HOMOLOGY OF A GROUP EXTENSION

Yasutoshi Nomura

A topological method has been used by Ganea to derive the homology exact sequence of a central extension. In the same spirit a homology exact sequence is constructed for a group extension with certain homological restrictions. An immediate consequence is an exact sequence of Kervaire which is of some significance in algebraic K-theory.

Let

$$(1) 1 \longrightarrow N \longrightarrow G \longrightarrow Q \longrightarrow 1$$

be an extension of groups. Each element g of G induces an automorphism $\theta(g)\colon N\to N$ via $\theta(g)n=gng^{-1}$ for $n\in N$. In what follows we denote by $H_k(G)$ the kth homology group of G with coefficients in the additive group of integers Z, on which G operates trivially. Let Γ_k denote the subgroup of $H_k(N)$ generated by $\theta(g)_*c-c$, $c\in H_k(N)$, $g\in G$. We say that G operates trivially on $H_k(N)$ if $\Gamma_k=\{0\}$. Let $N\times G$ be the semi-direct product of N and G with respect to the operation $\theta(g)$ and let P_k denote the kernel of $\pi_*\colon H_k(N\times G)\to H_k(G)$, where $\pi\colon N\times G\to G$ is given by $\pi(n,g)=g$. We shall prove

THEOREM 1. Suppose n=1 or $H_k(N)=0$ for $1 \le k \le n-1$ $(n \ge 2)$. Then there exists an exact sequence

$$P_{2n} \longrightarrow H_{2n}(G) \longrightarrow H_{2n}(Q) \longrightarrow P_{2n-1} \longrightarrow \cdots \longrightarrow P_{n+1} \longrightarrow H_{n+1}(G)$$

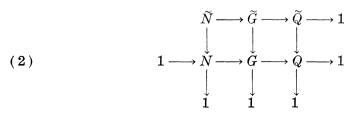
 $\longrightarrow H_{n+1}(Q) \longrightarrow H_n(N)/\Gamma_n \longrightarrow H_n(G) \longrightarrow H_n(Q) \longrightarrow 0$.

Further assume G operates trivially on $H_n(N)$ and that $H_1(Q) = 0$. Then there exists an exact sequence

$$H_{n+1}(N) \longrightarrow H_{n+1}(G) \longrightarrow H_{n+1}(Q) \longrightarrow H_n(N) \longrightarrow H_n(G) \longrightarrow H_n(Q) \longrightarrow 0$$
.

We note that the first part of Theorem 1 for n = 1 is just Theorem 3.1 of [7].

Now we call an epimorphism $f: H \to H'$ central if Ker f is contained in the center of H. Let



be a commutative diagram of groups and homomorphisms such that the rows and columns are exact.

THEOREM 2. In the situation (2) suppose $\widetilde{N} \to N$ and $\widetilde{Q} \to Q$ are central, $H_1(\widetilde{N}) = H_1(\widetilde{Q}) = H_1(N) = 0$ and that G operates trivially on $H_2(N)$. Then there exists an exact sequence

$$H_3(\widetilde{N}) \longrightarrow H_3(\widetilde{G}) \longrightarrow H_3(\widetilde{Q}) \longrightarrow H_2(N) \longrightarrow H_2(G) \longrightarrow H_2(Q) \longrightarrow 0$$
.

As a special case of Theorem 2 we obtain Prop. 2 of Kervaire [6] (cf. [1]).

THEOREM 3. In (1) let Q be the additive group of integers Z and let e be an element of G which maps to $+1 \in Z$. Then there exists a long exact sequence

$$\cdots \longrightarrow H_k(N) \xrightarrow{1-\theta(e)_*} H_k(N) \longrightarrow H_k(G) \longrightarrow H_{k-1}(N)$$

$$\cdots \longrightarrow H_1(N) \longrightarrow H_1(G) \longrightarrow Z \longrightarrow 0.$$

1. Topological preliminaries. In this section two lemmas are established which play a vital role in the proofs of Theorems. We work in the category of based spaces which have the homotopy type of a CW complex. We use the notation \vee for path-composition. The multiplication of elements of fundamental groups are indicated by juxtaposition. Given a map $f: X \to Y$ we denote by f_z the homomorphism induced on fundamental groups.

Given a map $p: E \to B$, let $\rho: E_p \to E$ denote the fibre of p, that is, $E_p = \{(x, \beta) \in E \times B^r; \beta(0) = *, \beta(1) = p(x)\}$ with $\rho(x, \beta) = x$, where * stands for the base point. ΩB , the space of loops on B, acts on E_p through $\mu: \Omega B \times E_p \to E_p$, $\mu(\omega, (x, \beta)) = (x, \omega \vee \beta)$. We define

$$\widetilde{\mu}$$
: $\widetilde{H}_0(\Omega B) \otimes H_k(E_p) \longrightarrow H_k(E_p)$

to be the composite

$$\widetilde{H}_{\scriptscriptstyle 0}(\varOmega B) igotimes H_{\scriptscriptstyle k}(E_{\scriptscriptstyle p}) \subset H_{\scriptscriptstyle 0}(\varOmega B) igotimes H_{\scriptscriptstyle k}(E_{\scriptscriptstyle p}) \longrightarrow H_{\scriptscriptstyle k}(\varOmega B imes E_{\scriptscriptstyle p}) \stackrel{\mu_*}{\longrightarrow} H_{\scriptscriptstyle k}(E_{\scriptscriptstyle p})$$
 ,

where the middle arrow comes from Künneth theorem and $\tilde{H_0}(\Omega B)$ may be identified with the subring of the integral group ring of $\pi_1(B)$ generated by $\omega - 1$, $\omega \in \pi_1(B)$.

Now let p be a Hurewicz fibration with fibre inclusion $i: F \to E$. As shown by Eckmann-Hilton [2; Prop. 3.10 and Theorem 3.11], the above μ determines an action of ΩB on F, which is denoted by the same letter μ . We say that $\pi_1(B)$ operates trivially on $H_k(F)$ if the above $\tilde{\mu}$ is trivial.

Let S denote the suspension functor and let C_p denote the cofibre

of p, that is, $C_p = B \bigcup_p CE$ (with (x, 1) and p(x) identified). Let

$$\sigma: SF \longrightarrow C_p$$

denote the canonical embedding defined by $\sigma(x, t) = (x, t) \in CE$, $x \in F$, $0 \le t \le 1$.

LEMMA 1.1. Suppose that B is path-connected and that F is homology (n-1)-connected, $n \ge 1$. Then σ is homology (n+1)-connected and the sequence

$$\widetilde{H}_0(\Omega B) \otimes H_n(F) \xrightarrow{\widetilde{\mu}} H_n(F) \xrightarrow{\sigma_*} H_{n+1}(C_p) \longrightarrow 0$$

is exact.

Proof. According to Ganea [3; Theorem 1.1], the extension $r: C_i \rightarrow B$ of p to $E \cup CF$ has the fibre equivalent to $\Omega B*F$, which is n-connected. Thus the argument in [3; Theorem 2.2] is valid in our case, hence there is an exact sequence

$$H_k(\Omega B*F) \xrightarrow{H_*} H_k(SF) \xrightarrow{\sigma_*} H_k(C_p) \longrightarrow H_{k-1}(\Omega B*F)$$

for $k \leq n+1$, where $H: \Omega B*F \to SF$ is the map obtained from μ by the Hopf construction. It is immediate that H_* coincides with $\tilde{\mu}$ on $H_{n+1}(\Omega B*F) \cong \tilde{H}_0(\Omega B) \otimes H_n(F)$, which proves the assertion.

COROLLARY 1.2. In addition to the assumption of Lemma 1.1, suppose further $\pi_1(B)$ operates trivially on $H_n(F)$ and that $H_1(B) = 0$. Then σ is homology (n + 2)-connected.

Proof. Since C_i is the double mapping cylinder of $* \leftarrow F \xrightarrow{i} E$, $r: C_i \leftarrow B$ is homotopically equivalent to the Whitney join

$$p_B \oplus p : PB \oplus E \longrightarrow B$$

of the path-fibration $p_B: PB \to B$ and p ([5]. For the notation see [7]). It follows from the construction of a lifting function of Whitney join (See Hall [5; §3]) that, in $p_B \oplus p$, ΩB operates on $\Omega B*F$ through $\nu: \Omega B \times (\Omega B*F) \to \Omega B*F$ as the join of the actions in each fibration; thus, $\nu(\alpha, (1-t)B \oplus tx) = (1-t)(\beta \vee \alpha^{-1}) \oplus t\mu(\alpha, x)$ for $\alpha, \beta \in \Omega B, x \in F, 0 \le t \le 1$. Consequently, $\tilde{\nu}$ is given by

$$\widetilde{
u}((lpha-1)\otimes((eta-1)\otimes c))=(eta-1)(lpha^{-1}-1)\otimes c$$

under the assumption $\tilde{\mu}((\alpha-1)\otimes c)=0$.

Applying Lemma 1.1 to $p_B \oplus p$, we get an exact sequence

$$\widetilde{H}_0(\Omega B) \bigotimes H_{n+1}(\Omega B * F) \stackrel{\widetilde{\flat}}{\longrightarrow} H_{n+1}(\Omega B * F) \longrightarrow H_{n+2}(C_{p_R \oplus p}) \longrightarrow 0$$
.

Since $\pi_1(B) = [\pi_1(B), \pi_1(B)]$ by assumption and since the identity

$$\begin{split} \alpha\beta\alpha^{{\scriptscriptstyle -1}}\beta^{{\scriptscriptstyle -1}} - 1 &= (\alpha\beta\alpha^{{\scriptscriptstyle -1}} - 1)(\beta^{{\scriptscriptstyle -1}} - 1) + (\alpha - 1)(\beta\alpha^{{\scriptscriptstyle -1}} - 1) \\ &- (\beta\alpha^{{\scriptscriptstyle -1}} - 1)(\alpha - 1) - (\beta - 1)(\beta^{{\scriptscriptstyle -1}} - 1) \end{split}$$

holds in the integral group ring of $\pi_1(B)$ we may infer that $\tilde{\nu}$ is epic. This implies that $H_{n+2}(C_{r_B\oplus p})\cong H_{n+2}(C_r)=0$. Since C_{σ} is of the same homotopy type as C_r by [3; Prop. 1.6], we see that σ is homology (n+2)-connected.

Next consider an extension of groups (1). We may construct a Hurewicz fibration $p: E \to B$ of aspherical spaces with fibre inclusion $i: F \to E$ so that the sequence

$$1 \longrightarrow \pi_{\scriptscriptstyle 1}(F) \xrightarrow{i_\sharp} \pi_{\scriptscriptstyle 1}(E) \xrightarrow{p_\sharp} \pi_{\scriptscriptstyle 1}(B) \longrightarrow 1$$

coincides with the given extension (1). We shall relate $\theta(g)_*$ to the action $\tilde{\mu}$ of $\pi_1(B)$ on $H_*(F)$.

As in the beginning of this section, we may replace $i: F \to E$ by $\rho: E_p \to E$. Let $g \in G = \pi_1(E)$ and let $\overline{\theta(g)}$ denote a map $(E_p, *) \to (E_p, *)$ induced by $\theta(g)$. Take $\alpha: (I, \dot{I}) \to (E, *)$ which represents g. Define a path $\Delta(\alpha)$ in E_p joining (*, *) with $(*, p\alpha \lor *)$ by setting

$$egin{align} arDelta(lpha)(t) &= (lpha(t), \, arlpha_t) \;, \ arlpha_t(s) &= egin{align} plpha(2s) & 0 \le 2s \le t \ plpha(t) & t \le 2s \le 2 \;. \end{pmatrix} \end{split}$$

 μ defines a map $\mu(\alpha): (E_p, *) \to (E_p, (*, p\alpha \vee *))$ given by

$$\mu(\alpha)(x, \beta) = \mu(p\alpha; (x, \beta)) = (x, p\alpha \vee \beta)$$
.

Since E_p has a non-degenerate base point [8], we obtain a map

$$\overline{\mu(\alpha)}$$
: $(E_p, *) \longrightarrow (E_p, *)$

which is $\Delta(\alpha)$ -homotopic to $\mu(\alpha)$.

LEMMA 1.5. There is a based homotopy between $\overline{\mu(\alpha)}$ and $\overline{\theta(g)}$.

Proof. It suffices to prove that, for each loop $\omega: (I, \dot{I}) \to (E_p, *)$, we have $\overline{\mu(\alpha)_*}\omega = \overline{\theta(g)_*}\omega$. We see that $\Delta(\alpha) \vee \mu(\alpha)\omega \vee \Delta(\alpha)^{-1}: (I, \dot{I}) \to (E_p, *)$ is $\Delta(\alpha)$ -homotopic to $\mu(\alpha)\omega$ and that $\rho(\Delta(\alpha) \vee \mu(\alpha)\omega \vee \Delta(\alpha)^{-1}) = \alpha \vee \rho\omega \vee \alpha^{-1}$. Thus, by [8; Lemma 7.3.2(b)],

$$\overline{\mu(\alpha)}\omega \simeq \Delta(\alpha) \vee \mu(\alpha)\omega \vee \Delta(\alpha)^{-1}$$

and, since $\rho \overline{\theta(g)} \omega = \alpha \vee \rho \omega \vee \alpha^{-1}$ by definition and since ρ_{\sharp} is monic, it follows that $\Delta(\alpha) \vee \mu(\alpha)\omega \vee \Delta(\alpha)^{-1} \simeq \overline{\theta(g)}\omega$. These yield $\overline{\mu(\alpha)}\omega \simeq \overline{\theta(g)}\omega$, as desired.

COROLLARY 1.4. $\tilde{\mu}((p_{\sharp}\alpha-1)\otimes c)=\theta(g)_{*}c-c$ for $c\in H_{k}(F)$, $\alpha\in\pi_{1}(E)$. For, we have

$$\begin{split} \widetilde{\mu}((p_{\sharp}\alpha-1)\otimes c) &= \underline{\mu}_*(p_{\sharp}\alpha,c) - c = \underline{\mu}(\alpha)_*c - c \\ &= \overline{\mu}(\alpha)_*c - c = \overline{\theta}(g)_*c - c \end{split} \qquad \text{by Lemma 1.3} \\ &= \theta(g)_*c - c \end{split}$$

2. Proof of Theorem 1. Let $p: E \to B$ be a fibration with fibre inclusion $i: F \to E$ which is used in the proof of Lemma 1.3. Introduce the following commutative diagram

$$(3) \hspace{1cm} K \xrightarrow{p_1} E \longrightarrow C_{p_1} \longrightarrow SK \xrightarrow{Sp_1} SE$$

$$p_2 \downarrow \qquad \downarrow p \qquad \downarrow \chi \qquad \downarrow Sp_2 \qquad \downarrow Sp$$

$$E \xrightarrow{p} B \longrightarrow C_p \longrightarrow SE \xrightarrow{Sp} SB$$

in which the square in the left corner is the pull-back of p by p, χ is induced by it and the rows are Puppe sequences for p_1 and p. Since F*F is 2n-connected, it follows that χ is homology (2n+1)-connected (cf. [7; 1.1 and 1.2]).

Since p_1 admits a cross-section, $H_k(C_{p_1})$, identified with a subgroup of $H_{k-1}(K)$, coincides with the kernel of p_{1^*} : $H_{k-1}(K) \to H_{k-1}(E)$. As shown in [7; 3.1], $\pi_1(K) \cong N \cong G$ and, under this isomorphism, $p_{1^*}(n,g) = g$, which implies that Ker $p_{1^*} = P_{k-1}$.

Observe that the composite $SF \xrightarrow{\sigma} C_p \longrightarrow SE$ coincides with S_I . Lemma 1.1 applied to p yields an exact sequence

$$\widetilde{H}_0(\Omega B) \otimes H_n(F) \xrightarrow{\widetilde{\mu}} H_{n+1}(SF) \xrightarrow{\sigma_*} C_{n+1}(C_p) \longrightarrow 0$$

and bijections $\sigma_*: H_k(SF) \to H_k(C_p)$ for $k \leq n$. It follows from Corollary 1.4 that $\operatorname{Im} \tilde{\mu} = \Gamma_k$, hence $H_{n+1}(C_p) \cong H_n(N)/\Gamma_n$. Thus we obtain an exact sequence stated in Theorem 1, which completes the proof of the first part of Theorem 1.

Further assume $H_1(B)=0$ and that $\Gamma_n=0$; then, by Corollary 1.2, $\sigma_*: H_{n+2}(SF) \to H_{n+2}(C_p)$ is epic, hence there is an exact sequence

$$H_{n+1}(F) {\longrightarrow} H_{n+1}(E) {\longrightarrow} H_{n}(F) {\longrightarrow} H_n(E) {\longrightarrow} H_n(E) {\longrightarrow} 0 \text{ .}$$

which yields the second part of Theorem 1.

3. Proof of Theorem 2. First we shall prove

LEMMA 3.1. (Kervaire [6; Lemma 3]) Let $1 \to N \to G \to Q \to 1$ be a central extension of groups. If $H_k(G) = 0$ for $1 \le k \le n$, then the sequence

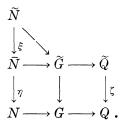
$$H_{n+2}(G) \longrightarrow H_{n+2}(Q) \longrightarrow H_{n+2}(N, 2; Z) \longrightarrow H_{n+1}(G)$$

 $\longrightarrow H_{n+1}(Q) \longrightarrow H_{n+1}(N, 2; Z)$

is exact. In particular, if $H_1(G) = 0$, then $H_3(G) \to H_3(Q)$ is epic and $H_2(G) \to H_2(Q)$ is monic.

Proof. Let $F \xrightarrow{i} E \xrightarrow{p} B$ be as in the proof of Lemma 1.3. As shown by Ganea [4], p is homotopically equivalent to the principal fibration $E_{\phi} \to B$ induced by a map $\phi \colon B \to C = K(N, 2)$. Let $\tilde{\phi} \colon C_{p} \to C$ denote the canonical extensin of ϕ to $B \cup_{p} CE$. By [3; Theorem 1.1] the fibre of $\tilde{\phi}$ is equivalent to $E*\Omega C$, which is (n+2)-connected. This implies that $\tilde{\phi}$ is (n+3)-connected. Thus, by replacing $H_{k}(C_{p})$ for $k \leq n+2$ by $H_{k}(C)$ in the Puppe sequence of p, there is obtained the desired exact sequence. The second part follows from the fact that $H_{3}(N, 2; Z) = 0$.

We now proceed to the proof of Theorem 2. Let \overline{N} denote the kernel of $\widetilde{G} \to \widetilde{Q}$ in (2). Then the diagram (2) may be enlarged to the following



Note that ξ and η are epic, hence central with $H_{\scriptscriptstyle 1}(\bar{N})=0$. Introduce the commutative diagram

$$H_3(ar{N}) \longrightarrow H_3(ar{G}) \longrightarrow H_3(ar{Q}) \longrightarrow H_2(ar{N})$$

$$\downarrow \zeta_* \qquad \qquad \downarrow \gamma_* \qquad \qquad \downarrow \gamma_* \qquad \qquad \qquad H_3(Q) \longrightarrow H_2(N) \longrightarrow H_2(G) \longrightarrow H_2(Q) \longrightarrow 0$$

where ζ_* is epic and η_* is monic by Lemma 3.1. Hence it follows from naturality of action that \widetilde{G} operates trivially on $H_2(\overline{N})$. Applying Theorem 1 to the extensions $1 \to \overline{N} \to \widetilde{G} \to \widetilde{Q} \to 1$ and $1 \to N \to G \to Q \to 1$, we see that the rows of (4) are exact. Since $\xi_* \colon H_3(\widetilde{N}) \to H_3(\overline{N})$ is epic by Lemma 3.1, we may conclude that the sequence stated in Theorem 2 is exact.

4. Proof of Theorem 3. We may take the circle S^i for B in the fibration $F \xrightarrow{i} E \xrightarrow{p} B$ which realizes (1). We use the Wang sequence for p which is found in Spanier [8; 8.5.5]. There are fibre homotopy equivalences

$$f_{-}: C_{-}S^{0} \times F \longrightarrow p^{-1}(C_{-}S^{0}), g_{+}: p^{-1}(C_{+}S^{0}) \longrightarrow C_{+}S^{0} \times F$$

such that $f_-|y_0 \times F$ is homotopic to the map $(y_0, x) \to x$ and $g_+|F$ is homotopic to the map $x \to (y_0, x)$, where y_0 denotes the base point corresponding to $\{0\} \in S^0$ and where C_-S^0 and C_+S^0 are southern and northern hemi-circles. The clutching function $m: S^0 \times F \to F$ is defined by

$$g_+f_-(\{\varepsilon\}, x) = (\{\varepsilon\}, m(\{\varepsilon\}, x))$$
 , $\varepsilon = 0, 1$.

Then $m \mid \{0\} \times F$ is homotopic to the map $(\{0\}, x) \rightarrow x$.

Now Spanier has shown that the top row is exact in the following diagram

$$egin{aligned} \cdots \longrightarrow & H_{k+1}(E) \longrightarrow & H_{k+1}(C_-S^{\scriptscriptstyle 0} imes F, S^{\scriptscriptstyle 0} imes F) \stackrel{m_*\partial}{\longrightarrow} & H_k(F) \stackrel{i_*}{\longrightarrow} & H_k(E) \longrightarrow \cdots \ & \cong \left \lceil s
ight. \ & H_{k+1}(SF)
ight. \ & \left \lceil m_*
ight. \ & \left \lceil H_{k+1}(S(S^{\scriptscriptstyle 0} imes F))
ight. \ & \left \lceil T_*
ight. \ & \left \lceil H_{k+1}(SS^{\scriptscriptstyle 0} imes F)
ight. \end{aligned}$$

which is commutative up to sign, where s is the suspension isomorphism, $\pi_z: S^0 \times F \to F$ the projection, q the map pinching F to a point and $T: SS^0 \vee S^0*F \to C_{\pi_z}$ denotes the homotopy equivalence defined in [7; 2.2]; thus, $mqT|SS^0$ is homotopic to the map $(\varepsilon, t) \to (m(\varepsilon, *), t)$ and $mqT|S^0*F$ is homotopic to the map $(1-t) \in \bigoplus tx \to (m(\varepsilon, x), t)$. Hence, using the homeomorphism $h: SF \to S^0*F$ given by

$$h(x, s) = \begin{cases} (1 - 2s)\{0\} \bigoplus 2sx & 0 \le 2s \le 1 \\ (2s - 1)\{1\} \bigoplus (2 - 2s)x & 1 \le 2s \le 2 \end{cases}$$

we see that mqTh induces the homomorphism

$$H_{k+1}(SF) \xrightarrow{(1-S\overline{m})_*} H_{k+1}(SF)$$
,

where $\bar{m}: F \to F$ denotes the map given by $\bar{m}(x) = m(\{1\}, x)$.

Consequently, the proof of Theorems 3 will be completed if the following assertion is proved:

$$\bar{m}_* = \theta(e)_*$$

Proof of (5). Observe that $+1 \in Z$ is represented by a loop ω in $SS^0 = C_+S^0 \cup C_-S^0$ which emanates at $\{0\}$. By considering g_+f_-

followed by a fiber homotopy inverse f_+ of g_+ , we infer easily that ω is lifted to a path $\tilde{\omega}_x$, depending continuously on $x \in F$, with $\tilde{\omega}_x(1) = x$ and such that the map $x \to \tilde{\omega}_x(0)$ is homotopic to the map $x \to \bar{m}(x)$. Hence the definition of the action of the fibration and Lemma 1.3 imply the assertion (5).

REFERENCES

- 1. H. Bass, K₂ and symbols, Lecture Notes in Math. 108, Springer-Verlag, Berlin-Heidelberg-New York, 1969.
- 2. B. Eckman and P. J. Hilton, Operators and cooperators in homotopy theory, Math. Ann., 141 (1960), 1-21.
- 3. T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv., 39 (1965), 295-322.
- 4. T. Ganea, Homologie et extensions centrales de groupes, C. R. Acad. Sci. Paris, 266 (1968), 556-558.
- 5. I. M. Hall, The generalized Whitney sums, Quart. J. Math. Oxford Ser. (2), 16 (1965), 360-384.
- 6. M. A. Kervaire, *Mulitiplicateurs de Schur et K-theorie*, Essays on topology and related topics, Springer-Verlag. Berlin-Heidelberg-New York, 1970.
- 7. Y. Nomura, The Whitney join and its dual, Osaka J. Math., 7 (1970), 353-373.
- 8. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.

Received March 10, 1971.

COLLEGE OF GENERAL EDUCATION, OSAKA UNIVERSITY