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ON BANACH SPACE VALUED EXTENSIONS
FROM SPLIT FACES

TAGE BAI ANDERSEN

The object of this note is the following theorem: Suppose
a is a continuous affine map from a closed split face F of
a compact convex set K with values in a Banach space B
enjoying the approximation property. Suppose also that p is
a strictly positive lower semi-continuous concave function
on K such that 11 α(fc) 11 ̂  p{k) for all k in F. Then a
admits a continuous affine extension a to K into B such that
||5(ft)|| ^p(ft) for all ft in K.

We shall use the methods of tensor products of compact convex
sets as developed by Semadeni [12], Lazar [9], Namioka and Phelps
[10] and Behrends and Wittstock [6] to reduce the problem to the
case B = R, and in this case the result follows from the work of
Alfsen and Hirsberg [3] and the present author [4].

We shall be concerned with compact convex sets Kt and K2 in
locally convex spaces Έγ and E2 respectively. By A(Ki) we shall
denote the continuous real affine functions on Ki for i — 1, 2. We let
BA{KX x K2) be the Banach space of continuous biaffine functions on
K, x K2. We observe that leBAiK, x K2) and that BA{K, x K2)
separates points of Kγ x K2. As usual we define the protective tensor
product of Kt and K2, K, ® K2, to be the state space of BA(Kt x K2)
equipped with the w*-topology. Then KX®K2 is a compact convex set,
and we have a homeomorphic embedding o)KlXK2 (called a), when no
confusion can arise) from Kγ x K2 into Kγ (x) K2 defined by the following
rule: For all a in BA(KX x K2) and all (xlf x2) in Kt x K2

ω(xίf x2)(a) = a(xί} x2) .

We notice that ω is a biaffine map. It was proved in [10; Prop.
1.3, Th. 2.3] and [6; Satz 1.1.3] that 3,(JEi (x) K2) = ω(3.Xi x deK2),
where in general we denote the extreme points of a convex set K by
deK.

For a in A{K^) and b in A{K2) we define the continuous biaffine
function a (x) b by

α <g) δ(α?!, a?i) = α^O&fe), all (xlf x2) e K, x K2.

We let A ^ ) (g) A(ίΓ2) be the real vector space

= {± a, ® 6,1 α< e
* = 1
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which is a copy of the algebraic tensor product of A(iQ and A(K2).
We denote by A{K,) (x)ε A(IQ the uniform closure of A{Kγ) (x) A(K2)
in BA(KtxK^.

We recall that a Banach space i? is said to have the approximation
property if for each compact convex subset C of B and each ε > 0
there is a continuous linear map T: B-+ B such that T(I?) is finite
dimensional and such that 11 Tx — x 11 < ε for all x e C. It is proved
in [10; Lem. 2.5] that if A(K^) (or A{K2)) has the approximation
property then BA{KxxK2) = A(iΓ:) (x)ε A(iζ>).

Following Lazar [9] we define Tx and T2 as the natural embeddings
of A{Kλ) and A(K2) into ^ ( i ξ x iΓ2), i.e.

Txa = α (x) 1, all α 6

T2δ = 1 <g) δ, all δ e

Let Pi be the adjoint map of T* for i = 1, 2. Then P< is an
affine and continuous map of Kx (x) K2 onto Zi (= state space of A(Ki)),
and

P M h , k2) = k i 9 i = 1,2.

The first part of the following proposition was proved by Lazar
in the case where K^ and K2 are simplexes, but the proof holds in
general. The last part was proved by Lazar in the simplex case by
means of the Stone-Weierstrass Theorem for simplexes.

PROPOSITION 1. Let Fλ and F2 be closed faces of compact convex

sets K, and K2 resp. Let F = PrK^i) Π P2~
1(F2)

(i) Then F is a closed face in i ^ ® K2 and F — cδ(co(F1 x F2))
(ii) If A(Ft) or A(F2) has the approximation property then

Fι (x) F2 is affinely homeomorphic to F.

Proof. Since P< is continuous and affine it is immediate that
Pf^Fi) is a closed face of Kλ (x) K2, and hence F is a closed face.

Now let p = ω{kx, k2)^o){FγxF2). Then P{p = kieFiy and hence
p e PrKFi) Π P2~1(F2) = F. By the Krein Milman Theorem: cδ(ω(Fι x F2))
£ F.

Conversely, let p e deF. Since ί7 is a closed face we get

pedeF= FΠd.iK^KJ = FΠ ω(d9Kι x deK2) .

Hence p — ω(xιy x2), a?< e deKi. Then P ^ = xt belongs to Ft by the
definition of F. Hence pea)(F1xF2), and again by the Krein Milman
Theorem F Qcδ(ω(F1xF2)), and (i) is proved.

Now we shall prove (ii) under the assumption that A(F^ has the
approximation property. We shall define a continuous affine map
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T:lF1®F2-+Kι®Kz by

(Tφ)(b) = φ(b\FlXF2), φeF^F^b

Then T{F10 F2) is compact and convex in Kx (x) K2. If φ e ^(
then <ρ = o)FlXF2(xlf x2), where XiedeFi9 i = 1, 2. But then

, x K2) .

l9 x2)(b), all x

Hence Tφ = ωKlXK2(x19 x2) e zδ{ωKiXK2{Fι x F2)) = ί7. By the Krein Milman
Theorem we conclude that T(FL (x) F2) £ i*7.

Conversely, if ^ e 3 e F then as F is a closed face, we get by
Milman's theorem

x F2) n ωXίXKi(d.Kι x ,. x

If ψ = ωKlXKft(xl9 x2)y Xi G 3,Fi, then ωFιXF&(xl9 x2) e d,{Fx ® F2), and as

above ψ = T ^ ^ ^ ^ ^ i , ί»2)). By the Krein Milman Theorem we get
F £ 2X2?7! (x) F2), and so T is surjective.

We proceed to show that T is injective. This is the case if
BAiK, x K2)\FlXF2 is dense in BA(Fι x F2). We show that A{K^®A{K2)\FlXF2

is dense in 2L4(l<7

1xi<7

2). Hence let c 6 JRAC^ x F2) and e > 0. Since
i) has the approximation property, we have that A{F^ (x)ε A(F2) =

(g) F2), so there exist α1? , αn e A ^ ) , 6X, , bn e A(F2) such
that

Now A{Ki) \F. is dense in A(Fi), so we can choose a[ e A{K^), b\ e A{K2)>
i — 1, n, such that

Σ
I * . = i

Then II c < ε> and the claim follows.

The next step is to prove that o^{ω(Fι x F2)) is a closed split face
of ZΊ (x) if2 provided Fi is a closed split face of Kt for i = 1, 2, and
f.ex. Aί-Fx) has the approximation property.

We shall remind the reader of the following definitions and facts:
If F is a closed face of a compact convex K, then the complementary
tf-face Ff is the union of all faces disjoint from F. It is always true
that K = (to{F (J F'). F is called a split face if F' is a face and each
point in K\{F{jF') can be decomposed uniquely as convex combination
of a point in F and a point in F'. It follows from a slight modification
of the proof of [2; Th. 3.5] that a closed face is a split face if and
only if each nonnegative u.s.c. affine function of F admits an u.s.c.
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affine extension to K, which is equal to 0 on Fr. This characterization
is sometimes inconvenient because of the "nonsymmetric" properties
of the affine functions involved. Using the above characterization we
shall give a new one involving the space AS{K) which is the smallest
uniformly closed subspace of the bounded functions on K containing
the bounded u.s.c. affine functions. This space has been used f.ex.
by Krause [8] and Behrends and Wittstock [6] in simplex theory and
by Combes [7] in C*-algebra theory. We shall state some of the
known properties of A8(K).

LEMMA 2.

( i ) If ae AS(K) and a ^ 0 on deK then a ^ 0 on K.
(ii) IfaeA.(K) then \\a\\κ = | | α | | , β * .
(iii) If ae AS(K) then a satisfies the barycentric calculus.

Sketch of proof. If s and t are u.s.c affine functions on K and
s ^ U n deK it follows by [5; Lem. 1] that s g t on K. Hence (i)
follows by a limit argument. Now (ii) follows by (i), since on
deK: — \\a\\deK ^ a <Z \\a\\deK. Hence the same inequality holds on Kf

and so \\a\\κ ^ \\a\\deK. The converse inequality is trivial. Finally
(iii) follows from Lebesgue's theorem on dominated convergence, since
the barycentric calculus holds for (differences of) u.s.c bounded affine
functions, cf. [1; Cor. 1.1.4].

PROPOSITION 3. Let F be a closed face of a compact convex set K.
Then F is a split face if and only if each ae AS{F) {or AS(F)+, A(F),
A(F)+, A(F; K), A(F; K)+) has an extension aeAs(K) such that a = 0
on Ff. If such an extension exists then it is unique.

Proof. The uniqueness statement follows from Lemma 2 (ii),
since deK S F U F'.

Assume F is a split face and let aeAs(F). If a is u.s.c. affine
and nonnegative a has as noted above an u.s.c. affine extension a with
a — 0 on Ff. Hence the result follows if a is the difference of two
nonnegative u.s.c. affine functions on K. In general there are bn, cn

u.s.c. affine and nonnegative, an = bn — cn, such that \\an — αl l^-^0.
We use Lemma 2 (ii) and the fact that BeK S F U F' to conclude* that

l | δ » - S T O | | = \\an - α w | | 9 e * r = \\an - a m \ \ d e F = \\an - a m \ \ F .

Hence {αjΓ is Cauchy in AS{K). Then a = \im an e AS(K) will be an
extension of a with a = 0 on Fr.

Conversely, assume that each a e A(F; K)+ has an extension a e
AS(K) such that a = 0 on F'. Let xe K\(F{JF'), x = Xy + (1 - X)z,
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where ye F, ze F' and 0 < λ < 1. Then λ = ϊ(x), and since λ is
uniquely determined, %F is affine, and hence Ff = 2^(0) is a fa c e>
cf [2; Prop, 1.1, Cor. 1.2]. Now the uniqueness of F, Ff components
is easy, since A(F; K)+ separates points of F.

The following lemma can be derived from [6; Formula (1), p. 263,
Satz 2.1.3]. For the readers convenience we shall give a proof.

LEMMA 4. Let Kx and K2 be compact convex sets and aeAs(K^j,
beA8(K2). Then there is a function ceA8(Ki($ϊ)K^, denoted by a®
b, such that

c(ω(xly x2)) = a{x^)b{x2), all (xl9 x2) e Kt x K2.

Proof. First we shall consider the case where a and b are
nonnegative u.s.c. and affine. Then there exist nets {aa} £ A{K^,
{bβ} £ A(K2)

+ such that aa\a,bβ\ b, pointwise. Then {aa06^} is a
decreasing net in BA{Kxx K2)

+, and therefore there is an u.s.c. affine
function c on Kx 0 K2 such that

c(φ) = inf φ(aa 0 bβ), all φ e K, 0 JSΓa

Especially, for all (#!, a;2) e ^ x K2

c(ω(xlf x2)) = inf aa(x^

If

(*) a = aλ — a2, b = bt — b2

where α̂  is u.s.c. nonnegative and affine on Klf bi is u.s.c. nonnega-
tive and affine on K2, then (xlf x2) —• α ^ J δ ^ ) is linear combination
of four terms of the kind considered in the first part of the proof,
and we can choose c as the corresponding linear combination of elements
from Aa(Kx 0 K2).

If α € AXiQ, 6 G AS(K2) are arbitrary then we can find αi, f4 of
the type (*), such that | |δ - K\\Kz < l/n, \\α - α'n\\Kι < 1/n and cne
AS{K®K2) such that

(**) cn(ω(xif x2)) = α^α O& fe), all (xl9 x2)

Then for all (xlf x2) e deK2

(xl9 x2))\ <^2 + ^ ( I N

From this it follows that {cn\de{KlΘK2)} is Cauchy, and hence {cn}
is Cauchy on Kt 0 K2 by Lemma 2 (ii). Let c — lim cne A^K,,
Then it is obvious from (**) that c satisfies the requirement.
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THEOREM 5. Let Kγ and K2 be compact convex sets, and Ft and F2

closed faces of Kx and K2 respectively. Let F be the face cδ(ω(F1 x F2))
in Kγ (x) K2. Then the following holds

(i) If F is a split face of K\ (x) K2 then Fι and F2 are split
faces of i£Ί and K2.

(ii) If either A(F^) or A(F2) has the the approximation property,
and Fί and F2 are split faces of Kγ and K2, then F is a split face of

Proof. To prove (i) we assume that F is a split face. As noted
before deF = ω(deFι x deF2). Let aeA{K^ such that α ^ O o n Fu i.e.
a\Fie A(Fΰ i£i)+. By Proposition 3 it will suffice to show that (a>χF)

A

is affine Kx. We know that ( ( α ® l ) ^ ) Λ is u.s.c. and affine on -Ki®
iΓ2, since a (x) 1 is nonnegative on (^(Fy x F2) and hence on F. Now
we fix x2 e deF2. Then the function g(x2): x —> ((α 0 1) %ί )Λ(φ(#, #2))
is u.s.c. and affine on Kx. On i*\ #(α;2) agrees with α, and since
ω(3ejFY x deF2) S i77', we have that #(O = 0 on 3eF/

Since g(x2) and (α χ F l )
Λ agree on dβKlf and #(£2) is u.s.c. affine,

while (a'χFl)
A is u.s.c. concave it follows from Bauers principle [5;

Lem. 1] that g(x2) ^ (a'XFl)
A. Moreover g(x2) ^ α χF l, and since {a χF)

A

is the smallest u.s.c. concave majorant of a χFl, we have g(x2) ^
{a χF)

A, and (i) follows.
To prove (ii) we shall assume that Ft and F2 are split faces, and

that A(FX) has the approximation property. By Proposition 3 we have
to show that if aeA(F)+ then a admits an extension a e As(iΓi (x) K2)
such that α = 0on F'. Now ao(ωKlXK2\FlXFi) belongs to BAiFj.xFJ -
A{F) (g)β A(F2). If ε > 0 is arbitrary we can choose aι9 , ane A{F^}
and blf , bn e A(F2) such that

< e .

By Proposition 3 we can choose α̂  e A9(K^9 bι e AS{K2) such that
Άi = α; on F x and α { = 0 on F[, while δ̂  = 6̂  on F2 and 6̂  = 0 on F2.

By Lemma 4 Σ? = 1 α̂  ® 6< e AS(K, (g) iΓ2) and on ω(i^ x F2) it equals
Σ?=i α* ® &ί> while X?=1 δi ® 6̂  = 0 on d^Kj. 0 K2)\dβF.

As As{Ky (x) iΓ2) is complete in 11 | |θβ{Kl®κz) and the norm of Y^=ι ai(x) 6t.
is obtained at ω(Fx x F2), this argument leads to the existence
of αG AS{KX (x) K2) such that a = a on ω ( F x JP2), and a = 0 on
deF

f — d^K^K^XF. It remains to show that α = α o n F and α = 0 on F '
Now let « G F and represent x by a probability measure μ on

x JP2). Since a satisfies the barycentric calculus we get

a(x) = I adμ — \ adμ — \ adμ — a(x)
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and so a = a on F.
To show that a = 0 on F' we let 6 e A ^ (x) K2) with 6 > 0 on

i£Ί(x) iΓ2 and b > α on F. Then 6 ^ α on 9χKi(g)lQ, and by Lemma
2 (i), δ ^ α on iϊΊ (x) K2. For pe Kx® K2 we have

(α χ^)Λ(ρ) = inf {6(/o) 16 e A(K, (x) i Q , 6 > a-χF} ^ α(/o) ̂  0 .

Since {a χF)
A ~ 0 on i^7', we get α = 0 on Ff, and the proof is complete.

REMARK. It is easy to see from Lemma 4 that the embedding
of the product of two parallel faces F1 and F2 in the sense of [11]
gives rise to a parallel face F without the assumption of the presence
of the approximation property in A{F^ In fact, χF = XFI0XF2 is affine.

THEOREM 6. Let F be a closed split face of a compact convex set
K. Let B be a real Banach space having the approximation property.
Let p be a concave l.sx. strictly positive real function on K. Let
a: F —> B be an affine continuous map such that

\\a(k)\\ ^ p(k), all JceF.

Then a has an extension to a continuous affine map a:K—*B
such that

\\a(k)\\ ^ p(k), all JceK.

Proof. Let C be the unit ball of B* with w*-topology. B x R is
normed by \\(x, r)\\ = ||a?|| + \r\. It was observed in [10] that (a?, r) —>
(•)(#) + r is an isometric isomorphism of B x R onto A(C). Hence
if B has the approximation property then A(C) has.

We define a biaffine continuous function b on F x C by

b(x, x*) = x*(a(x)), all xeF,x*eC.

By Proposition 1 (ii) there is an affine homeomorphism between
F(g)C and cδ(ωKxc(F x C)) defined by

Γ(/o)(d) - ρ(d\FXC) for deBA(K x C) .

Since 6 is naturally a continuous affine function on F (x) C there
is a continuous affine function b1 on cδ(α>*x(7(-F x C)) such that

HT o)FxC(x9 a?*)) = α?*(α(a?)), all (a?, a?*) e F x C .

Moreover p —> p(Pi(p)) is concave, strictly positive and l.s.c. on
K(g)C. For ρedφ(co(ωKXO(FxC))) = ωκxC(deF x 3eC) we have ^ =
ω#xc(X ^*) with (a?, x*) e deF x 3eC and hence

= \x*(a(x))\ £ \\a(x)\\ £ p(x) =
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Since p —> | bt(p) | is convex and continuous and p —+ p{P1(p)) is
concave and l.s.c, it follows from Bauers principle [5; Lem. 1] that
|&il ^ P°Pι on cδ(ωKxC(F x C)). __

Now it follows from Theorem 5 that co(ωKxC(F x C)) is a split
face of K(g)C. By [1; Th. II. 6. 12] and [3; Th. 2.2 and Th. 4.5]
it follows that there is a function ce A(K<g> C) such that c extends
δi and

\c(p)\^p(P1(p))y all peK®C.

(Actually, it follows from [1; Cor. I. 5.2] that a concave l.s.c. function
on a compact convex set is A(lf)-superharmonic in the sense of [3].
Moreover it should be remarked that the theorems 2.2 and 4.5 of [3]
are stated for complex spaces, but the proofs hold almost unchanged
for the real case.)

Now we can define a continuous aίϊine map cx: K-* A(C) by

- c(ω(k, •))

Then for Ic e K

- sup \\c(ω(k, x*))\\ £ sup p^k, x*))) = p(k) .
*C

By composing the isometry S between A(C) and B x R with the
canonical projection Q from B x R to B, which has norm 1, we get
an affine continuous map α(= QoSoCj) of K into B such that

^ p(k)

for all k e K. Moreover, for k e F, x* e C

x*(a(k)) = x*

= c(ω(fc, α?*)) - &!(a)(fc, x*)) = x*(a(k)) .

Hence for ke F: a(k) = a(k).

COROLLARY. Let F be a closed split face of a compact convex set
K. Let B be a real Banach space having the approximation property.
Let a: F —»B be a continuous affine map. Then a admits an extension
to a continuous affine function a:K—>B such that maxkeF\\a(k)\\ =
msLXkeK\\a(k)\\.

REMARK. Conclusions similar to those of Theorem 6 and the
Corollary hold with no assumptions on J5, if instead we know that
A(F) has the approximation property. This is f.ex. the case, if K is
a simplex.
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