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HOMOLOGY OF A GROUP EXTENSION

YASUTOSHI NOMURA

A topological method has been used by Ganea to derive
the homology exact sequence of a central extension. In the
same spirit a homology exact sequence is constructed for a
group extension with certain homological restrictions. An
immediate consequence is an exact sequence of Kervaire which
is of some significance in algebraic iΓ-theory.

Let

( 1 ) 1 >N-+ G >Q >1

be an extension of groups. Each element g of G induces an automor-

phism θ(g): N -^> Nviaθ(g)n = gng"1 for neN. In what follows we

denote by Hk{G) the fcth homology group of G with coefficients in the

additive group of integers Z, on which G operates trivially. Let Γk

denote the subgroup of Hk(N) generated by θ(g)*c — c, c e Hk(N), g e

G. We say that G operates trivially on Hk(N) if Γk = {0}.~~Let Nx

G be the semi-direct product of N and G with respect to the opera-

tion θ{g) and let Pk denote the kernel of π*: Hk(N x G) —• Hk(G), where

π: N x G —> G is given by π(n, g) = g. We shall prove

THEOREM 1. Suppose n = 1 or Hk{N) = 0 for 1 ^ k ^ n — 1 (n^
Then there exists an exact sequence

P2n > H2n(G) > H2n(Q) > P 2 n-i > >Pn+ί > Hn+1(G)

> Hn+1(Q) > Hn(N)/Γn > Hn(G) > Hn(Q) > 0 .

Further assume G operates trivially on Hn{N) and that H^Q) = 0.

Then there exists an exact sequence

Hn+ι(N) > Hn+1(G) > Hn+1(Q) > Hn(N) > Hn(G) > Hn{Q) > 0 .

We note t h a t the first part of Theorem 1 for n = 1 is just Theo-

rem 3.1 of [7].

Now we call an epimorphism / : R—>Hr central if Ker / is con-

tained in the center of H. Let
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be a commutative diagram of groups and homomorphisms such that
the rows and columns are exact.

THEOREM 2. In the situation (2) suppose N-+N and Q —> Q are
central, H^N) — H^Q) = H^N) = 0 and that G operates trivially on
H2(N). Then there exists an exact sequence

> HΛ(Q) > H2(N) > H2(G) > H2(Q) > 0 .

As a special case of Theorem 2 we obtain Prop. 2 of Kervaire [6] (cf.

THEOREM 3. In (1) let Q be the additive group of integers Z and
let e be an element of G which maps to +le Z. Then there exists a
long exact sequence

> Hk(N) - - ^ 5 Hk(N) > Hk{G) > HUN)

> H^N) > fli(G) > Z > 0 .

1* Topological preliminaries* In this section two lemmas are
established which play a vital role in the proofs of Theorems. We
work in the category of based spaces which have the homotopy type
of a CW complex. We use the notation V for path-composition. The
multiplication of elements of fundamental groups are indicated by
juxtaposition. Given a map / : I - > Γ w e denote by /# the homomor-
phism induced on fundamental groups.

Given a map p:E—>B, let ρ:Ep—>E denote the fibre of p, that
is, Ep = {(x, β) e E x B1; /9(0) = *, /5(1) = p(x)} with p(x, β) = x, where
* stands for the base point. ΩB, the space of loops on B, acts on Ep

through μ: ΩB x Ep—> Ep, μ(ω, (x, β)) = (x, ω V /3). We define

fi: H0(ΩB) (x) Hk(Ep) > Hk(Ep)

to be the composite

H0(ΩB)(g)Hk(Ep) c HQ{ΩB)®Hk{Ep) > Hk(ΩB x Ep) -^U Hk{Ep) ,

where the middle arrow comes from Kiinneth theorem and HQ(ΩB)
may be identified with the subring of the integral group ring of π^B)
generated by ω — 1, o) e π^B).

Now let p be a Hurewicz fibration with fibre inclusion i:F-+E.
As shown by Eckmann-Hilton [2; Prop. 3.10 and Theorem 3.11], the
above μ determines an action of ΩB on F, which is denoted by the
same letter μ. We say that ^(JB) operates trivially on Hk{F) if the
above μ is trivial.

Let S denote the suspension functor and let Cp denote the cofibre
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of p, that is, Cp = B\JPCE (with (x, 1) and p(x) identified). Let

σ:SF >CP

denote the canonical embedding defined by σ(x, t) = (x, t) e CE, x e F,
0 £ t ^ 1.

LEMMA 1.1. Suppose that B is path-connected and that F is
homology (n — l)-connected, n ^ 1. Then σ is homology (n + ^-con-
nected and the sequence

H0(ΩB) (x) Hn(F) - ί U Hn{F) - ^ * Hn+1(Cp) > 0

is exact.

Proof. According to Ganea [3; Theorem 1.1], the extension r: d—>
B of p to E U CF has the fibre equivalent to ΩB*F, which is ^-con-
nected. Thus the argument in [3; Theorem 2.2] is valid in our case,
hence there is an exact sequence

Hk(ΩB*F) - ^ > Hk(SF) - ^ U Hk(Cp) > Hk^(ΩB*F)

for k <; n + 1, where H: ΩB*F-+SF is the map obtained from μ by
the Hopf construction. It is immediate that H* coincides with μ on
Hn+1(ΩB*F) ~ Ho(ΩB) (x) Hn(F), which proves the assertion.

COROLLARY 1.2. In addition to the assumption of Lemma 1.1,
suppose further π^B) operates trivially on Hn{F) and that H^B) = 0.
Then σ is homology (n + ^-connected.

Proof. Since Ĉ  is the double mapping cylinder of * +— F > E,
r: Ci+— B is homotopically equivalent to the Whitney join

pB@p:PB@E >B

of the path-fibration pB: PB—+B and p ([5]. For the notation see [7]).
It follows from the construction of a lifting function of Whitney join
(See Hall [5; §3]) that, in pB 0 p, ΩB operates on ΩB*F through
v: ΩB x (ΩB*F) —• ΩB*F as the join of the actions in each fibration;
thus, v(a, (1 - ί)S© tx) = (1 - t)(β V or1) 0 tμ(a, x) for a, β e ΩB, x e
F, 0 ̂  t ^ 1. Consequently, v is given by

v((a — 1) (x) (08 - 1) (x) c)) = (β — l)(a~L - 1) (x) c

under the assumption /?((α — 1) (x) c) = 0.
Applying Lemma 1.1 to pB 0 p, we get an exact sequence

Hn+1(ΩB*F) — Hn+1(ΩB*F) > Hn+2(CPBφp) > 0 .



198 Y. NOMURA

Since πx{B) = [π^B), 7̂ (2?)] by assumption and since the identity

aβa~ιβ~ι - 1 = {aβcc1 - l)(β~ι - 1) + (a - l){βa~ι - 1)

- (/3a:-1 - l)(α - 1) - (β - lX/T1 - 1)

holds in the integral group ring of π^B) we may infer that ΰ is epic.
This implies that Hn+2(CPB®P) = Hn+2(Cr) = 0. Since Cσ is of the same
homotopy type as Cr by [3; Prop. 1.6], we see that σ is homology
(n + 2)-connected.

Next consider an extension of groups (1). We may construct a
Hurewicz fibration p:E—+B of aspherical spaces with fibre inclusion
i: F' —• E so that the sequence

1 > πx(F) -±* π,(E) - ^ π^B) , 1

coincides with the given extension (1). We shall relate θ(g)* to the
action μ of π^B) on H*(F).

As in the beginning of this section, we may replace i: F-+ E by
p: Ep —> E. Let geG = π^E) and let θ(g) denote a map (Ep, *) - ^

(Ep, *) induced by 0(0). Take a: (I, ί) —> (i?, *) which represents #.
Define a path Λ(α:) in Ep joining (*, *) with (*, pa V *) by setting

Δ{a)(t) = (a(t), at) ,

(pa(2s) 0 ^ 2s ^ ί
α ί ( δ ) = ( t ^ 2β ^ 2 .

μ defines a map μ(a): (Ep, *) —> (EP, (*, pa V *)) given by

μ(a)(x, β) = μ(pa; (x, β)) = (x, pa V β) .

Since Ep has a non-degenerate base point [8], we obtain a map

~ ~ ) : (Ep, *) > (Ep, *)

which is A(a)-homotopic to μ(a).

LEMMA 1.5. There is a based homotopy between μ(a) and θ(g).

Proof. It suffices to prove that, for each loop ω: (I, ί) —* (Ep, *),
we have μ{a)$ω = θ(g)&). We see that zί(α) V μ(a)ω V ^(α:)"1: (J, /)
(-Ep, *) is J(α)-homotopic to μ(a)ω and that p{Δ(a) V μ(α)ω V
a V pco V a"1. Thus, by [8; Lemma 7.3.2(b)],

μ(a)ω ~ A(a) V μ(a)ω V

and, since ρθ(g)ω = a V po) V a~ι by definition and since ft is monic,
it follows that Δ(a) V μ{a)ω V //(α)"1 ^ Έ{g)ω. These yield
θ(g)ωy as desired.
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COROLLARY 1.4. μ((p$cc—1) (x)c)=θ{g)*c —c for c e Hk(F), a e π^E).
For, we have

, c) - c = μ(<*)*c - c

= μ{a)*c — c = θ(g)*c — c by Lemma 1.3

- c

2* Proof of Theorem 1* Let p: E-+ B be a fibration with fibre
inclusion i: F'—• E which is used in the proof of Lemma 1.3. Introduce
the following commutative diagram

Ύf v 777 /*i v Qf Ύf v Qf 77T

( 3 ) ft| | P |z \SP2 \sP

p

in which the square in the left corner is the pull-back of p by p, χ
is induced by it and the rows are Puppe sequences for pL and p.
Since F*F is 2%-connected, it follows that χ is homology (2n + 1)-
connected (cf. [7; 1.1 and 1.2]).

Since p1 admits a cross-section, Hk(CPl)9 identified with a subgroup
of Hjc-^K), coincides with the kernel of p^: H^K) —> Hk^{E). As
shown in [7; 3.1], πx{K) = N x G and, under this isomorphism,
Pi$(w<, 9) — Qy which implies that Ker p^ = Pk^.

Observe that the composite SF - ^ Cp • SE coincides with SΣ.
Lemma 1.1 applied to p yields an exact sequence

H0(ΩB) (x) Hn{F) J^ Hn+ί(SF) ^ - > Cn+1(Cp) > 0

and bisections σ*: Hk{SF) —• Hk(Cp) for k^n. It follows from Corollary
1.4 that Im μ = Γk, hence Hn+1(Cp) = Hn(N)/Γn. Thus we obtain an
exact sequence stated in Theorem 1, which completes the proof of the
first part of Theorem 1.

Further assume H^B) = 0 and that Γn = 0; then, by Corollary
1.2, σ*: Hn+2(SF) —»Hn+2(CP) is epic, hence there is an exact sequence

Hn+1(F) >Hn+1(E) >Hn+ι(B) >Hn(F) >Hn(E) >Hn{B) >0 .

which yields the second part of Theorem 1.

3* Proof of Theorem 2* First we shall prove

LEMMA 3.1. (Kervaire [6; Lemma 3]) Let 1-^N-+G~+Q-^1 be
a central extension of groups. If Hk(G) = 0 for 1 ^ k ^ n, then the
sequence
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Hn+2(G) > Hn+2(Q) > Hn+2(N, 2; Z) > Hn+1(G)

> HU+1(Q) > Hn+1(N, 2; Z)

is exact. In particular, if HX{G) = 0, then H3(G) —> H3(Q) is epic and

H2(G) —> H2(Q) is monic.

Proof. Let F —1—> E - ^ B be as in the proof of Lemma 1.3. As

shown by Ganea [4], p is homotopically equivalent to the principal

fibration Eφ—> B induced by a map φ\B—^C — K(N, 2). Let φ: Cp —»

C denote the canonical extensin of φ to B\JPCE. By [3; Theorem

1.1] the fibre of φ is equivalent to E*ΩC, which is (n + 2)-connected.

This implies t h a t φ is (n + 3)-connected. Thus, by replacing Hk(Cp)

for k ^ n + 2 by Hk(C) in t h e Puppe sequence of p, there is obtained

the desired exact sequence. The second part follows from the fact

t h a t HZ{N9 2; Z) = 0.

We now proceed to the proof of Theorem 2. Let N denote the

kernel of G —• Q in (2). Then the diagram (2) may be enlarged to the

following

N

\
N >G >Q

V

N >G >Q.

Note that ξ and rj are epic, hence central with H^N) = 0.
Introduce the commutative diagram

H3(N) > H3(G) > HS(Q) > Ht(N)

( 4 )

HS(Q) > Ht(N) > Ht(G)

where ζ* is epic and r)* is monic by Lemma 3.1. Hence it follows

from natura l i ty of action t h a t G operates trivially on H2(N). Applying

Theorem 1 to the extensions 1—•JV--*G—*Q—>1 and 1 —• N —> G —•

Q —• 1, we see t h a t the rows of (4) are exact. Since ζ#: H3(N) —> H3(N)

is epic by Lemma 3.1, we may conclude t h a t the sequence stated in

Theorem 2 is exact.

4* Proof of T h e o r e m 3* We may take the circle Sι for B in

the fibration F—^E-^B which realizes (1). We use the Wang
sequence for p which is found in Spanier [8; 8.5.5]. There are fibre
homotopy equivalences
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/_: C_S° x F g+: C+S° x F

such that f-\y0 x F is homotopic to the map (y0, x) —* x and g+ \ F
is homotopic to the map x —> (y0, x), where yQ denotes the base point
corresponding to {0} e S° and where C_S° and C+S° are southern and
northern hemi-circles. The clutching function m: S° x F—* F is de-
fined by

g+f4{e}> x) = ({e}, }, α?)) , ε = 0, 1 .

Then m\{0} x F is homotopic to the map ({0}, x) —>x.
Now Spanier has shown that the top row is exact in the following

diagram

Hk+ι(SF)

Hk+ί(S(S° x F))

T*

Hk+1(SS° V S°*F)

which is commutative up to sign, where s is the suspension isomor-
phism, τr2:S° x F—>F the projection, q the map pinching F to a point
and T: SS° V S°*F—>Cπ2 denotes the homotopy equivalence defined in
[7; 2.2]; thus, mqT\SS° is homotopic to the map (ε, t) —> (m(ε, *), £)
and mqT\S°*F is homotopic to the map (1 — t) e @tx—> (m(ε, a?), ί).
Hence, using the homeomorphism h: SF-+S°*F given by

h(x, s) =
(1 - 2s) {0} 0 2sx

(2s - 1){1} 0 (2 - 2s)x

0 ^ 2s ^ 1

1 ^ 2s ^ 2 ,

we see that mqTh induces the homomorphism

where m: F —> F denotes the map given by m(x) = m({l}, x).
Consequently, the proof of Theorems 3 will be completed if the

following assertion is proved:

( 5 ) = θ{e),

Proof of (5). Observe that +leZ is represented by a loop ω
in SS° = C+S° U C_S° which emanates at {0}. By considering g+f_



202 Y. NOMURA

followed by a fiber homotopy inverse /+ of g+, we infer easily that
ω is lifted to a path ώx, depending continuously on xeF, with ώx(l) =
x and such that the map x —> ώ^O) is homotopic to the map x —» m(x).
Hence the definition of the action of the fibration and Lemma 1.3
imply the assertion (5).
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