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FIXED POINT THEOREMS FOR POINT-TO-SET
MAPPINGS AND THE SET OF FIXED POINTS

Hwei-MEe1 Ko

Let X be a Banach space and K be a nonempty convex
weakly compact subset of X. Belluce and Kirk proved
that (1) If f: K— K is continuous, inf..x ||z—f(x)|| =0
and I — f is a convex mapping, then f has a fixed point in
K. (2) If f: K— K is nonexpansive and [ — f is a convex
mapping on K, then f has a fixed point in K. In this paper
the concept of convex mapping has been extended to point-
to-set mappings. Theorems 1 and 2 in §2 extend the above
fixed point theorems by Belluce and Kirk.

Let W stand for the set of fixed points of f: K — cc(K).
The set W is called a singleton in a generalized sense if
there is xo€ W such that W c f(x,). In §3 two examples are
given to show that W is not necessarily a singleton in a
generalized sense if f is strictly nonexpansive or if I — f is
convex. But one can be sure that W is a convex set if
I— f is a convex or a semiconvex mapping.

1. Preliminaries.

NOTATIONS AND DEFINITIONS. Let X be a topological space,
define

1. 2% = the family of all nonempty closed subsets of X.

2. b(X) ={Ae2% A is bounded}, where X is a metric space.

3. k(X) ={Ae2'; A is convex}, where X is a linear topological

space.

4. cpt(X) = {Ae€2%; A is compact}.

5. ce(X) = k(X) N ept(X), where X is a linear topological space.

In the remainder of this section we assume X to be a metric
space with metric d, unless otherwise stated.

6. Let xe X and » > 0, define S(z, ) = {ye X; d(y, x) < 7}.

7. For xe X, Aec2*, define d(x, A) = inf {d(z, y); y € 4}.

8. Given Ae€2* and r > 0, define V,.(4) = {xe X; d(z, 4) < 7}.

LEmMMA 1. Let x,ye X and let A be a monempty subset of X.
Then d(w, A) < d(z, ) + d(y, A).

This is a simple consequence of the triangle inequality.

DErFINITION 1. Let X be a topological space. A mapping
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f: X— 2% is said to be upper semicontinuous (abbreviated by u.s.c.)
at «, if for any open set U containing f(x,), there exists a neigh-
borhood V of x, such that f(y)c U for any ye V. The mapping f
is said to be u.s.c. in X if it is u.s.c. at any « in X.

DEFINITION 2. A map f: X— b(X) is continuous if it is con-
tinuous from the metric topolgy of X to the Hausdorff metric topology
of b(X).

DEFINITION 8. A mapping f: X — b(X) is nonexpansive on X if
D(f(x), f(y)) < d(x,y) for any », y in X, where D is the Hausdorft
metric on b(X).

DEFINITION 4. A mapping f: X — b(X) is a contraction mapping
if there is 0 <k <1, such that D(f(z), f(y)) < kd(x,y) for any
x, ye X.

It is clear that a nonexpansive mapping f: X — b(X) is continuous.
For the relation between a continuous map and an upper semicon-
tinuous map, we have the following:

PropoSITION 1. If f: X — ept(X) is continuous, then it is upper
SEMACONTINUOUS.

REMARK 1. The condition that the values of f are compact
subsets is not removable in the above proposition. As a matter of
fact a nonexpansive mapping f on X into 2¥ may fail to be upper
semicontinuous. Examples like the following seem to be in the
folklore.

ExaMpPLE 1. Let X =[0,1] x [0,1] — {(0,1)} with the usual
metric. Let (z, y) € X, define

the segment {(z, 2); z€[0,1]} if = 0.

s ) = {the segment {(0,2); z€ [0, 1)} if = 0.

Then f: X-— 2* is nonexpansive on X, but it is not u.s.c. at (0, %)
for any y€]0,1). Because if we take

U={xyeX;ov+y<l},

then U is open and contains f((0, y)). However U does not contain
f((z, z)) for (%, 2)e X and ¢ %= 0. Therefore no neighborhood of (0, y)
exists such that U contains the image of f at every point of the
neighborhood. That is, f is not u.s.c. at (0, y).
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DEFINITION 5. A real valued function g on X is said to be lower
semicontinuous on X if for any real number a, the set
{re X; g(x) > a}
is open in X.

PRrROPOSITION 2. If f: X — 2% is upper semicontinuous, then the
Sunction g, where g(x) = d(z, f(x)), is lower semicontinuous.

Proof. Let a be a real number and x,€ 4 = {z; g(x) > a}. We
want to prove that A is an open set. Let » = g(x,) — a, then » >0
and the open set V,,(f(x,) contains f(z,). By the upper semicon-
tinuity of f, there exists a neighborhood V of x, such that

f(y) - Vrls(f(xo))
for any ye V. We may assume VC S(x, /3). Let U = V,,(f(w,)).
Then ze U implies
Ao, 2) = A, f(%,)) — d(z, f(2,)) (by Lemma 1)
>r+a—1r/3=a-+ 2r/3.
Therefore
d(x,, U) = inf {d(x,, 2); z€e U} = a + 2r/3 .

Thus ye V implies

dy, f(y) =z dy, U) = d(@, U) — d(x, y) (by Lemma 1)
Za+2r/83—rl8=a+rB8>a.

Hence ye V implies ye A. Thus A is open. Therefore ¢ is lower
semicontinuous.

2. Fixed point theorems. First we state a well known fixed
point theorem for a point-to-set contraction mapping (cf. [5] p. 479
for the proof): Let K be a nonempty bounded closed subset of a
complete metric space (X,d). If f: K— b(K) is a contraction map-
ping, then f has a fixed point in K.

The space X in the sequel is assumed to be a Banach space
unless otherwise stated.

DEFINITION 6. A mapping f from X into 2Y is said to be convex
if for any z,ye X and m = xx + (1 — Ny with 0 <\ <1, and any
x,€ f(®), y,€ f(y), there exists m, € f(m) such that

fm ]l = Mol + @ =Nl .
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DEFINITION 7. A mapping f: X — 2% is called semiconvex on X
if for any 2,ye X, m = xx + (1 — \)y, where 0 <A <1, and any
x, € f(x), y.€ f(y), there exists m,e f(m) such that

[[m, || = max{[[z [, [[4.]]} .
REMARK 2. A convex mapping is semiconvex, but the converse
is not true. Take the mapping f(x) =1 z,2<c]0,1], for instance.

The map f is semiconvex because it is strictly increasing. But f is
not convex, for example take x =1 and y = 0,

m =1/4 =1/4-1 + 3/4-0,
then f(1) =1, f(0) =0, but
flm) = V14 =1/2 £ 1/4f(1) + 3/4f(0) = 1/4 .
LEMMA 2. Let f: X — 2%, and let I: X — X be the identity map-
ping. If I — f, where (I — f)(x) = {& — y; ye f(x)}, is convex (semi-

convex), then for any z,ye X and m =2z + L — Ny, 0 =N =1, we
have

d(m, f(m)) = Nd(@, f(2)) + 1 — Nd(y, f(¥)) -
(d(m, f(m)) = max {d(z, f(%)), dly, f®))}) -

Proof. Let z,e f(x) be such that ||z, — x| —d(z, f(x)) and
Y, € f(y) be such that ||y, — v || —d(y, f(¥)). Let I — f be a convex
mapping, then there exists m, € f(m) such that

fm—m,[|=\le -2+ QT =Ny —v.ll-.
Now

d(m, f(m)) = inflm —m, || =M@ -2 | + A=Wy —v.l

for any n = 1. Thus

d(m, f(m)) = N|[@ — 2, + A =Ny — vl
— M, f(x) + 1 — Nd(y, f®) -

Similarly one ean prove that
d(m, f(m)) = max {d(z, f(z), d(y, fF (W)},

if I — f is semiconvex.

LEMMA 3. Let f: X —cpt(X) be a mapping such that for any
g, ye X and any m =xe + (L — Ny, 0 =N =1, we have
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d(m, f(m)) = Mz, f(&)) + 1 — Nd(y, f®)
(d(m, f(m)) < max {d(z, f(®)), d(y, f(y))} respectively) .

Then I — f 1is a convex mapping (semiconvex mapping respectively).

Proof. Let xz,e f(x), y,€ f(y); we have
d@, f(x)) < ||z — | and d(y, f(¥) =y —ull .

Since f(m) is compact, there is an m, € f(m) such that
[|m — m || =d(m, f(m) <Az, f(x)) + 1 — Nd(y, () -

Therefore |[m — m, || =Nz — 2, || + A —N) ||y — v.|/. Hence I — f
is a convex mapping. Similarly one can prove, under the condition
that d(m, f(m)) < max {d(z, f(x)), d(y, f(v))}, that I — f is a semi-
convex mapping.

Lemmas 2 and 3 characterize the convexity (semiconvexity) of
I — f in terms of the distance between a point and its image under
f> where f is a mapping from X into ¢pt(X). The following lemma
is a simple consequence of Lemma 2.

LEMMA 4. Let f: X — 2%, define
H, = {re X: d(z, f(x)) =7},

where r = 0. If I — f is a semiconvexr mapping on X, then H, is
convex.

THEOREM 1. Let K be a nonempty weakly compact closed convex
subset of X. If f: K— 2K is upper semicontinuous and

inf {d(z, f(x)); xe K} =0,

and I — f is a semiconvex mapping on K, then f has a fixed point
wn K.

Proof. Let » >0, define H, as in Lemma 4. We see that
H,><g for any » > 0, since inf {d(x, f(x)); e K} = 0. As f is upper
semicontinuous, H, is closed (by Proposition 2). The map I — f is
semiconvex, hence H, is convex (by Lemma 4). The set H,, being
closed and convex, is weakly closed for each » > 0. The family
{H,; r>0} has the finite intersection property. Therefore, by the
weak compactness of K, we have [),..H,=< @. It is clear that any
point in N,., H, is a fixed point of f.
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REMARK 3. A convex mapping is semiconvex, therefore Theorem
1 extends Theorem 4.1 of Belluce and Kirk [1]. Example 4.1 and
4.2 in [1], though they are point-to-point mappings, serve the pur-
poses of demonstrating that “inf{d(x, f(z)); x€ K} = 0” or “K is
weakly compact” in Theorem 1 is indispensable. The following ex-
ample, which is a special case of the example given by Kirk [4],
shows that the semiconvexity of I — f in Theorem 1 can not be
removed.

ExAMPLE 2. Let K = {xzel,; ||z <1} be the closed unit sphere
of the Hilbert space l,. Then K is closed, convex and weakly com-
pact. Define f on K as follows: Let © = (x, «,, --+) € K, and let

f@) =Q —[[a|l, 2, €y --+) .

Then || f(®)| =1 and || f(@) — fW) =V 2 ||la—yl. ie, fisa
continuous mapping on K into K. We claim that

inf{||& — f(@)[[;xc K} =0.

Let o™ = (», @,, --+)€l, be such that », =u, =+ =2, =1/n and
x; =0 for ¢ >n’. Then ||2™ ]| =1 and

f(x(n)) = (0: Lyy Loy =00y L2y 0’ °* ') .
We see that

la™ — f@@™)| = 1/_2'/»,1,—»0 y as M —— oo,

Hence inf{|]x — f(x)|; xe K} = 0. But I — f is neither convex nor
semiconvex. For instance, let z = (1/2,1/2,0, ---), y = (—1/2, —1/2,
0,:++). Then f(x)=(1—12/21/2,1/2,0,-+), fly) =1 —1"2/2,
—1/2, =1/2,0, --+), [lv — f@)] = (V4 —202)2<1, [ly — f@)]l =
(V12 —-612/2 < 1. Take m = 1/2(z + y), then m = (0,0, ---) and
f(m) =(,0,---). Thus

fm — fm) || =1>max{[je — f{) ], lly — F@) I} -

Therefore I — f is not semiconvex and hence it is not convex. The
map f has no fixed point, for if f(x) = x, where & = (x, @,, -++) € K,
then ¢, =2, = ---, and 32,22 < . Thus 2, =0 for +=1. But
then f(x) = (1,0, ---)=<(0,0, ---).

DEFINITION 8. A map f: X— 2% is said to be asymptotically
regular at x, if there exists a sequence of points such that «, € f(x,_,)

and ||z, — ®,_, || — 0 as n— co.

Definition 8 is an extension of the definition of asymtotically
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regular point-to-point mapping given by Browder and Petryshyn [2].
One immediate result of Theorem 1 is the following corollary which
extends the first part of Theorem 4.3 by Belluce and Kirk [1].

COROLLARY 1. If f: K— 2% is asymptotically rgular at some
point in K, where K is a monempty closed convex weakly compact
subset of X, and if f is upper semicontinwous in K such that I — f
18 semiconvex, then f has a fived point in K.

Proof. Assume f is asymptotically regular at x,€ K; then there
exists x,€ K such that =z,¢ f(z,_), n =1, and |2, — 2,_.||—0.
Since d(z,, f(®,) =< ||®,., — 2, || — 0, we have inf {d(z, f(x)); v€ K} =
0; hence Corollary 1 follows Theorem 1.

THEOREM 2. Let K be a nonempty weakly compact convex subset
of X. If f: K—cc(K) is nonexpansive and if I — f is semiconvex
on K, then f has a fized point in K.

Proof. The map f is nonexpansive, so it is upper semi-continuous
(by Proposition 1). Theorem 2 follows Theorem 1 provided that the
condition “inf {d(z, f(z)); x€ K} = 0” is satisfied. To prove this con-
dition we have the following lemma.

LEMMA 5. Let K be a nonempty bounded closed convex subset of
X. If f: K— b(K) is nonexpansive, then inf{d(x, f(x)); zc K} = 0.

Proof. Let wx,e¢ K. Denote K, ={x — x,; xc K}, then K, is a
bounded closed convex subset of X and K, contains 0. Let 0 <k <1,
define f, on K, as follows:

i@ — @) = k(f(x) — ) .

Then f(x — 2,) C K, for any & — x,€ K,, since K, is convex and con-
tains zero element. As f is nonexpansive, f, is contraction. By the
fixed point theorem for point-to-set contraction mapping, there exists
x, € K such that

Ty — @ € fr(@, — %) = k(f (@) — %) .
Thus there is y,€ f(x,) such that x, — x, = k(y, — ). Now

d(@,, f() =inf{[|a, — vy ye f(@)} = || B — v |l
=@+ kY, —2) =yl = A = k) [l ye — @[]

Therefore
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0 = inf d(z, f(2)) = inf d(w., f(w.)
= nf A -Rllo—ul=0,

since the set {||x, — %, |/; 0 < k£ < 1} is bounded. Hence
inf {d(z, f(®)); te K} =0.

3. The set of fixed points of a point-to-set mapping. Let K
be a closed convex subset of a Banach space X. Denote by W the
set of fixed points of a mapping f: K—2%. Throught this section
we assume W to be nonempty.

DEFINITION 9. A mapping f: X — b(X) is strictly nonexpansive
if D(f(x), f(y)) < ||z —y]| for any 2z, ye X and z=<y.

If f is a point-to-point mapping, then the following properties are
true.

(A) If f is strictly nonexpansive, then W is a singleton.

(B) If f is nonexpansive and the norm of the Banach space is
strictly convex, then W is convex.

Statement (A) is no longer true for point-to-set mapping. For
example, let K be a set containing more than two points, then the
set of fixed points of the mapping f: K-— 2%, such that f(x) = K
for any xe¢ K, is K itself which is not a singleton.

Statement (B) is obviously not true for a point-to-set mapping.
However, as the next example shows, statement (B) is also not true
for point-to-set mappings such that the image of each point is a
nonempty compact convex set; note that the domain K in our example
is also convex.

ExampLE 3. Let K = [0, 1] x [0, 1] with the usual norm. Define
f: K—ce(K) by
f((z,, 2,)) = the triangle with vertices
(0, 0), (%, 0) and (0, ) .

Note that f((x,, x,)) is a degenerate triangle if vz, = 0. We see that
f is nonexpansive and the norm in R? is strictly convex. But the
set W of fixed points of f is

W = {(z, x,); (x, 2,) € K and x2, = 0}

which is not convex.
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For a point-to-set mapping f, we have several choices for values
of f, e.g., f(®ekX), f@)ecept(X) or f(x)ece(X); among them,
f(x)ece(X) is the strongest assumption. For example, let K be a
compact convex subset of X, and let g: X — ¢pt(X) be an upper semi-
continuous mapping such that g(x) c K for any x¢€ K, then g does
not always have a fixed point (e.g., the map G of Strother [6],
p. 990). But if we simply change ¢ as a mapping into cc(X) instead
of into ¢pi(X), then g has a fixed point (see K. Fan [3]). In
Example 3, although we have imposed the strongest condition on the
values of f, i.e., f(x)ecc(K), that condition does not force f to
satisfy statement (B). However the following proposition shows us
a sufficient condition for W to be convex.

PropOSITION 3. Let f: K— 2% be a mapping such that I —f is a
semiconvexr mapping on K. Then W is convex.

Proof. If I — f is semiconvex on K, then Lemma 4 shows that
the set H, ={re K;d(z, f(x)) <r} is convex. Hence W = H, is
convex.

Statement (A) can be rephrased as follows:
(A") If f is strictly nonexpansive, then there is 2, in W such
that Wc f(,).

For a point-to-point mapping f, statement (A4’) implicitly shows
W to be a singleton. As for a point-to-set mapping f, statement
(A’) does not require W to be a singleton, and on the other hand it
does not rule out the possibility that W is a singleton. Therefore,
it is reasonable to define W to be a singleton in a generalized sense
if there exists x,€ W such that Wc f(x,). Unfortunately even for
a strictly nonexpansive mapping f on K into cc(K), the set W of
fixed points of f is not necessarily a singleton in a generalized
sense.

ExampLE 4. Let K =[0,1] x [0,1], a subset of R?® with the
usual metrie. Define f; K — cc(K) as follows:

f((x,, z,)) = the triangle with vertices
(*./2, 0), (2,/2,1) and (1, 0) .

Let © = (2, 2,), ¥ = (¥, ¥.) € K, with © 5= y, then
D(f (), f() =1/2| @, — y, | < d(x, y) -

Hence f is strictly nonexpansive. The set W of fixed points of f is
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the set bounded by positive #, ¥ axes and a branch of hyperbola
20 + 2y — axy — 2 = 0. i.e.,

W=A{#yeK; 2 +2y—ay—-2=0}.

By an inspection of the shape of the set W, one sees that Wd f((x, v))
for any (», y)e K. Hence W is not a singleton in a generalized
sense.

The question arises: Is W a singleton in a generalized sense if
f is nonexpansive and I — f is convex? The answer is no. Let us
consider the following example.

ExAampPLE 5. Let K = [0,1] x [0, 1] with the usual metric. Let
(z, y) € K, define

S (%, y)) = the segment {(t, ); 0 = ¢ = »/2}.

Then f: K — cc(K) is nonexpansive. I — f is a convex mapping. To
show it, let P = (v, ), @ = (%, ¥,) both in K, and let

M=\P+ (1-MNQ,
for some 0 < A <1. Then

d(P, f(P)) = u/2,
dQ, f(Q) = x/2,
d(M, f(M)) = 1/20x, + (1 — Na,)
= MU(P, f(P)) + (1 —Nd(Q, f(Q)) -

By Lemma 3, we see that I — f is convex on K. Now the set of
fixed points of f is W ={(0,%); 0=y <1}. But W & f((z, y)) for
any (x, y) € K. Hence W is not a singleton in the generalized sense.
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