ON BANACH SPACE VALUED EXTENSIONS FROM SPLIT FACES

TAGE BAI ANDERSEN

The object of this note is the following theorem: Suppose *a* **is a continuous affine map from a closed split face** *F* **of a compact convex set** *K* **with values in a Banach space** *B* **enjoying the approximation property. Suppose also that** *p* **is a strictly positive lower semi-continuous concave function on** *K* such that $||a(k)|| \leq p(k)$ for all *k* in *F*. Then *a* admits a continuous affine extension \tilde{a} to K into B such that $||\tilde{a}(k)|| \leq p(k)$ for all k in K.

We shall use the methods of tensor products of compact convex sets as developed by Semadeni [12], Lazar [9], Namioka and Phelps [10] and Behrends and Wittstock [6] to reduce the problem to the case $B = R$, and in this case the result follows from the work of Alfsen and Hirsberg [3] and the present author [4].

We shall be concerned with compact convex sets K_1 and K_2 in $\text{locally convex spaces } E_1 \text{ and } E_2 \text{ respectively.}$ By $A(K_i)$ we shall denote the continuous real affine functions on K_i for $i = 1, 2$. We let $BA(K_1 \times K_2)$ be the Banach space of continuous biaffine functions on $K_1 \times K_2$. We observe that $1 \in BA(K_1 \times K_2)$ and that $BA(K_1 \times K_2)$ separates points of $K_1 \times K_2$. As usual we define the projective tensor product of K_1 and K_2 , $K_1 \otimes K_2$, to be the state space of $BA(K_1 \times K_2)$ equipped with the w^* -topology. Then $K_1 \otimes K_2$ is a compact convex set, and we have a homeomorphic embedding $\omega_{K_1 \times K_2}$ (called ω , when no confusion can arise) from $K_i \times K_2$ into $K_i \otimes K_2$ defined by the following rule: For all *a* in $BA(K_1 \times K_2)$ and all (x_1, x_2) in $K_1 \times K_2$

$$
\omega(x_{1}, x_{2})(a) = a(x_{1}, x_{2}) \ .
$$

We notice that *ω* is a biaffine map. It was proved in [10; Prop. 1.3, Th. 2.3] and [6; Satz 1.1.3] that $\partial_e(K_1 \otimes K_2) = \omega(\partial_e K_1 \times \partial_e K_2)$, where in general we denote the extreme points of a convex set *K* by $\partial_{e}K$.

For a in $A(K_1)$ and b in $A(K_2)$ we define the continuous biaffine function $a \otimes b$ by

$$
a \otimes b(x_1, x_2) = a(x_1)b(x_2),
$$
 all $(x_1, x_2) \in K_1 \times K_2$.

We let $A(K_1) \otimes A(K_2)$ be the real vector space

$$
A(K_i)\otimes A(K_2)=\{\sum_{i=1}^n a_i\otimes b_i\,|\,a_i\in A(K_1),\,b_i\in A(K_2)\}
$$

which is a copy of the algebraic tensor product of $A(K_1)$ and $A(K_2)$. We denote by $A(K_1) \otimes_A A(K_2)$ the uniform closure of $A(K_1) \otimes A(K_2)$ in $BA(K_1 \times K_2)$.

We recall that a Banach space B is said to have the approximation property if for each compact convex subset *C* of *B* and each $\varepsilon > 0$ there is a continuous linear map $T: B \to B$ such that $T(B)$ is finite dimensional and such that $||Tx - x|| < \varepsilon$ for all $x \in C$. It is proved in [10; Lem. 2.5] that if $A(K_1)$ (or $A(K_2)$) has the approximation property then $BA(K_1 \times K_2) = A(K_1) \otimes_A A(K_2)$.

Following Lazar $[9]$ we define T_1 and T_2 as the natural embeddings of $A(K_1)$ and $A(K_2)$ into $BA(K_1 \times K_2)$, i.e.

$$
T_1a = a \otimes 1, \text{ all } a \in A(K_1)
$$

$$
T_2b = 1 \otimes b, \text{ all } b \in A(K_2).
$$

Let P_i be the adjoint map of T_i for $i = 1, 2$. Then P_i is an affine and continuous map of $K_i \otimes K_i$ onto K_i (= state space of $A(K_i)$), and

$$
P_i\omega(k_1, k_2) = k_i, i = 1, 2.
$$

The first part of the following proposition was proved by Lazar in the case where K_1 and K_2 are simplexes, but the proof holds in general. The last part was proved by Lazar in the simplex case by means of the Stone-Weierstrass Theorem for simplexes.

PROPOSITION 1. Let F_1 and F_2 be closed faces of compact convex $sets$ K_1 and K_2 resp. Let $F = P_1^{-1}(F_1) \cap P_2^{-1}(F_2)$

(i) Then F is a closed face in $K_1 \otimes K_2$ and $F = \overline{\text{co}}(\omega(F_1 \times F_2))$

(ii) If $A(F_1)$ or $A(F_2)$ has the approximation property then $F_1 \otimes F_2$ is affinely homeomorphic to F.

Proof. Since P_i is continuous and affine it is immediate that $P_i^{-1}(F_i)$ is a closed face of $K_i \otimes K_i$, and hence *F* is a closed face.

Now let $p = \omega(k_1, k_2) \in \omega(F_1 \times F_2)$. Then $P_i p = k_i \in F_i$, and hence $p \in P^{-1}_1(F_1) \cap P^{-1}_2(F_2) = F$. By the Krein Milman Theorem: $\overline{co}(\omega(F_1 \times F_2))$ $\subseteq F$.

Conversely, let $p \in \partial_e F$. Since F is a closed face we get

$$
p\in \partial_e F = F\cap \partial_e (K_1\otimes K_2) = F\cap \omega (\partial_e K_1\times \partial_e K_2) .
$$

Hence $p = \omega(x_1, x_2), x_i \in \partial_e K_i$. Then $P_i p = x_i$ belongs to F_i by the definition of F. Hence $p \in \omega(F_1 \times F_2)$, and again by the Krein Milman Theorem $F \subseteq \overline{co}(\omega(F_1 \times F_2))$, and (i) is proved.

Now we shall prove (ii) under the assumption that $A(F_1)$ has the approximation property. We shall define a continuous affine map $T: \, \mathcal{F}_1 \otimes \mathcal{F}_2 \longrightarrow K_1 \otimes K_2$ by

$$
(T\varphi)(b) = \varphi(b|_{F_1 \times F_2}), \varphi \in F_1 \otimes F_2, b \in BA(K_1 \times K_2).
$$

 T (*F*₁ \otimes *F*₂) is compact and convex in K ₁ \otimes K ₂. If φ \in ∂ _e(then $\varphi = \omega_{F_1 \times F_2}(x_1, x_2)$, where $x_i \in \partial_e F_i$, $i = 1, 2$. But then

$$
(T\varphi)(b) = b(x_1, x_2) = \omega_{K_1 \times K_2}(x_1, x_2)(b), \text{ all } b \in BA(K_1 \times K_2).
$$

 $\text{Hence } T\varphi = \pmb{\omega}_{K_1\times K_2}(x_1,x_2)\in \overline{\text{co}}(\pmb{\omega}_{K_1\times K_2}(F_1\times F_2)) = F. \ \ \text{By the Krein Milman}$ Theorem we conclude that $T(F_1 \otimes F_2) \subseteq F$.

Conversely, if $\psi \in \partial_e F$ then as F is a closed face, we get by Milman's theorem

$$
\psi\in \omega_{K_1\times K_2}(F_1\times F_2)\,\cap\,\omega_{K_1\times K_2}(\partial_e K_1\times \partial_e K_2)=\,\omega_{K_1\times K_2}(\partial_e F_1\times \partial_e F_2)\,\,.
$$

 $\text{If}\quad \psi\,=\,\omega_{K_1\times K_2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2}),\,x_{\scriptscriptstyle i}\in \partial_{\scriptscriptstyle e} F_{\scriptscriptstyle i},\quad \text{then}\quad \omega_{F_1\times F_2}(x_{\scriptscriptstyle 1},\,x_{\scriptscriptstyle 2})\in \partial_{\scriptscriptstyle e}(F_{\scriptscriptstyle 1}\otimes F_{\scriptscriptstyle 2}),\;\; \text{and}\;\; \text{as}$ above $\psi = T(\omega_{\scriptscriptstyle F_1\times \scriptscriptstyle F_2}(x_{\scriptscriptstyle \rm 1},\,x_{\scriptscriptstyle \rm 2}))$. By the Krein Milman Theorem we get $F \subseteq T(F_1 \otimes F_2)$, and so *T* is surjective.

We proceed to show that *T* is injective. This is the case if $BA(K_1 \times K_2)|_{F_1 \times F_2} \text{ is dense in } BA(F_1 \times F_2)$. We show that $A(K_i) \otimes A(K_2)|_{F_1 \times F_2}$ is dense in $BA(F_1\times F_2)$. Hence let $c \in BA(F_1\times F_2)$ and $\varepsilon > 0$. Since i) has the approximation property, we have that $A(F_1) \otimes_{\epsilon} A(F_2) =$ \textcircled{x} F_2), so there exist $a_1, \dots, a_n \in A(F_1), b_1, \dots, b_n \in A(F_2)$ such that

$$
\left\|c-\sum_{i=1}^n a_i\otimes b_i\right\|_{F_1\times F_2}<\frac{\varepsilon}{2}.
$$

Now $A(K_i)|_{F_i}$ is dense in $A(F_i)$, so we can choose $a_i' \in A(K_i)$, $b_i' \in A(K_2)$, $i = 1, \cdots n$, such that

$$
\Big\|\sum_{i=1}^n a_i\otimes b_i-\sum_{i=1}^n a_i'\otimes b_1'\Big\|_{F_1\times F_2}<\frac{\varepsilon}{2}\;.
$$

Then $||c - \sum_{i=1}^n a_i' \otimes b_i'||_{F_1 \times F_2} < \varepsilon$, and the claim follows.

The next step is to prove that $\overline{co}(\omega(F_1 \times F_2))$ is a closed split face of $K_i \otimes K_i$ provided F_i is a closed split face of K_i for $i = 1, 2$, and f.ex. $A(F_1)$ has the approximation property.

We shall remind the reader of the following definitions and facts: If *F* is a closed face of a compact convex *K,* then the complementary σ -face F' is the union of all faces disjoint from F . It is always true that $K = \text{co}(F \cup F')$. *F* is called a split face if *F'* is a face and each point in $K\backslash (F\cup F')$ can be decomposed uniquely as convex combination of a point in *F* and a point in *F'.* It follows from a slight modification of the proof of [2; Th. 3.5] that a closed face is a split face if and only if each nonnegative u.s.c. affine function of *F* admits an u.s.c.

4 TAGE BAI ANDERSEN

affine extension to *K,* which is equal to 0 on *F^r .* This characterization is sometimes inconvenient because of the "nonsymmetric" properties of the affine functions involved. Using the above characterization we shall give a new one involving the space $A_s(K)$ which is the smallest uniformly closed subspace of the bounded functions on *K* containing the bounded u.s.c. affine functions. This space has been used f.ex. by Krause [8] and Behrends and Wittstock [6] in simplex theory and by Combes [7] in C*-algebra theory. We shall state some of the known properties of $A_s(K)$.

LEMMA 2. (i) If $a \in A_s(K)$ and $a \geq 0$ on $\partial_e K$ then $a \geq 0$ on K. (ii) If $a \in A_s(K)$ then $\|a\|_K = \|a\|_{\delta,K}$. (iii) If $a \in A_s(K)$ then a satisfies the barycentric calculus.

Sketch of proof. If *s* and *t* are u.s.c affine functions on *K* and $s \leq t$ on $\partial_e K$ it follows by [5; Lem. 1] that $s \leq t$ on *K*. Hence (i) follows by a limit argument. Now (ii) follows by (i), since on $\partial_e K: - ||a||_{\partial_e K} \leq a \leq ||a||_{\partial_e K}$. Hence the same inequality holds on *K*, and so $\|a\|_{K} \leq \|a\|_{\mathfrak{d}_{K}}$. The converse inequality is trivial. Finally (iii) follows from Lebesgue's theorem on dominated convergence, since the barycentric calculus holds for (differences of) u.s.c bounded affine functions, cf. [1; Cor. 1.1.4].

PROPOSITION 3. *Let F be a closed face of a compact convex set K. Then* F is a split face if and only if each $a \in A_s(F)$ (or $A_s(F)^+$, $A(F)$, $A(F)^+$, $A(F; K)$, $A(F; K)^+$) has an extension $\widetilde{a} \in A_s(K)$ such that $\widetilde{a} = 0$ *on F^f . If such an extension exists then it is unique.*

Proof. The uniqueness statement follows from Lemma 2 (ii), since $\partial_e K \subseteq F \cup F'$.

Assume *F* is a split face and let $a \in A_s(F)$. If *a* is u.s.c. affine and nonnegative a has as noted above an u.s.c. affine extension \tilde{a} with $\tilde{a} = 0$ on *F*^{\prime}. Hence the result follows if *a* is the difference of two nonnegative u.s.c. affine functions on K. In general there are b_n , c_n u.s.c. affine and nonnegative, $a_n = b_n - c_n$, such that $\|a_n - a\|_{F_n \to \infty}$ 0. We use Lemma 2 (ii) and the fact that $\partial_e K \subseteq F \cup F'$ to conclude that

$$
||\widetilde{a}_n - \widetilde{a}_m|| = ||\widetilde{a}_n - \widetilde{a}_m||_{\mathfrak{d}_{e^K}} = ||a_n - a_m||_{\mathfrak{d}_{e^F}} = ||a_n - a_m||_F.
$$

Hence $\{\tilde{a}_n\}_1^{\infty}$ is Cauchy in $A_s(K)$. Then $\tilde{a} = \lim \tilde{a}_n \in A_s(K)$ will be an extension of a with $\tilde{a} = 0$ on F' .

Conversely, assume that each $a \in A(F; K)^+$ has an extension $\tilde{a} \in$ $A_s(K)$ such that $\tilde{a} = 0$ on *F'*. Let $x \in K \setminus (F \cup F')$, $x = \lambda y + (1 - \lambda)z$, where $y \in F$, $z \in F'$ and $0 < \lambda < 1$. Then $\lambda = \tilde{I}(x)$, and since λ is uniquely determined, $\hat{\chi}_F$ is affine, and hence $F' = \hat{\chi}_F^{-1}(0)$ is a face, cf. $[2; Prop. 1.1, Cor. 1.2]$. Now the uniqueness of F, F' components is easy, since $A(F; K)^+$ separates points of F .

The following lemma can be derived from [6; Formula (1), p. 263, Satz 2.1.3]. For the readers convenience we shall give a proof.

LEMMA 4. Let K_1 and K_2 be compact convex sets and $a \in A_s(K_1)$, $b \in A_s(K_{\scriptscriptstyle 2})$. Then there is a function $c \in A_s(K_{\scriptscriptstyle 1} \otimes K_{\scriptscriptstyle 2})$, denoted by a \otimes *b, such that*

$$
c(\omega(x_1, x_2)) = a(x_1)b(x_2), \ all \ (x_1, x_2) \in K_1 \times K_2.
$$

Proof. First we shall consider the case where *a* and *b* are nonnegative u.s.c. and affine. Then there exist nets $\{a_{\alpha}\}\subseteq A(K_1)^+$, ${b_s} \subseteq A(K_2)^+$ such that $a_a \searrow a, b_s \searrow b$, pointwise. Then ${a_a \otimes b_s}$ is a decreasing net in $BA(K_1 \times K_2)^+$, and therefore there is an u.s.c. affine function c on $K_1 \otimes K_2$ such that

$$
c(\varphi) = \inf_{\alpha, \beta} \varphi(a_\alpha \otimes b_\beta), \,\, \text{all} \ \, \varphi \in K_{\scriptscriptstyle 1} \otimes K_{\scriptscriptstyle 2} \; .
$$

 $\text{Especially, for all } (x_1, x_2) \in K_1 \times K_2$

$$
c(\pmb{\omega}(x_{\scriptscriptstyle 1}, \, x_{\scriptscriptstyle 2}))\,=\, \inf\, a_{\scriptscriptstyle \alpha}(x_{\scriptscriptstyle 1})b_{\scriptscriptstyle \beta}(x_{\scriptscriptstyle 2})\,=\,a(x_{\scriptscriptstyle 1})b(x_{\scriptscriptstyle 2})\,\,.
$$

If

$$
a = a_1 - a_2, b = b_1 - b_2
$$

where a_i is u.s.c. nonnegative and affine on K_i , b_i is u.s.c. nonnegative and affine on K_2 , then $(x_1, x_2) \rightarrow a(x_1)b(x_2)$ is linear combination of four terms of the kind considered in the first part of the proof, and we can choose *c* as the corresponding linear combination of elements $\textbf{from} \ \ A_s(K_1\otimes K_2).$

If $a \in A_s(K_1)$, $b \in A_s(K_2)$ are arbitrary then we can find a'_n, b'_n of the type (*), such that $||b - b'_n||_{K_2} < 1/n$, $||a - a'_n||_{K_1} < 1/n$ and $c_n \in$ $A_{s}(K\otimes K_{2})$ such that

$$
(**) \t c_n(\omega(x_1, x_2)) = a'_n(x_1) b'_n(x_2), \text{ all } (x_1, x_2) \in K_1 \times K_2.
$$

Then for all $(x_1, x_2) \in \partial_e K_2$

$$
|\, a(x_{\scriptscriptstyle 1}) b(x_{\scriptscriptstyle 2}) \,-\, c_{\scriptscriptstyle n}(\omega(x_{\scriptscriptstyle 1},\, x_{\scriptscriptstyle 2}))\, | \, < \, \frac{1}{n^{\scriptscriptstyle 2}} \, +\, \frac{1}{n} \,(||\, a\,||_{\, {\rm K}_{\scriptscriptstyle 1}} \, +\, ||\, b\,||_{{\rm K}_{\scriptscriptstyle 2}}) \,\, .
$$

From this it follows that ${c_n|_{\theta_e(K_1 \otimes K_2)}}$ is Cauchy, and hence ${c_n}$ is Cauchy on $K_1 \otimes K_2$ by Lemma 2 (ii). Let $c = \lim c_n \in A_s(K_1)$ Then it is obvious from (**) that *c* satisfies the requirement.

THEOREM 5. Let K_1 and K_2 be compact convex sets, and F_1 and F_2 R_1 *closed faces of K₁</sub> and K₂ respectively. Let F be the face* $\overline{\text{co}}(\omega(F_1 \times F_2))$ $\boldsymbol{X}_1 \otimes \boldsymbol{K}_2$. Then the following holds

(i) If F is a split face of $K_1\otimes K_2$ then F_1 and F_2 are split *faces of* K_i *and* K_i .

(ii) If either $A(F_1)$ or $A(F_2)$ has the the approximation property, and F_1 and F_2 are split faces of K_1 and K_2 , then F is a split face of $K_{\scriptscriptstyle1} \otimes K_{\scriptscriptstyle2}$.

Proof. To prove (i) we assume that *F* is a split face. As noted before $\partial_e F = \omega(\partial_e F_1 \times \partial_e F_2)$. Let $a \in A(K_1)$ such that $a \ge 0$ on F_1 , i.e. $a|_{F_1} \in A(F_1; K_1)^+$. By Proposition 3 it will suffice to show that $(a \cdot \chi_{F_1})^{\wedge}$ is affine K_i . We know that $((a \otimes 1) \cdot \chi_F)^{\wedge}$ is u.s.c. and affine on $K_i \otimes$ K_z , since $a \otimes 1$ is nonnegative on $\omega(F_1 \times F_2)$ and hence on F . Now we fix $x_2 \in \partial_e F_2$. Then the function $g(x_2) \colon x \to ((a \otimes 1) \cdot \chi_F)^{\wedge} (\omega(x, x_2))$ is u.s.c. and affine on K_1 . On F_1 $g(x_2)$ agrees with α , and since $\omega(\partial_{e}F_{1}^{\prime} \times \partial_{e}F_{2}) \subseteqq F^{\prime}$, we have that $g(x_{2}) = 0$ on $\partial_{e}F_{1}^{\prime}$

Since $g(x_2)$ and $(a \cdot \chi_{F_1})^{\wedge}$ agree on $\partial_e K_1$, and $g(x_2)$ is u.s.c. affine, while $(a \cdot \chi_{F_1})^{\wedge}$ is u.s.c. concave it follows from Bauers principle [5; Lem. 1] that $g(x_2) \leq (a \cdot \chi_{F_1})^{\wedge}$. Moreover $g(x_2) \geq a \cdot \chi_{F_1}$, and since $(a \cdot \chi_{F_1})^{\wedge}$ is the smallest u.s.c. concave majorant of $a \cdot \chi_{F_1}$, we have $g(x_2) \geq$ $(a \cdot \chi_{F_1})^{\wedge}, \text{ and (i) follows.}$

To prove (ii) we shall assume that F_1 and F_2 are split faces, and that $A(F_1)$ has the approximation property. By Proposition 3 we have to show that if $a \in A(F)^+$ then *a* admits an extension $\widetilde{a} \in A_s(K_1 \otimes K_2)$ such that $\tilde{a} = 0$ on F'. Now $a \circ (\omega_{K_1 \times K_2}|_{F_1 \times F_2})$ belongs to $BA(F_1 \times F_2) =$ $A(F_1) \otimes_{\epsilon} A(F_2)$. If $\varepsilon > 0$ is arbitrary we can choose $a_{_1}, \, \cdots, \, a_{_n} \in A(F_1)$ and $b_{\scriptscriptstyle 1}$, \cdots , $b_{\scriptscriptstyle n}$ \in $A(F_{\scriptscriptstyle 2})$ such that

$$
\left\|a\!\circ\!\omega_{_{K_1\!\times K_2}}-\sum_{i=1}^n a_i\otimes b_i\right\|_{_{F_1\!\times F_2}}<\varepsilon\;.
$$

By Proposition 3 we can choose $\widetilde{a}_i \in A_s(K_1)$, $b_i \in A_s(K_2)$ such that $\widetilde{a}_i = a_i$ on F_1 and $\widetilde{a}_i = 0$ on F_1' , while $b_i = b_i$ on F_2 and $b_i = 0$ on F_2' . By Lemma 4 $\sum_{i=1}^n \widetilde{a}_i \otimes \widetilde{b}_i$ $\in A_s(K_{1}\otimes K_{2})$ and on $\omega(F_{1}\times F_{2})$ it equals $\sum_{i=1}^n a_i\otimes b_i, \,\,\text{while}\,\,\sum_{i=1}^n \widetilde{a}_i\otimes \widetilde{b}_i = 0 \,\,\text{ on }\,\, \partial_{\scriptscriptstyle \epsilon}(K_1\otimes K_2)\backslash \partial_{\scriptscriptstyle \epsilon} F.$

 $\mathbb{A}s \ A_s(K_1 \otimes K_2) \text{ is complete in } || \quad ||_{\mathfrak{d}_{e}(K_1 \otimes K_2)} \text{ and the norm of } \sum_{i=1}^n \widetilde{a}_i \otimes \widetilde{b}_i$ is obtained at $\omega(F_{1} \times F_{2})$, this argument leads to the existence $\text{of}\ \ \widetilde{a}\in A_{s}(K_{1}\otimes K_{2})\ \ \text{such that}\ \ \widetilde{a}=a\ \ \text{on}\ \ \omega(F\times F_{2}),\ \ \text{and}\ \ \widetilde{a}=0\ \ \text{on}$ $\partial_e F' = \partial_e (K_1 \otimes K_2) \backslash F$. It remains to show that $\widetilde{a} = a$ on F and $\widetilde{a} = 0$ on F' .

Now let $x \in F$ and represent x by a probability measure μ on \times F_{2}). Since \widetilde{a} satisfies the barycentric calculus we get

$$
\widetilde{a}(x) = \int_{K_1 \otimes K_2} \widetilde{a} d\mu = \int_{w(F_1 \times F_2)} \widetilde{a} d\mu = \int_F a d\mu = a(x)
$$

and so $\tilde{a} = a$ on *F*.

To show that $\widetilde{a} = 0$ on F' we let $b \in A (K_1 \otimes K_2)$ with $b > 0$ on $K_1\otimes K_2$ and $b>a$ on F . Then $b\geqq \widetilde{a}$ on $\partial_{\scriptscriptstyle e}(K_1\otimes K_2)$, and by Lemma 2 (i), $b \geq \widetilde{a}$ on $K_{\scriptscriptstyle{1}} \otimes K_{\scriptscriptstyle{2}}$. For $\rho \in K_{\scriptscriptstyle{1}} \otimes K_{\scriptscriptstyle{2}}$ we have

$$
(a\cdot \chi_{\scriptscriptstyle F})^{\wedge}(\rho) = \inf\left\{b(\rho) | b \in A(K_1 \otimes K_2),\, b > a\cdot \chi_{\scriptscriptstyle F}\right\} \geqq \widetilde{a}(\rho) \geqq 0 \; .
$$

Since $(a \cdot \chi_{\scriptscriptstyle F})^{\wedge} = 0$ on F' , we get $\widetilde{a} = 0$ on F' , and the proof is complete.

REMARK. It is easy to see from Lemma 4 that the embedding of the product of two parallel faces F_1 and F_2 in the sense of [11] gives rise to a parallel face *F* without the assumption of the presence of the approximation property in $A(F_1)$. In fact, $\widehat{\chi}_F = \widehat{\chi}_{F_1} \otimes \widehat{\chi}_{F_2}$ is affine.

THEOREM 6. *Let F be a closed split face of a compact convex set K. Let B be a real Banach space having the approximation property.* Let p be a concave *l.s.c.* strictly positive real function on K. Let $a: F \to B$ be an affine continuous map such that

$$
||a(k)|| \leq p(k), \ all \ k \in F.
$$

Then a has an extension to a continuous affine map $\tilde{a}: K \rightarrow B$ *such that*

$$
||\widetilde{a}(k)|| \leq p(k), \ all \ k \in K.
$$

Proof. Let *C* be the unit ball of B^* with w^* -topology. $B \times R$ is normed by $\|(x, r)\| = \|x\| + |r|.$ It was observed in [10] that $(x, r) \rightarrow$ $(\cdot)(x) + r$ is an isometric isomorphism of $B \times R$ onto $A(C)$. Hence if *B* has the approximation property then *A(C)* has.

We define a biaffine continuous function *b* on $F \times C$ by

$$
b(x, x^*) = x^*(a(x))
$$
, all $x \in F$, $x^* \in C$.

By Proposition 1 (ii) there is an affine homeomorphism between $F \otimes C$ and $\overline{\text{co}}(\omega_{K \times C}(F \times C))$ defined by

$$
T(\rho)(d) = \rho(d|_{F \times C}) \ \text{ for } \ d \in BA(K \times C) \ .
$$

Since b is naturally a continuous affine function on $F \otimes C$ there is a continuous affine function b_1 on $\overline{co}(\omega_{K \times C}(F \times C))$ such that

$$
b_{1}(T \, \omega_{F \times C}(x, x^{*})) = x^{*}(a(x)), \text{ all } (x, x^{*}) \in F \times C.
$$

Moreover $\rho \rightarrow p(P_i(\rho))$ is concave, strictly positive and l.s.c. on $K \otimes C$. For $\rho \in \partial_{\epsilon}(\text{co}(\omega_{K \times C}(F \times C))) = \omega_{K \times C}(\partial_{\epsilon} F \times \partial_{\epsilon} C)$ we have $\rho =$ $\omega_{K \times C}(x, x^*)$ with $(x, x^*) \in \partial_e F \times \partial_e C$ and hence

$$
|b_1(\rho)| = |x^*(a(x))| \leq ||a(x)|| \leq p(x) = p(P_1(\rho)) .
$$

Since $\rho \rightarrow |b_1(\rho)|$ is convex and continuous and $\rho \rightarrow p(P_1(\rho))$ is concave and l.s.c, it follows from Bauers principle [5; Lem. 1] that $|b_1| \leq p \circ P_1$ on $\overline{\operatorname{co}}(\omega_{K \times C}(F \times C)).$

Now it follows from Theorem 5 that $\overline{co}(\omega_{K\times C}(F\times C))$ is a split face of $K \otimes C$. By [1; Th. II. 6. 12] and [3; Th. 2.2 and Th. 4.5] it follows that there is a function $c \in A(K \otimes C)$ such that c extends b_1 and

$$
|c(\rho)|\leqq p(P_{\scriptscriptstyle 1\hspace{-1pt}}(\rho)),\,\,{\rm all}\ \, \rho\in K\otimes C\,\,.
$$

(Actually, it follows from [1; Cor. I. 5.2] that a concave l.s.c. function on a compact convex set is $A(K)$ -superharmonic in the sense of [3]. Moreover it should be remarked that the theorems 2.2 and 4.5 of [3] are stated for complex spaces, but the proofs hold almost unchanged for the real case.)

Now we can define a continuous affine map $c_i: K \to A(C)$ by

$$
c_{\scriptscriptstyle 1}(k)(\boldsymbol{\cdot})=c(\boldsymbol{\omega}(k,\,\boldsymbol{\cdot}))\,\,.
$$

Then for $k \in K$

$$
||c_{\mathfrak 1}(k)||=\sup_{x^*\in C}||c(\omega(k,\,x^*))||\leqq \sup\,p(P_{\mathfrak 1}(k,\,x^*)))=\,p(k)\,\,.
$$

By composing the isometry *S* between $A(C)$ and $B \times R$ with the canonical projection Q from $B \times R$ to B, which has norm 1, we get an affine continuous map $\tilde{a} (= Q \circ S \circ c_1)$ of K into B such that

$$
||\widetilde{a}(k)|| = ||(Q \circ S \circ c_1)(k)|| \leq ||c_1(k)|| \leq p(k)
$$

for all $k \in K$. Moreover, for $k \in F$, $x^* \in C$

$$
x^*(\widetilde{a}(k)) = x^*((Q \circ S \circ c_1)(k)) = c_1(k)(x^*)
$$

= $c(\omega(k, x^*)) = b_1(\omega(k, x^*)) = x^*(a(k))$.

Hence for $k \in F: \tilde{a}(k) = a(k)$.

COROLLARY. *Let F be a closed split face of a compact convex set K. Let B be a real Banach space having the approximation property.* Let $a: F \to B$ be a continuous affine map. Then a admits an extension *to a continuous affine function* $\tilde{a}: K \to B$ such that $\max_{k \in F} ||a(k)|| =$ $\max_{k \in K} ||\tilde{a}(k)||.$

REMARK. Conclusions similar to those of Theorem 6 and the Corollary hold with no assumptions on B , if instead we know that *A(F)* has the approximation property. This is f.ex. the case, if *K* is a simplex.

REFERENCES

1. E. M. Alfsen, *Compact convex sets and boundary integrals,* Ergebnisse der Mathematik, Springer Verlag, Germany, 1971.

2. E. M. Alfsen and T. B. Andersen, *Split faces of compact convex sets,* Proc. London Math. Soc, 21 (1970), 415-442.

3. E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of $C_c(X)$, Pacific J. of Math. 36 (1971), 567-584.

4. T. B. Andersen, *On dominated extension of continuous a fine functions on split faces,* (to appear in Math. Scand.)

5. H. Bauer, *Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunkt menge,* Archiv der Mathematik, **14** (1963), 415-421.

6. E. Behrends and G. Wittstock, *Tensorprodukte kompakter konvexer Mengen,* Inventiones Math., 1O (1970), 251-266.

7. F. Combes, *Quelques proprietes des C*-algebres,* Bull. Sci. Math., 94 (1970), 165-192. 8. U. Krause, *Der Satz von Choquet als ein abstrakter Spektralsatz und vice versa,*

Math. Ann., **184** (1970), 275-296.

9. A Lazar, *Affine products of simplexes,* Math. Scand., 22 (1968), 165-175.

10. I. Namioka and R. R. Phelps, *Tensor products of compact convex sets,* Pacific J. Math., 31 (1969), 469-480.

11. M. Rogalski, *Topologies faciales dans les convexes compacts, calcul fonctionnel et decomposition spectrale dans le centre d'un espace A(X),* Seminaire Choquet, 1969-70, No. 4.

12. Z. Semadeni, *Categorical methods in convexity,* Proc. Colloq. on Convexity, Copenhagen 1965, 281-307.

Received March 30, 1971. This work was in part supported by the Danish Science Council, J. No. 511-630. The author wants to thank E. Alfsen for helpful comments.

UNIVERSITY OF OSLO AND UNIVERSITY OF ARHUS