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ON SPACES OF DISTRIBUTIONS STRONGLY
REGULAR WITH RESPECT TO PARTIAL

DIFFERENTIAL OPERATORS

Z. ZlELEZNY

A distribution T in Ω is said to be strongly regular with
respect to the differential operator P(B), if Pk(D)T, k =
0,1, , are of bounded order in any open set Ωr c c Ω.
Necessary and sufficient conditions on the polynomials P and Q
are established in order that a distribution T strongly regular
with respect to P(D) be strongly regular with respect to Q(D).

Let P{D) be a partial differential operator in Rn with constant
coefficients and Pk(D), k — 1, 2, , its successive iterations. The
following result is due to L. Hormander ([3], Theorem 3.6 and
Remark on p. 233):

If P(D) is hypoelliptic and T is a distribution such that Pk{D)T,
k = 1, 2, •••, have a bounded order in any relatively compact open
subset of Rn, then T is a C~-function.

In other words, the space g^ of distributions in Rn "strongly
regular with respect to P(D)" is contained in the space if of C°°-
functions; in this case g"P = g7. The concept of strong regularity
with respect to P(D) coincides with that of strong regularity in some
variables (see [6], p. 453), when P(D) is the Laplace operator in those
variables.

Suppose now that given are two arbitrary partial differential
operators P(D) and Q(D). Then the question arises: Under what
conditions on P and Q is ifP c WQΊ In particular, if P{D) is "Q-
hypoelliptic," i.e. all solutions U£&r of the equation

P(D)U= 0

are in g^, must then be gfF c gfQ? The Q-hypoelliptic operators were
studied (in a slightly different but equivalent version) and charac-
terized by E. A. Gorin and V. V. Grusin [2].

In this paper we give necessary and sufficient conditions for the
inclusion gV(fl) c %?Q(Ω), where %fP(Ω) and ξ?Q(Ω) are the spaces of
"strongly regular" distributions on an arbitrary open set Ω c Rn.
These conditions are, in general, stronger than the Q-hypeollipticity
of P(D). If the inclusion in question holds for every Q-hypoelliptic
operator P(D), then Q(D) must be hypoelliptic and the problem reduces
to that in Hormander's theorem stated above.

1* The spaces gfP(β) and C'p>°°(Ω).
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Let Ω be a nonempty open subset of Rn. A distribution T e ϊ3ϊf(Ω)
will be called strongly regular with respect to the differential operator
P(D), if to every open set Ω' having compact closure contained in Ω
(we express this by writing Ωr aa Ω) there exists an integer m ;> 0
such that Pk(D)T, k = 0,1, •-., are all of order ^ m in Ω', i.e. the
restrictions of Pk(D)T to Ωf are all in &fm{Ω')\ We denote by ίfP(β)
the space of all distributions in Ω, which are strongly regular with
respect to P(D). We also denote by Cp'°°(β), where μ is an integer
^ 0 , the space of all C-f unctions in Ω such that Pk(D)Daf, \a\ ^ μ,
k = 0,1, , are continuous functions; here a = (au , an) and
I a I = a, + + an.

Consider now the spaces g^(β) and &Q(Ω) corresponding to the
differential operators P(D) and Q(D) respectively.

THEOREM 1. If ifP(β) c g"ρ(β), then to any open set Ωf c c i 3
exists an integer μ ^ 0 swc/έ ^Aαί Âe restriction mapping f—>

Proof. Let Ω' be an open set satisfying the assumption fl'cc β.
We first prove the existence of nonnegative integers v and m such
that

( 1 ) {Qk(D)f I ΩΊfe CP-(β), k = 0,1, ...} c &"*{Ω') .

Suppose that inclusion (1) does not hold for any v and m. Then
to every v and m there exist a function / e CP

yOO(Ω) and a & such that
Qk(D)f I β' 6 2$fm(Ω'). Thus we can find strictly increasing sequences
of positive integers viy mi and ki9 and a sequence of functions /* with
the following properties:

( 2) /< G CF>~ψ) ,

( 3 ) Q*(Z?)/i I Ω' G &'mW), k = 0, 1, ,

( 4) Qkί(D)fi I β' is of order mi9

( 5) g^ < i;ί+1 ,

where i — 1, 2, , and g is the order of the operator Q(D).
We denote by Ωi9 i = 1, 2, , open subsets of Ω such that

( 6 ) fl.cc β i + 1 and Q fl< = Ω .

Next we set

«! = 1 and α< = 2~~\Λfr1 , i = 2, 3, ,

is the identity operator, i.e. P°(D)T = P.
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where

Mt = sup {[ P^DWx) I + I Qι(D)Mx) | + 1}

and the supremum is taken over all xeΩt and k, I = 0, 1, , k^.
Note that Qι(D)fi, I — 0, 1, , k^, are continuous functions in Ω,
because of (5).

The function

is defined and continuous in Ω, since the /{'s are continuous in Ω and
the series converges there almost uniformly. Moreover, for any k
we have (distributionally)

(7) Pk(D)f = ±aiP
k(D)fi.

But each term of the last series is a continuous function in Ω, by
(1). Also

α4 sup [ Pk(D)fi(x) i ^ 2-f

x e Ωj

whenever k < i and j ^ i, by the definition of a^ Hence it follows
that the series (7) converges almost uniformly in Ω, for any k. Con-
sequently fe Cp°°(Ω) c &P(Ω).

We now show that / is not in g^β), which is a contradiction
to our hypothesis. We write

3

= 2 J «

In view of (3) and (4), the restriction of Qkj(D)gj to Ω' is a distribu-
tion of order mό. On the other hand, Qkΐ(D)fiy i = j + 1, j + 2, ,
are continuous functions in β, because of (2) and (5). Furthermore,
by the definition of the α/s, the series

converges almost uniformly in Ω, and so QkJ(D)hj is in Ω a continuous
function. Thus

is in Ωr a distribution of order md. Since m3- —> oo, / i s not in &Q(Ω).
This contradiction proves (1).

Consider now the fundamental solution E of the iterated Laplace
equation, i.e.
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Δ*E = δ .

For sufficiently large 7, E is m times continuously differentiate.
Therefore every distribution T on Ω' such that ΔrTe&rm{Ωr) is, in
fact, a continuous function (see [5], vol. 2, p. 47). We choose μ =
2τ + y, where y is the integer occurring in (1). Then, if fe C£>ββ(fl),
it follows that Δ7feC£~(Ω) whence, in view of (1), Qk(D)Jrf\Ω' =
ArQk{D)f\Ω'e&'m{Ω'). Thus, by what we said before, Qk{D)f\Ω'
is a continuous function, for every k = 0,1, •••, i.e. f\ Qf e Cρfββ(fl').
The proof is complete.

2 Necessary conditions* We proceed to derive necessary con-
ditions for the inclusion &P(Ω) c g^(fl). In view of Theorem 1 it
suffices to find necessary conditions for the inclusion

(8) {f\Ω':feσr(Ω)}czCrm.

We accomplish this by means of the standard argument based on the
closed graph theorem and the Seidenberg-Tarski theorem (see [1]).

Let Ωό, j — 1, 2, •••, be open sets satisfying conditions (6). We
define the topology in Cp'°°(Ω) by means of the semi-norms

vj(f) = suv\ P*(D)D*f(x)\,

where the supremum is taken over all xe Ωh \ a | ^ μ and k ̂  j .
Similarly, if fly, j = 1, 2, •••, are open sets satisfying conditions ana-
logous to (6) with Ω replaced by £?', we define the topology in Cςϊ>oo(β')
by means of the semi-norms

Wj(f) = sup I Qk(D)f(x) I .

Then C£'°°(fl) and C$>°°(Ω') become Frechet spaces. Moreover, the
restriction mapping C£'°°(fl)—»Cρ'°°(β') is closed and therefore continuous,
by the closed graph theorem. Hence, to every integer I > 0, there
exists an integer k > 0 and a constant C > 0 such that

( 9 ) wι{f) ^ C max vs(f) ,

for every feCμ

P

yCO(Ω). Applying condition (9) to the function

f{x) - e^>° ,

where ζ = ξ + ίη and f, 37 e Rn, we obtain the following lemma2.

LEMMA 1. If the inclusion (8) holds then, for every integer I > 0,
we can find an integer k > 0 αm£ constants C, c > 0

2 We assume that Da = D^Dζ2 Da

n

n, where Dj = -i(djdxj).
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(10) I Q%) I ̂  C(l + I ξ 1 (̂1 + I P*(ζ) |)eβ|* .

We denote by N(P, a), Va and Wa the sets of all ζ = ξ + i)?€Cw

such that P(ζ) ^ α, | >? | 5g α and | f | ^ α, respectively.

LEMMA 2. 1/ condition (10) is satisfied, then Q(ζ) is bounded on
every set N(P, a) Π F 6, α, 6 i> 0.

Proof. Suppose there are a, h ^ 0 such that Q(Q is not bounded
on N(P, a) n Vb. Then the function

s(ί) = sup I Q(ζ) I
ζeΛ-Γ(P,α)ΠF6ΓlΐFί

is defined and continuous for sufficiently large t, and

(11) s(t) > co a s t > o°

But, for a given t, s(t) is the largest of all s such that the equations
and inequalities

|P(ς + ^ ) | 2 ^ α M ^ | 2 ^ δ 2 ,

I Q(ξ + ^ ) I2 = s\\ ξ |2 g t\ s ^ 0, ί ^ 0 ,

have a solution ξ, η e Rn. Applying to (12) the Seidenberg-Tarski
theorem and next a well-known argument (see [4], p. 276, or [6], p.
317) one shows easily that, for sufficiently large t, s(t) is an algebraic
function. We now expand s(t) in a Puiseux series in a neighborhood
of infinity and make use of (11). It follows that

s(t) > th

for some h > 0 and all t sufficiently large. On the other hand, s(t)
is assumed for some ξ = ξ(t), rj = η(t), and

I ξ(t) \^t.

Choosing in (10) I > μh~ι we obtain a contradiction, which proves the
lemma.

THEOREM 2. // &P{Ω) c &Q(Ω), then the following equivalent con-
ditions are satisfied:

(11) Q(ζ) is bounded on every set N{P, a) Π Vb.
(12) For any a Ξ> 0 there are constants C, h > 0 such that

I Q(ζ) \h^C(l + \η I), for all ζ e N(P, a) .

(I3) For any 6 ^ 0 there are constants C, A' > 0 such that

^ C ' ( l + I P ( Q I), f o r a l l ζeVb.
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Proof. In view of Theorem 1, Lemma 1 and Lemma 2, we need
only to show that conditions (Ii)-(I3) are equivalent. Also the implica-
tions (I2) ==> (10 and (I3) => (10 are obvious. We prove that (10 => (I2).

Consider the real polynomial

W(ξ,v,r,8,t)

= (α2 - I P(ξ + iη) |2 - r2)2 + (s2 - | η |2)2 + (f - | Q(ξ + irj) |2)2

of 2n + 3 real variables. If ξ, ΎJ e Rn lie on the surface

(13) W(ξ, V, r, 8, ί) = 0 ,

then ζ = ξ + iηeN(P, a). Moreover, by condition (10, the surface
(13) is contained in a domain defined by an inequality

where φ{τ) —* oo as τ —»oo. Applying now a theorem of Gorin ([1],
Theorem 4.1) we conclude that there exist constants C, h>0 satisfying
condition (I2). Thus (10 => (I2) The proof of the implication (10 => (I3)
is similar.

3* Sufficient conditions* We now prove that conditions (I0-(I3)
are sufficient for the inclusion under consideration. Our first goal is
to construct a sequence of suitable fundamental solutions for the
operators Pk(D), k = 1, 2, . We achieve this by modifying the
construction of a fundamental solution for P(D) given in [2].

In what follows p and q denote the orders of the differential
operators P(D) and Q(D), respectively.

LEMMA 3. Suppose that conditions (I0~(I3) are satisfied. Then
there exist continuous functions Fk, k — 1, 2, , in Rn with the
following properties:

( a ) For v = p + q + n and any k,

Ek = (λ - A)vFk

is a fundamental solution for Pk(D)y i.e.

Pk(D)Ek = δ

(b) P*(D)Fh = Fk-if for i = 1,2, ••., k- 1.

( c ) Qι{D)Fk, k, I = 1, 2, , are continuous functions in Rn\{0).
(d) For any I there is a k such that Qι(D)Fk is a continuous

function in Rn.

Proof. For any ξ' = (ξl9 , ξΛ-1) € Rn~\ consider the subset of
the complex ζ%-plane
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ζn)\£l or | λ + |

where λ > 2p. There exist constants C, h > 0 such that

(14) I Q(ξ', U I S C ( l + \ η n \ h ) ,

for all ξ' e Rn~ι and ζn = ξn + irje U(ξ'). This follows from (I2), when
I P(ξ', ζ j I ̂  1 and can be easily verified in the other case-

Let U~(ζr) be the union of all connected components of U{ξf)
having nonempty intersections with C~ = {ζn sC:ηn < 0}. We denote
by L(ξ') the boundary of C U U~(ξ').

If ζ.eL(f'), we have

(15)

also there are constants C", h' > 0 (independent of ξ') such that

(16) \Q(ζ',Zn)\^C'\P(ξ',ζn)\h' .

Inequality (16) is implied by (I3) and (15), since (£', ζn) e F2 P, when.

For k = 1, 2, ., we set

I

The functions i ^ are obviously continuous, because of (15). We claim
that they satisfy the conditions (a)-(d).

Conditions (a) and (b) follow from general properties of the Fourier
transforms of distributions.

The verification of condition (c) can be carried out in the same
way as in [2] (see the proof of Lemma 4). We give a brief sketch
of the argument.

Suppose first that, for a given k, F(

k

j) is a function obtained by a
construction as above, where the contour of integration (corresponding
to L(ζ')) lies in the complex ζ rplane; in particular F{

k

n) = Fk. Then

Q\D)[Fk ~ JFV>], j = 1, , n - 1; I = 1, 2, . . ,

are continuous functions in Rn; we omit the easy proof of this fact
Thus condition (c) will be verified, if we show that Qι{D)F{j\ I =
1, 2, , are continuous for x3•> Φ 0 (j = 1, , n).

Consider, for example, the function Fk and let xn < 0. In this
case the contour L{ξr) can be replaced by the boundary V~(ξ') of
U~(ξ'). By (14), there are positive constants Cι and C2 such that

for all ξ'eR"-1 and ζn e V~{ξ'). Hence, if ζ = (£', ζ j , we have
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^ o I ^ I Q(ζ) \ι exp {x%{C, \ Q(ζ) |1 '* - C2)} .

It follows that the integral

*-i IJF-(I') (λ + i r i2 + ci)vP*(o /r i2 + ci)vP*(o
converges absolutely and coincides with Qι(D)Fk(x), for every ί.

In case xn > 0 we can reason similarly, replacing L(f') by a con-
tour F+(£0 lying entirely in the half-plane rjn ^ 0.

Condition (d) is a consequence of inequality (16). In fact,

is bounded for ξf e Rn~\ ζn e L{ξf), whenever k ^ h!l.
Lemma 3 is now established.

THEOREM 3. If conditions (10 - (I3) are satisfied, the ^P{Ω) c g^(fl),
for any open set Ω c Rn.

Proof. Assume that T e ^P{Ω) and fix an arbitrary open set
β ' c c i λ We have to show that the restrictions of Qι{D)T, 1 =
0, 1, . . . , to Ωr are all in a space &'m{Ω').

By Lemma 3, there are fundamental solutions Ek for the operators
Pk(D), k = 1, 2, •••, representable according to (a) with the functions
Fk satisfying conditions (b) — (d). Let I be given and let k be the
integer corresponding to I in condition (d)

There are open sets Ωjf j = 0,1, , k + 1, such that

(17) Ωf c c Ωk+1 c c i 3 f c c c . . . c c i 3 0 c c i 3 .

Since Te ίfP(ί2), the restrictions of Pj(D)T,j = 0,1, , to Ωo are all
of order ^m0, say. For every j = 1, 2, , k + 1, we now choose a
function φs e Ξfψ^ such that φ — 1 on Ωά. Then the distributions

Si = 9>iT, Sά = φsP(D)S^l9 j = 2, 3, , k + 1 ,

are all of order ^ m 0 . Moreover

(18) S, = T on 0!

and

(19) P φ ) S , - S i + ι - 0 on fli+1 , i = 1, , fc.

Making use of (a) we may write
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whence

(20) Qι(D)S1 = Σ [P(D)S, - Si+ί]*Qι(D)Es + Sk+1*Qι(D)Ek
j = l

here * denotes the convolution. By (19), the "values" on Ω' of each
convolution

[P(D)Sj - Ss+ι]*Qι(D)Ei

depend on the values of Qι(D)Ej outside a neighborhood of the origin
(see [5], Chapter VI, Theorem III). Therefore the restriction to Ω'
of the sum in (20) is a distribution of order ^ m 0 + p + 2v. On the
other hand, the last term in (20) is of order ^ra 0 + p + 2v, because
of (a) and (d). Hence the restriction of Qι(D)S1 to Ω' is of order
^ m = m0 + p + 2v and m0 can be chosen the same for all I. Since,
by (18), the restrictions of Qι(D)Sι and Qι(D)T to Ωf coincide, the
theorem is proved.

Combining Theorem 2 with Theorem 3 we obtain the following
corollary.

COROLLARY. Each of the conditions (10 — (I3) is necessary and
sufficient for the inclusion &P(Ω) c %?Q(Ω), where Ω is any nonempty
open set.

REMARK. Suppose that

Q(Q = P(Q Σ C)

where P(ζ) is an arbitrary polynomial. Then the operator P(D) is
Q-hypoelliptic (see [2], Theorem 1), but condition (I3) is not satisfied,
unless P(D) (and consequently Q{D)) is hypoelliptic.
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