, \mathscr{S}_{0}\right)$ is a 3 - $\left(2^{n}, 4,1\right)$ design where \mathscr{S}_{0} is the family of quadruples $\left\{\omega_{i}\right\}$ satisfying

$$
\omega_{1}+\omega_{2}+\omega_{3}+\omega_{4}=0
$$

\mathscr{S}_{0} is the orbit of affine planes in $\Omega . \mathscr{S}_{1}$ is also an orbit, where $\mathscr{S}_{1}=\Sigma_{4}-\mathscr{S}_{0}$. Thus, A decomposes Σ_{4} into only two orbits. From the design parameters of $\left(\Omega, \mathscr{S}_{0}\right)$ one establishes that

$$
\begin{aligned}
& \left|\mathscr{S}_{0}\right|=\frac{1}{4}\binom{2^{n}}{3} \\
& \left|\mathscr{S}_{1}\right|=\left(2^{n-2}-1\right)\binom{2^{n}}{3} .
\end{aligned}
$$

Suppose $Q \in \mathscr{S}_{0}$. The stabilizer of Q in A is transitive on $\Omega-Q$. Thus, \mathscr{T}_{0} is an orbit under A, where \mathscr{T}_{0} consists of those members of Σ_{5} which contain a member of \mathscr{S}_{0}. Now suppose $R \in \Sigma_{5}-\mathscr{T}_{0}$.

Clearly there exists a translate of R of the form

$$
R_{0}=\left\{0, \omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}\right\} .
$$

Since R_{0} contains no member of \mathscr{S}_{0}, the ω_{i} 's must be linearly independent in Ω considered as a vector space. Since L is transitive on linearly independent quadruples in $\Omega-\{0\}$, it follows that A must be transitive on the family \mathscr{T}_{1}, where $\mathscr{T}_{1}=\Sigma_{5}-\mathscr{I}_{0}$. Therefore, A also decomposes Σ_{5} into only two orbits. From our knowledge of $\left|\mathscr{S}_{0}\right|$ we can deduce that

$$
\begin{aligned}
& \left|\mathscr{T}_{0}\right|=\left(2^{n}-4\right)\left|\mathscr{S}_{0}\right|, \\
& \left|\mathscr{T}_{1}\right|=\frac{1}{5}\left(2^{n}-4\right)\left(2^{n}-8\right)\left|\quad \mathscr{S}_{0}\right| .
\end{aligned}
$$

Geometrically \mathscr{T}_{0} consists of the 5 -subsets which generate 3 -dimensional affine subspaces of Ω, while the members of \mathscr{I}_{1} generate 4dimensional subspaces. This classification of orbits in Σ_{4} and Σ_{5} will provide the information needed to investigate 4 - and 5 -designs which arise from orbits under A.

Suppose Δ is a k-subset of Ω and let \mathscr{D} denote the orbit of Δ under A. Let σ_{i}, τ_{i} denote the number of members of $\mathscr{S}_{i}, \mathscr{T}_{i}$ contained in Δ respectively, $i=0,1$. Let λ_{i}, μ_{i} denote the number of members of \mathscr{D} containing a fixed member of $\mathscr{S}_{i}, \mathscr{T}_{i}$ respectively, $i=0,1$. If $\lambda_{0}=\lambda_{1}\left(\mu_{0}=\mu_{1}\right)$, then (Ω, \mathscr{D}) is a 4 -design (5 -design). The following equations relating the $\sigma_{i}, \tau_{i}, \lambda_{i}, \mu_{i}$ are the result of straightforward counting arguments:

$$
\begin{align*}
& \sigma_{i}|\mathscr{D}|=\lambda_{i}\left|\mathscr{S}_{i}\right| \tag{1}\\
& \tau_{i}|\mathscr{D}|=\mu_{i}\left|\mathscr{T}_{i}\right| \tag{2}\\
& \tau_{0}=\sigma_{0}(k-4) . \tag{3}
\end{align*}
$$

From (1) and the fact that

$$
\left|\mathscr{S}_{0}\right| /\left|\mathscr{S}_{1}\right|=1 /\left(2^{n}-4\right)
$$

we see that (Ω, \mathscr{D}) is a 4 -design if and olyn if

$$
\begin{equation*}
\sigma_{1}=\sigma_{0}\left(2^{n}-4\right) . \tag{4}
\end{equation*}
$$

Likewise from (2) and the fact that

$$
\left|\mathscr{T}_{0}\right| /\left|\mathscr{T}_{1}\right|=5 /\left(2^{n}-8\right)
$$

we see that (Ω, \mathscr{D}) is a 5 -design if and only if

$$
\begin{equation*}
\tau_{1}=\tau_{0}\left(2^{n}-8\right) / 5 \tag{5}
\end{equation*}
$$

Since $\sigma_{1}=\binom{k}{4}-\sigma_{0}$ and $\tau_{1}=\binom{k}{5}-\tau_{0}$, we can use (3) to express $\sigma_{1}, \tau_{0}, \tau_{1}$ in terms of σ_{0} and k. Substituting accordingly for σ_{1}, τ_{0}, τ_{1} in (4) and (5) we obtain

$$
\binom{k}{4}-\sigma_{0}=\sigma_{0}\left(2^{n}-4\right)
$$

$$
\binom{k}{5}-\sigma_{0}(k-4)=\sigma_{0}(k-4)\left(2^{n}-8\right) / 5 .
$$

After simplifying the preceding equations we see that both (4') and (5') are equivalent to

$$
\begin{equation*}
\sigma_{0}=\binom{k}{4} /\left(2^{n}-3\right) \tag{6}
\end{equation*}
$$

We have in effect proved the following
Theorem. (Ω, \mathscr{D}) is a 5-design whenever (Ω, \mathscr{D}) is a 4-design. A necessary and sufficient condition for this to take place is that $\sigma_{0}=\binom{k}{4} /\left(2^{n}-3\right)$.

The first thing to note is that $2^{n}-3$ must divide $\binom{k}{4}$ for such a 5 -design to exist. This is not possible for $6 \leqq k \leqq 2^{n-1}$ if $2^{n}-3$ is a prime power. Therefore, the first feasible value of n is eight. For $n=8$, the values of $k \leqq 2^{7}$ for which $2^{n}-3$ divides $\binom{k}{4}$ are 23,24 , $25,46,47$ and 69. We pursue the case $n=8, k=24$.

Our theorem tells us that for $|\Delta|=24,(\Omega, \mathscr{D})$ is a 5 -design provided $\sigma_{0}=42$. We must select a 24 -subset Δ which contains exactly 42 members of \mathscr{S}_{0}. One example of such a Δ is the following. Let $\left(u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, w_{1}, w_{2}\right)$ be a basis for the vector space Ω. We define 3 -dimensional vector subspaces of Ω :

$$
\begin{aligned}
& U_{0}=\left(u_{1}, u_{2}, u_{3}\right) \\
& V_{0}=\left(v_{1}, v_{2}, v_{3}\right) \\
& W_{0}=\left(u_{1}+v_{1}, u_{2}+v_{2}, u_{3}+v_{3}\right) .
\end{aligned}
$$

Now let $\Delta=U \cup V \cup W$, where

$$
\begin{aligned}
U & =U_{0}+w_{1} \\
V & =V_{0}+w_{2} \\
W & =W_{0}+\left(w_{1}+w_{2}\right)
\end{aligned}
$$

For this Δ it is clear that $\sigma_{0} \geqq 42$ since each of the 3 -dimensional
affine subspaces U, V, W contains 14 members of \mathscr{S}_{0}. Suppose Δ contains additional members of \mathscr{S}_{0}. There exists $Q \in \mathscr{S}_{0}$ such that Q meets at least two members of $\{U, V, W\}$. In order to decrease the number of cases to be considered we investigate the action of the stabilizer of Δ on $\{U, V, W\}$. Let $x, y \in L$ be defined by

$$
\begin{aligned}
& x:\left\{\begin{array}{l}
u_{i} \rightarrow v_{i} \rightarrow\left(u_{i}+v_{i}\right) \rightarrow u_{i}, \quad 1 \leqq i \leqq 3 \\
w_{1} \rightarrow w_{2} \rightarrow\left(w_{1}+w_{2}\right) \rightarrow w_{1}
\end{array}\right. \\
& y:\left\{\begin{array}{l}
u_{i} \rightarrow v_{i} \rightarrow u_{i}, \quad 1 \leqq i \leqq 3 \\
w_{1} \rightarrow w_{2} \rightarrow w_{1} .
\end{array}\right.
\end{aligned}
$$

Letting x^{*}, y^{*} denote the action of x, y on $\{U, V, W\}$, we have

$$
\begin{array}{ll}
x^{*}: & U \rightarrow V \rightarrow W \rightarrow U \\
y^{*}: & U \rightarrow V \rightarrow U, \quad W \rightarrow W .
\end{array}
$$

Hence, $\left\langle x^{*}, y^{*}\right\rangle$ acts as the symmetric group S_{3} on $\{U, V, W\}$. We must only consider the cases where the partition of Q induced by (U, V, W) is of the form $(2,2,0),(3,1,0)$ or $(2,1,1)$. These three cases are easily seen to be impossible, so no such Q exists. It follows that $\sigma_{0}=42$, and we have a 5 -design on 256 varieties with blocks of size 24.

One wonders in how many affine spaces Ω such 5 -designs exist. Since 143 divides $2^{n}-3$ whenever $n \equiv 28(\bmod 60)$, there are infinitely many values of n for which $2^{n}-3$ is not a prime power. For fixed k, n, with $6 \leqq k \leqq 2^{n-1}$, let us consider the problem heuristically. Suppose we select Δ from Σ_{k} randomly, each member of Σ_{k} having probability $1 /\binom{2^{n}}{k}$ of being selected. Now σ_{0} is a random variable on the probability space Σ_{k}. The expectation of σ_{0} is

$$
E=\binom{k}{4} /\left(2^{n}-3\right)
$$

A 5-design of the type under consideration exists if and only if σ_{0} achieves its expectation in Σ_{k}. When E is an integer, it does not seem unreasonable that σ_{0} would achieve its expectation.

The author has not investigated the construction of designs in affine spaces over $G F(2)$ by using more than one orbit under A.

References

1. W. O. Alltop, An infinite class of 5-designs, to appear.
2. E. F. Assmus, Jr., and H. F. Mattson, Jr., New 5-designs, J. Combinatorial Theory, 6 (1969), 122-151.
3. D. R. Hughes, On t-designs and groups, Amer. J. Math., 87 (1965), 761-778.
4. Vera Pless, On a new family of symmetry codes and related new 5-designs, Bull. Amer. Math. Soc., 75 (1969), 1339-1342.

Received February 16, 1970. Part of the results in this paper were presented to a meeting of Navy Mathematicians at Colorado State University, Fort Collins, Colorado, August 20, 1970.

Michelson Laboratories, China Lake, California

