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HOMOLOGY OF A GROUP EXTENSION

YAsuTosHI NOMURA

A topological method has been used by Ganea to derive
the homology exact sequence of a central extension. In the
same spirit a homology exact sequence is constructed for a
group extension with certain homological restrictions. An
immediate consequence is an exact sequence of Kervaire which
is of some significance in algebraic K-theory.

Let

be an extension of groups. Each element g of G induces an automor-
phism 6(9): N— Nviaf(g)n = gng™* for ne N. In what follows we
denote by H.(G) the kth homology group of G with coefficients in the
additive group of integers Z, on which G operates trivially. Let I,
denote the subgroup of H,(N) generated by 6(g).c — ¢, ce H, (N ), 9€
G. We say that G operates trivially on H,(N) if I", = {0}. Let N X
G be the semi-direct product of N and G with respect to the opera-
tion 6(g) and let P, denote the kernel of z,: H(N X G) — H(G), where
n: N X G— G is given by n(n, g) = g. We shall prove

THEOREM 1. Supposen =1o0r H(N)=0 for 1< k=<n—-1 (n=2).
Then there exists an exact sequence

Pzn —_— HZn(G) — HZn(Q) - Pm—1 e Pn+1 Hn+1(G)
— H,,,(Q) — H,(N)/I",— H,(G) —> H,(Q) —> 0.

Further assume G operates trivially on H,(N) and that H(Q) = 0.
Then there exists an exact sequence

H,.(N)—> H,.(G) — H,..(Q) —> H,(N) — H,(G) —> H,(Q) —0 .

We note that the first part of Theorem 1 for n = 1 is just Theo-

rem 3.1 of [7].
Now we call an epimorphism f: H— H' central if Ker f is con-

tained in the center of H. Let

(2) 1iiii
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be a commutative diagram of groups and homomorphisms such that
the rows and columns are exact.

THEOREM 2. In the situation (2) suppose N — N and Q—Q are
central, H(N) = H(Q) = H(N) = 0 and that G operates trivially on
H,(N). Then there exists an exact sequence

H(N) — Hy(G) —> Hy(@Q) —> H,(N) H,(G) H(Q —0.

As a special case of Theorem 2 we obtain Prop. 2 of Kervaire [6] (cf.

[1]).

THEOREM 3. In (1) let @ be the additive group of integers Z and
let e be an element of G which maps to +1e Z. Then there exists a
long exact sequence
1 - 0(e)x
- — H(N) ——— H(N) — H\(G) — H,_,(N)
+— H(N)— H(G) — Z— 0.

1. Topological preliminaries. In this section two lemmas are
established which play a vital role in the proofs of Theorems. We
work in the category of based spaces which have the homotopy type
of a CW complex. We use the notation \/ for path-composition. The
multiplication of elements of fundamental groups are indicated by
juxtaposition. Given a map f: X — Y we denote by f. the homomor-
phism induced on fundamental groups.

Given a map p: £ — B, let p: £, — E denote the fibre of p, that
is, B, = {(x, 8 € E X B'; 5(0) = *, (1) = p(x)} with p(x, 8) = @, where
» stands for the base point. 2B, the space of loops on B, acts on F,
through /: OB x E,— E,, (o, (x, 8)) = (x, ® \V 8). We define

#: H(QB) ® H.(E,) — HJ(E,)
to be the composite
H(QB)Q H.(E,) © H(2B)® H.(E,) — H,(2B x E,) LR H.(E,) ,

where the middle arrow comes from Kiinneth theorem and H,(2B)
may be identified with the subring of the integral group ring of 7,(B)
generated by w — 1, w e 7,(B).

Now let p be a Hurewicz fibration with fibre inclusion i: F'— E.
As shown by Eckmann-Hilton [2; Prop. 3.10 and Theorem 3.11], the
above yt determines an action of 2B on F, which is denoted by the
same letter p. We say that = (B) operates trivially on H,(F') if the
above I is trivial.

Let S denote the suspension functor and let C, denote the cofibre
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of p, that is, C, = BU,CE (with (z, 1) and p(x) identified). Let
0:SF—C,

denote the canonical embedding defined by o(x, t) = (x, t) e CE, x e F,
0<t=<1.

LEMMA 1.1. Suppose that B tis path-connected and that F is
homology (n — 1)-connected, n = 1. Then o is homology (n + 1)-con-
nected and the sequence

H(QB) @ Hy(F) s H/(F) —2 H,,,(C,) — 0

18 exact.

Proof. According to Ganea [3; Theorem 1.1], the extension r: C;—
B of p to E U CF has the fibre equivalent to @B+«F, which is n-con-
nected. Thus the argument in [3; Theorem 2.2] is valid in our case,
hence there is an exact sequence

H(QB+F) 2% H(SF) -2 H.(C,) — H,_(QB+F)

for k < n + 1, where H: 2B«F — SF' is the map obtained from g by
the Hopf construction. It is immediate that H, coincides with f# on
H,..(2B«F) = H(2B) ® H,(F), which proves the assertion.

COROLLARY 1.2. In addition to the assumption of Lemma 1.1,
suppose further mw(B) operates trivially on H,(F') and that H,(B) = 0.
Then o 1s homology (n -+ 2)-conmected.

Proof. Since C; is the double mapping cylinder of = —F, E,
r: C; < B is homotopically equivalent to the Whitney join

p,®p: PBOE— B

of the path-fibration p,: PB— Band p ([5]. For the notation see [7]).
It follows from the construction of a lifting function of Whitney join
(See Hall [5; §3]) that, in p,P p, 2B operates on QBxF through
v: OB X (2B+F') — QB+« F' as the join of the actions in each fibration;
thus, v(ia, 1 —t)Btx) =1 — t)(BVa™) P ta, ) for a, e 2B, z¢€
F,0<t¢t<1. Consequently, ¥ is given by

Ha-D)®B-DR®e)=B-Da'-1)®c

under the assumption fg{((@ — 1) ®¢) = 0.
Applying Lemma 1.1 to p; @ p, we get an exact sequence

A(QB)® H,(2B+F) — H,,(2B+F) — H,./(C,p,e,) — 0 .
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Since 7,(B) = [7(B), 7,(B)] by assumption and since the identity

aga”B™ — 1= (apa™ — (" = 1) + (@ — D(Ba™ = 1)
— B —Dla-1)—-(E-HE" -1

holds in the integral group ring of 7, (B) we may infer that ¥ is epic.
This implies that H,.:(C,yep) = H,ato(C,) = 0. Since C, is of the same
homotopy type as C, by [3; Prop. 1.6], we see that o is homology
(m + 2)-connected.

Next consider an extension of groups (1). We may construct a
Hurewicz fibration p: E — B of aspherical spaces with fibre inclusion

1: F'— F so that the sequence
1 — 7,(F) — 7,(B) =2 7,(B) — 1

coincides with the given extension (1). We shall relate 6(g), to the
action Z of n,(B) on H,(F).

As in the beginning of this section, we may replace ¢: F'— E by
0:E,—~E. Let geG = n(E) and let 6(g) denote a map (&, =) —
(E,, =) induced by 6(g). Take a: (I, [) — (E, ) which represents g.
Define a path 4(e) in E, joining (x, *) with (x, pa V =) by setting

4()(t) = (a(?), ;) »
_ pa(2s) 0=2st
as) = {

¢ defines a map p(a): (E,, =) — (H,, (x, pa \V *)) given by
)z, B) = ppa; (x, B) = (x, pa vV B) -
Since E, has a non-degenerate base point [8], we obtain a map
H): (B, ) — (B, *)
which is 4(a)-homotopic to p(«).

LEMMA 1.5. There is a based homotopy between p(a) and 6(g).

Proof. It suffices to prove that, for each loop w: (I, I) — (E,, ),
we have u(a),0 = 0(g),w. We see that A(a) \V pa)o vV )™ (I, I) —
(E,, *) is 4(c)-homotopic to p(a)w and that p(d(a) V pa)w V d(a)™) =
aV oo\ o', Thus, by [8; Lemma 7.3.2(b)],

Ma)w = A(a) V ey V Ae)™

and, since pf(g)w = a VV p® \/ a~* by definition and since p, is monic,
it follows that 4(a) V pa@)w V 4(a)™* ~ 6(g)w. These yield pa)w =~
0(g)w, as desired.
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COROLLARY 1.4. f((p,a—1)Qc)=0(g)c—c for ce H(F'), ac n(E).
For, we have

A((pe — 1) @) = pu(pyx, ©) — ¢ = )6 — ¢
= a)c — ¢ = 0(g).c — ¢ by Lemma 1.3
= 0(g)sc — ¢

2. Proof of Theorem 1. Let p: E— B be a fibration with fibre
inclusion ¢: ' — E which is used in the proof of Lemma 1.3. Introduce
the following commutative diagram

: Sp,
K2 E—C,—> SKE25 SE

(3) n o |p |7 lszs Js»

E-2.B C, SE 2%, SB

in which the square in the left corner is the pull-back of » by », %
is induced by it and the rows are Puppe sequences for p, and p.
Since FxF' is 2n-connected, it follows that y is homology (2n + 1)-
connected (cf. [7; 1.1 and 1.2)).

Since p, admits a cross-section, H(C,,), identified with a subgroup
of H, (K), coincides with the kernel of p,.. H, (K)— H,_,(E). As
shown in [7; 8.1], n(K)= N X G and, under this isomorphism,
pu(n, g) = g, which implies that Ker p. = P,_,.

Observe that the composite SF —— C, — SE coincides with S,.
Lemma 1.1 applied to p yields an exact sequence

H(2B) ® H,(F) _*_, H,,(SF) =5 C,.,(C,) — 0

and bijections o,: H,(SF') — H,(C,) for k < n. It follows from Corollary
1.4 that Im ff = I, hence H,,,(C,) = H,(N)/I",. Thus we obtain an
exact sequence stated in Theorem 1, which completes the proof of the
first part of Theorem 1.

Further assume H,(B) = 0 and that I, = 0; then, by Corollary
1.2, 0,: H,s(SF) — H,.,(C,) is epic, hence there is an exact sequence

H,.(F)—H,(K)—H,,(B—H,(F)—H,(E)—H,(B)—0 .
which yields the second part of Theorem 1.

3. Proof of Theorem 2. First we shall prove

LEmMMA 3.1. (Kervaire [6; Lemma 3]) Let1—>N—>G—Q —1 be
a central extemsion of groups. If H(G) =0 for 1L <k £ n, then the
sequence
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H,.A(G) — H,.«(Q) — H,:«N, 2; Z) — H,..(G)
E— n+1(Q) — H,.,(N, 2, Z)

is exact. In particular, if H(G) = 0, then H,(G) — Hy(Q) is epic and
H,(G) — Hy(Q) is momnic.

Proof. Let F-"5E-2, B be as in the proof of Lemma 1.3. As
shown by Ganea [4], » is homotopically equivalent to the principal
fibration E, — B induced by a map ¢: B— C = K(N, 2). Let ¢:C,—
C denote the canonical extensin of ¢ to BU,CE. By [3; Theorem
1.1] the fibre of & is equivalent to ExQC, which is (n + 2)-connected.
This implies that ¢ is (» + 3)-connected. Thus, by replacing H,(C,)
for k=< n + 2 by H,(C) in the Puppe sequence of p, there is obtained
the desired exact sequence. The second part follows from the fact
that H,(N, 2; Z) = 0.

We now proceed to the proof of Theorem 2. Let N denote the
kernel of G — @ in (2). Then the diagram (2) may be enlarged to the
following

AN

N
— G —Q
S

N—G—Q.

22— 2

—

Note that ¢ and 7 are epic, hence central with H,(N) = 0.
Introduce the commutative diagram

H{(N) — Hy(G) — Hy(Q) — Hy(N)

(4) |2 [
Hy(Q) — H(N) — Hy(G) — HyQ) — 0

where (., is epic and 7, is monic by Lemma 3.1. Hence it follows
from naturality of action that G operates trivially on Hy(N). Applying
Theorem 1 to the extensions 1 -N—-G—->Q—1 and 1 >N—G—
Q — 1, we see that the rows of (4) are exact. Since &,: Hy(N) — Hy(N)
is epic by Lemma 3.1, we may conclude that the sequence stated in
Theorem 2 is exact.

4. Proof of Theorem 3. We may take the circle S* for B in

the fibration F—— E 2> B which realizes (1). We use the Wang
sequence for p which is found in Spanier [8; 8.5.5]. There are fibre
homotopy equivalences
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fiC8 X F— p™(C_8, 9+: p™(C:S") — C.8" X F

such that f_|y, x F' is homotopic to the map (¥, #) —x and g.|F
is homotopic to the map x — (¥, %), where y, denotes the base point
corresponding to {0} e S° and where C_S" and C.S° are southern and
northern hemi-circles. The clutching function m: S° x F— F is de-
fined by

9+f-(e}, @) = (fe}, m({e}, #)) , e=0,1.

Then m|{0} x F' is homotopic to the map ({0}, ) — x.
Now Spanier has shown that the top row is exact in the following
diagram

oo Hy (B)——H, (C_S" % F, 8 F) 2% H ()" H(E)

i

H,. (SF)

.
Heo(C.) — 22— H,,,(S8(S° X F))
Ty

H,. (SS° \/ S°*F)

I

which is commutative up to sign, where s is the suspension isomor-
phism, 7,:S’ X F'— F' the projection, ¢ the map pinching F to a point
and T: S8’V S°*F — C., denotes the homotopy equivalence defined in
[7; 2.2]; thus, mqT|SS’ is homotopic to the map (g, t) — (m(e, =), t)
and mgT|S’+F is homotopic to the map (1 — ) e @ te — (mie, x), t).
Hence, using the homeomorphism 4: SF — S+ F' given by

(1 — 25){0} @ 253 0<2s=<1

Mo D) = s D @@ -2 1=2s=2,

we see that mgTh induces the homomorphism

—Sm);
Hk_H(SF) (1__/”&_)*_) -ch+1(SF) ’

where m: F— F' denotes the map given by m(x) = m({1}, ).
Consequently, the proof of Theorems 3 will be completed if the
following assertion is proved:

(5) My = 0(6)*

Proof of (5). Observe that +1e¢Z is represented by a loop ®
in SS"=C,8°U C_S" which emanates at {0}. By considering g¢.f_
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followed by a fiber homotopy inverse f, of g., we infer easily that
w is lifted to a path @,, depending continuously on « € F, with @,(1) =
x and such that the map x — @,(0) is homotopic to the map x — m(x).
Hence the definition of the action of the fibration and Lemma 1.3
imply the assertion (5).
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