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COUNTEREXAMPLES
TO CONJECTURES OF RYSER AND DE OLIVEIRA

ROY B. LEVOW

Let U(n; k) be the set of all n X n binary matrices with
k ones in each row and column. Considering the relation
between the permanent and the determinant for matrices in
U(n; k)9 Tinsley established the following result:

THEOREM: Let Ce U(7; 3) be the cyclic matrix defined by
the differences 0 ,1 ,3 (mod 7). Let AeU(n;k) with fc ^ 3.
Suppose that there are permutation matrices Pu Pz, , P* e
U(n; 1) such that A = Px + P2 + + Pk and PiP5 = P5Pi
(i, j = 1, ., k). Then per A = | det̂ L | if and only if k = 3,
7 I n, and the rows and columns of A can be permuted in such
a way that the resulting matrix is the direct sum of C taken
nil times. Ryser posed

Conjecture I. Tinsley's Theorem remains valid when the
condition PiPj = PjPi(i, j = 1, , k) is dropped.

Discovery of counterexamples to Conjecture I leads directly
to counterexamples to the following conjecture of de Oliveira:

Conjecture II. Let A be an n x n doubly stochastic ir-
reducible matrix. If n is even, then f(z) — per (zl — A) has
no real roots; if n is odd, then f(z) = per (zl — A) has one and
only real root.

2* Preliminary results* Following the terminology of Harary
[6, 7, 8] we recall that with every digraph (with loops), D, we may
associate a binary matrix, A{D), the (point) adjacency matrix of D.
Conversely, with every binary matrix, A, we may associate a digraph,
D(A), which has A as its adjacency matrix. Given an n x n binary
matrix, A, let 1+(IJ) denote the number of linear subgraphs of D(A)
which contain an even (respectively, odd) number of cycles of even
length. Then as shown by Harary [6] det A = 1+ — Z_. Similar
reasoning yields the formula per A — 1+ + Z_.

LEMMA 1. If A is an n x n binary matrix with ones on the
diagonal, then per A = det A if and only if every cycle of D(A) is
of odd length. Moreover, if A is an arbitrary n x n binary matrix
and D(A) has only odd cycles, then per A = det A.

Proof. This is an obvious consequence of the relation between
the permanent, the determinant, and D(A).
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An n x n matrix, A, is said to be indecomposable if there does
not exist a permutation matrix, P, such that PAPT = Ax 0 A2 for
some matrices, Ax and A2; A is said to be fully indecomposable if
there do not exist permutation matrices, P and Q, such that PAQ =
Aγ © A2 for some matrices, A,, and A2.

LEMMA 2. Lei A be a binary "matrix with ones on the diagonal.
The following are equivalent:

( i ) A is indecomposable
(ii) A is fully indecomposable
(iii) G(A) is weakly connected.

Proof. This is a simple consequence of a result of Brualdi,
Parter, and Schneider [2; Lemma 2.3].

3* Constructions* The counterexamples we require can be gener-
ated through the proper use of the following three constructions. In
each construction the matrices A{ e Ufa; 3) satisfy per A — | det A \
and have only ones on the diagonal. This later condition is not
overly restrictive as any matrix in U(n; 3) can have its rows or
columns permuted to put it in this form.

It can easily be verified that in each construction the resulting
digraph has only odd cycles, and thus the corresponding matrix has
equal permanent and determinant. Furthermore, if the matrices At

are fully indecomposable, then so is the resulting matrix, as the
corresponding digraph is strongly connected.

Construction I. Let Al9 A2y , A2m+ι be given for some fixed
positive integer m. For each i (i = 1, 2, , 2m + 1) select from D(Ai)
an edge et from ut to vt. Form a new digraph G from Gt U G2 U U
G2m+1 by deleting the edges e< (i = 1, 2, , 2m + 1) and adding edges
from Ui to vi+ι (i = 1, 2, , 2m) and from u2m+1 to vλ. Clearly A(G) e
Uin, + n2 + + n2m+1; 3) and per A(G) = det A(G).

Construction II. Let Al9 A2, A3, and AA be given. For each i
(i = 1, 2, 3, 4) select from D(Ai) an edge e< from ut to vt. Let v0 be
an additional point. Form a new digraph G from Gλ U G2 U G8 U G4 U
K} by deleting the edges e< for i — 1, 2, 3, 4 and adding new edges
from Uj, to v2, from u3 to v4, from ô to vt and v8, and from u2 and ^4

to v0, and a loop at v0. Clearly A(G) e Ufa + n2 + % + nA + 1; 3) and
perA(G) = detA(G).

Construction III. Let Λ , Λ , , A4w+2 be given for some fixed
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positive integer m. For each i (i — 1, 2, •••, 4m + 2) select from
D(Ai) an edge e{ from % to v4 and form a new digraph G* by deleting
βι and adding two new points u\ and vj together with new edges
from Ui to u'i, from ^ί to v'if and from v{ to v{. Form the digraph G
from d U G2 U U G4m+2 by identifying the point pairs ?4-i and u'2i

for i = 1, 2, , 2m + 1, v« and vj<+1 for i = 1, 2, , 2m, and v'im+ί

and v[, and adding a loop at each of the resulting points. Clearly
A(G) 6 U{nγ + n2 + + ^4m+2 + 4m + 2; 3) and per A(G) = det

4* Conclusions* We are now ready to prove that Conjecture I
is false.

THEOREM 1. Conjecture I is false for k — 3. In fact for every
sufficiently large n there is a fully indecomposable matrix A e U(n; 3)
satisfying per A = det A.

Proof. Starting with the matrix C, Constructions I, II, and III
may be used to generate a family of fully indecomposable matrices
with equal permanent and determinant. It can easily be verified that
the family contains matrices of order n for all sufficiently large n.

The question of the existence of matrices in U(n; k) for k >̂ 4
with equal permanent and determinant remains open. It should be
noted, however, that should one such matrix exist for a given k,
then Constructions I, II, and III with the obvious modifications, may
be used to construct an infinite family of such matrices. The problem
of finding a good characterization of the matrices in U(n; 3) with
equal permanent and determinant also remains to be solved.

As to Conjecture II, while Datta [4] has shown that Conjecture
II is true for even n if A is symmetric and imprimitive; Hartfiel [9]
has produced counterexamples for n = 4 and 5; and Csima [3] has
produced an infinite family of counterexamples. Counterexamples for
all sufficiently large even n follow directly from the results of
Theorem 1. However, more can be said as follows:

THEOREM 2. For each n ^ 3 there is an n x n indecomposable
doubly-stochastic matrix An such that f{z) = per (zl — An) has n — 2
distinct real roots in (0,1).

Proof. Start with Az = J3, which is clearly satisfactory, and
continue inductively.

Suppose An_! satisfies the conditions of the theorem. The required
matrix, An, is constructed as follows. Let An(X) = \Jn + (1 — λ) ((1) 0
-An-i)> where Jn is the n x n matrix each of whose entries is 1/n.
Clearly An(X) is doubly-stochastic for O ^ λ ^ l and indecomposable
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for λ Φ 0. Let Bn(X, z) = zl - A»(λ), and let gw(λ, z) = per£%(λ,
Then

where (Aw(λ))ί:f is the entry of An(λ) in row i and column j , and
(<BΛ(λ, s))(i|i) is the matrix obtained from Bn(X, 2) by deleting row i and
column j . Observe that Bn(0,1) = (0) ® (I - An_0; hence for λ = 0,
2 = 1 all of the terms in the summation above, except the term for
i = j = 1, vanish. Thus

= (1 - i)pβr ( / -

It follows that for λ > 0 sufficiently small per (I - An(X)) Φ 0, so that
for such λ, z = 1 is not a root of per (zl — An(X)). As the roots of
per (zl — An(X)) are continuous, and, as shown by Brenner and
Brualdi [1], the real roots lie on (0,1], it must be the case that for
some λ0 > 0 per (zl — An(X0)) has n — 2 real roots in (0,1). Thus
the matrix An — An(X0) is as required, and the theorem is proved.
We believe that this result may be best possible in the sense that no
doubly-stochastic matrix other than the identity yields only real roots.
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