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EQUIVARIANT EXTENSIONS OF MAPS

JAN W JAWOROWSKI

This paper treats extension and retraction properties in
the category *$/9 of compact metric spaces with periodic maps
of a prime period p; the subspaces and maps in J^p are called
equivariant subspaces and maps, respectively. The motivation
of the paper is the following question: Let E be a Euclidean
space and α: E X E-> E X E be the involution (x, y) -> (y, x),
i.e., the symmetry with respect to the diagonal. Suppose
that Z is a symmetric (i.e., equivariant) closed subset of ExE
which is an absolute retract; that is, Z is a retract of E X E.
When does there exist a symmetric (i.e., equivariant) retrac-
tion Ex E-+ZΊ

This is an extension problem in the category J2/'p. If X
and Y are spaces in J£fp, A is a closed equivariant subspace
of X and /: A -> Y is an equivariant map, then the existence
of an extension of / does not, in general, imply the existence
of an equivariant extension. It is shown, however, that if A
contains all the fixed points of the periodic map and
dim(X— A) < oo, then a condition for the existence of an exten-
sion is also sufficient for the existence of an equivariant exten-
sion. In particular, it follows that a finite dimensional space X
in Sf 'p is an equivariant ANR (i.e., an absolute neighborhood
retract in the category Sf v) if and only if it is an ANR and the
fixed point set of the periodic map on X is an ANR. Generally
speaking, the paper deals with the question of symmetry in
extension and retraction problems.

l Preliminaries* Suppose that a group G acts on spaces X
and Y and that A is an equivariant subspace of X (i.e., A is stable
under the action of G). One can then ask for conditions for the
extistence of an equivariant extension of /; or for conditions under
which the existence of an extension of / implies also the existence
of an equivariant extension. A general theorem of this type is due
to A. Gleason [6] and R. S. Palais [12, p. 19]:

TIETZE-GLEASON THEOREM. Let G be an orthogonal group acting
on a Euclidean space E by means of orthogonal transformations
and let G act on a normal space X. Let A be a closed equivariant
subset of X and let f: A—> E be an equivariant map. Then there
is an equivariant extension g: X —+ E of f.

This theorem is proved by first extending the map / to some
map / : X—+ E which may not necessarily be equivariant: and then by
averaging /, using a Haar measure on G, to make it equivariant.
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Two facts play a crucial role in this proof: one is that E is convex;
and the other is that the action of G is linear. While the second condi-
tion is not necessarily restrictive (in view of results due to Mostow
[11]; Copeland and de Groot [2]; Kister and Mann [8]; the action of
G can be linearized), the first condition makes it impossible to apply
a theorem of this type to our original problem (these two conditions
are, in fact, related: by linearization of the map, the convexity of
the space may be distorted).

In this paper we consider actions of Zp, the cyclic group of a
prime order p. In order words, we consider the category j^> whose
objects are periodic homeomorphisms a: X —> X of a prime period p on
a space X; i.e., ap = 1. An object a:X—>X in sfv will also be
denoted by (X, α), or simply by X, if the periodic map a is known.
A morphism in J^fp from (X, a) to (Y, b) is a map /: X —> Y consistent
with the periodic maps a and b; it will be called an equivariant map.
A subspace A of X is said to be equivariant if it is stable under α,
i.e., if a A a A. If A is an equivariant subspace of X then the periodic
map A—*A defined by the restriction of a:X—>X of A will some-
times be denoted by aA: A—> A.

The set of the fixed points of a map a: X—»X will be denoted
by F(a). If a:X—>X is a periodic map of a prime period p then
F(a) = F(ag), for evey q = 1, p — 1.

An example of a theorem which carries over to the category Ssfv

in a way similar to that of the Tietze theorem is the Dugundji
extension theorem. In the category s*fp it can be stated as follows:

DUGUNDJI EQUIVARIANT EXTENSION THEOREM (in the category
Let (X, a) be a space in J%?p such that X is metrizable and let A be
an equivariant closed subspace of X. Let L be a locally covex vector
space with a linear periodic map b: L —• L of period p and let Q be
an equivariant convex subspace of L. Let f: A—>Q be an equivariant
map. Then f can be extended to an equivariant map g: X—+Q.

The proof is the same as that of the Tietze-Gleason theorem.
By the Dugundji extension theorem there exists an extension /: X —*
Q. We define an equivariant extension g by

g = 1 ± b^ofoa1.

In other words, this theorem says that (L, bL) is an "absolute
extensor" in this category of spaces. One can likewise introduce the
definitions of "absolute neighborhood extensor", "absolute retract"
and "absolute neighborhood retract" in the category s*fp or in other
similar categories.
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Returning to our original problem of the existence of an equiva-
riant retraction, let us now state it as follows (in the case of compact
metric spaces):

Question I. Let Q be a Hubert cube and let a: Q —* Q be a perio-
dic map of a prime period p such that a is linear with respect to
the linear structure on Q. Let Z cz Q be an equivariant closed sub-
space of Q which is a retract of Q. When does there exist an equiva-
riant retraction Q —> ZΊ

First, it is known that if X is any separable metric space with
a peiodic map a: X—>X of period p then there exists an equivariant
embedding of X in a Hubert cube with a linear, even a distance
preserving, map of period p. Such an embedding is known as a
linearization of (X, α) (see [2], Theorem II). We choose any embedding
X a Q and then define an equivariant embedding X —• Qv by

x \—> (x, ax, , ap~1x) .

Thus the periodic map becomes a cyclic permutation of the coordinates
of Qp (in fact, our original case was of the involution Ex E —> E x E
of this form). Similarly, if dim X < oo, then X can be equivariantly
embedded in a finite-dimensional cube In with an isometric periodic
map.

Returning to Question I, let us assume therefore that there exists
an equivariant retraction r: Q —»Z. Consider the fixed point sets
F(a) and F{az) of the map a on Q and Z, respectively. Then r defines
a retraction of F(a) to F{az). But since a is linear, F(a) is a compact
convex subset of Q and hence an absolute retract (it is, in fact, homeo-
morphic to Q or to a finite-dimensional cube: see [7] and [9]). There-
fore the fixed point set F{az) of a would have to be an absolute
retract; and this need not necessarily be the case, since there is the
following example due to E. E. Floyd [4].

Floyd's example. There exists a 5-dimensional compact contractible
polyhedron Z with an involution a: Z-+ Z whose fixed point set F{az)
is not contractible; in fact, H^Fiaz)) Φ 0.

Similarily, one can construct an example of a compact AR Z with
an involution α: Z-+Z such that jP(α )̂ is not an ANR.

Thus, in Question I, the condition that both Z and F(az) be AR's
is necessary for Z to be an equivariant retract of Q; similarly, the
condition that Z and Fa(Z) be ANR's is necessary for Z to be an
equivariant neighborhood retract of Q. Consequently, the question
arises as to whether these conditions are also sufficient.
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Let us specify our questions as follows:

Questions. Let Q be a Hubert cube with a linear periodic map
a: Q —• Q of period p and let Z be an equivariant closed subspace of Q.

Question Γ. Suppose that both Z and the fixed point set F{az)
of a are AR's. Is Z an equivariant retract of (Q, α)?

Question I". Suppose that both Z and F(az) are ANR's. Is Z
an equivariant neighborhood retract of an equivariant neighborhood
of Z in Q?

The main result of this paper is to show that if p is prime and
the dimension of Z in finite then the answer to Questions / ' and J "
is affirmative. In fact, the following theorem will be proved:

THEOREM 1.1. Let X be a compact metric space with a periodic
map a: X—* X of period p and let A be an equivariant closed subspace
of X containing all the fixed points, of a and such that dim (X — A) <
oo# Let Y be a compact metric space with a periodic map b: Y—+ Y
of period p and let f: A—+Y be an equivariant map. Then:

( i ) If Y is an AR, then there exists an equivariant extension
g: X-> Y of f over X;

(ii) If Y is an ANR, then there exists an equivariant extension
g: U—+Yoff over an equivariant neighborhood U of A in X.

We can now use Theorem (1.1) to answer our questions in the finite-
dimensional case; in fact, we use part (i) to answer Question / ' and part
(ii) to answer Question J". Let us consider, for instance, the case (i) and
/'• Since dim Z< oo, there is an equivariant embedding of (Z, az) in an
w-cube In: that is, an equivariant homeomorphism of Z onto an equi-
variant subspace Z' of In with a periodic map b:In~+In (which can
even be assumed isometric). Let us apply Theorem (1.1) to X — In,
A = Z' U F(b) = Y and / = 1A (the identity map A — A). By Theorem
(1.1), there exists an equivariant retraction r: In —»A. Since F{bz) is
an AR, there exists a retraction q: F(b) —• F{bz,). The retraction q
defines a retraction qf\ A—*Zf by extending via the identity Zf —> Z\
The composition qΌr is an equivariant retraction of In to Zf. Now,
since In can be embedded as an equivariant retract of Q, it follows
that Z is an equivariant retract of Q.

Similarly, part (ii) of Theorem (1.1) yields an affirmative answer
to Question I".

The proof Theorem (1.1) uses the classical method of replacing
X— A by the nerve of a covering adjusted to the equivariant category.
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It works, however, only under the assumption dim (X — A) < oo.
It is an open question whether this finite-dimensional assumption in
Theorem (1.1) is essential.

The main results of this paper have been announced in [6].

2* Linearization* We summarize some results on linearization
of periodic maps (see [2]). Given a space Z, we denoted by c(p, Z)
the periodic map of the p-fold Cartesian product Zp defined by
(zί9 , zp) —> (zp, zl9 , zp_i) i.e., c(p, Z) is a cyclic permutation of the
coordinates.

(2.1). If Z is a vector space then (Zp, c(p, Z)) is a vector space
with the periodic map c(p, Z) being linear with respect to the product
vector space structure.

(2.2). If Z is a metric space then c(p, Z) is isometric (i.e., distance
preserving) with respect to the product metric in Zp.

(2.3). If (X, a) is an object in Szfv and there is an embedding
h: X —> Z of X in a space Z, then there is an equivariant embedding
of (X, α) in (Zp, c{p, Z)) defined by x H> (hx, h(ax), , ^(α*-1^)).

In particular

(2.4). If (X, α)is an object of J%fp such that X is a compact metric
space, then there is an equivariant embedding of (X, a) in (Q, c) where
Q is a Hubert cube with an isometric map c: Q —»Q of period p. If
dim X < oo, then there is an equivariant embedding of (X, a) in
(/*, c), where In is a finite-dimensional cube with an isometric periodic
map c: In —> In of period p.

Let us also note that if (V, a) is a vector space with a linear
periodic map a: V —> V of period p and Z is an equivariant convex sub-
set of V then the equivariant embedding h: x ι—• (hx, h{ax), , h{ap~ιx))
carries Z onto a convex subset of (Vp, c(p, F)). In particular, an
w-cube (In, a) with a linear periodic map α: In —•> /% can be equivariantly
embedded as a convex subset of (Q, c), where Q is a Hubert cube
with a linear periodic map c: Q~>Q. Using the Dugundji equivariant
extension theorem we obtain the following corollary:

(2.5) If (In, a) is an w-cube with a linear periodic may a: I% —> In

of period p then (/% α) can be equivariantly embedded as an equiva-
riant retract of a Hubert cube (Q, c) with a periodic map c: Q —> Q.

3. Retracts and extensors in the category J^,* We summarize
the definitions and main properties of retracts and extensors in the
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category j^> of spaces with Z^-actions (compare Palais [12], p. 25)
which are usually called Z^-retracts and Z^-extensors. Since the prime
integer p and the group Zp is fixed throughout the paper (except
where the results are specialized to the case p = 2), we shall simply
call them equivariant retracts and equivariant extensors.

DEFINITION 3.1. An object (Y, b) of j&% is said to be an equiva-
riant absolute extensor (abbreviated to EAE) if given an object (X, a)
of szfv such that X is a metric space, given a closed equivariant sub-
space A of X and given an equivariant map /: A —> Y, there is an
equivariant extension g: X—•> Y of /.

An object (Y, b) of Safv is said to be equivariant absolute neighbor-
hood extensor (EANR) if given (X, a), A and / as above, there is an
equivariant extension g: U —> Y of / over some equivariant neighbor-
hood U of A in X.

DEFINITION 3.2. An object (X, a) of sfv is said to be an equiva-
raiant absolute retract (abbreviated to ERA) if X is a metric space
and for any equivariant imbedding h: (X, a) —• (Y, b) in an object (Y, b)
of s*fp such that Y is a metric space and hX is closed in Y, the image
hX in an equivariant retract of (Y, b).

An object (X, a) of s>fv, where X is a metric space, is said to
be an equivariant absolute neighborhood retract (EANR) if given
h: (X, a) —• (Y, b) as above, the image hX is an equivariant neighbor-
hood retract of (Y, b).

The following theorems are proved in the same way as in the
topological category:

THEOREM 3.3. An equivariant retract of an EAE is an EAE;
an equivariant neighborhood retract of an EANE is an EANE.

THEOREM 3.4. A Hilbert cube (Q, c) with a linear periodic map
c: Q —» Q of a prime period p is an EAE.

This is, in fact, a particular case of the Dugundji extension
theorem in the category jyj (§1).

THEOREM 3.5. Let (X, a) be an object of ,s*fp such that X is a
compact metric space. Then the following conditions are equivalent:
( i ) (X, a) is an EAE.
(ii) (X, a) is an EAR.
(iii) (X, α) can be equivariantly embedded as an equivariant retract
of (Q, c), where Q is a Hilbert cube with an isometric periodic map
c: Q-+Q of period p.

Similarly, the following conditions are equivalent:
(iN ) (X, a) is an EANE.
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(iiN) (X,a) is an EANR.
(iiiN) (N, a) can be equivariantly embedded as an equivariant neigh-
borhood retract of (Q, c)y where (Q, c) is as above.

Moreover, if dim X < °o, then the Hubert cube (Q, c) can be
replaced by a finite-dimensional cube In with an isometric involution.

Theorem (3.5) is proved by using the linearization embeddings
(§2).

COROLLARY 3.6. The following objects of Ssfp are equivariant
absolute retracts:
(1) A Hilbert cube (Q, c) with a linear periodic map c:Q—>Q.
(2) An n-cube (In, c) with a linear periodic map c: Q-+Q.

4. Equivariant coverings and replacement by polyhedra* In
this section we describe the classical constructions due to Kuratowski
[10] and Dugundji [2] which are used in extending maps. We adjust
them spaces with periodic maps, but we restrict ourselves to compact
metric spaces.

The following notation will be used: diam S is the diameter of a
subset S of a metric space X; B(x, ε) is the open ball in X of center
x and radius ε; and Conv S is the convex hull of a subset S of a
linear space L.

Let a be a collection of subsets of X. If Uea, then StaU is
the union of the members of a which meet U. We say that Ord a <;
n if every collection of n + 1 members of a has an empty intersec-
tion. If X is an object of j ^ v with a periodic map α:X—>X, let
aa={aQU\Uea, q = l, •••,# — 1}; the collection a is said to be equiva-
riant if aa = a.

COVERING LEMMA 4.1. Let (X, a) be an object of ,s*fp such that
X is a compact metric space and let A be an equivariant closed

subspace of X containing the fixed point set F(ά) of a. Let a be an
equivariant open cover of X — A. Then there exists an equivariant
countable open cover β of X — A which is a refinement of a and
satisfies the following conditions:
( i ) linve/5 (diamC/) = 0
(ii) If Ueβ then CWaX- A.
(iii) Every neighborhood of A in X contains all but a finite number
of elements of β.
(iv) For every Ueβ, the sets StβU, a{StβU), , a^StβU) are mutu-
ally disjoint.
(v) If dim (X - A) ^ n then Ord β ^ p{n + 1).
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Proof. We can assume that d is an equivariant distance function
on X, i.e., that a: X—>X is isometric. Let Ao = X,

A, = \x eX\d(x, A)< 1 } , i = 1, 2, •

d = Cl (4,) - 4 < + 1 , i = 0,1,

The sets C{ are compact. Since p is prime, the group Z9 acts
freely on X — A, i.e., for every x e X — A, the orbit {x, ax, , av~ιx}
consists of p distinct points. It follows that, for each i — 0,1, •••,
there is a positive number % such that

(4.2) d(x, apx) ^ rji for every q — 1, , p — 1 and x e d

For each i = 0, 1, , there is a finite open cover 7* of Q by
open balls in X with centers in C; and radii r< > 0 such that 7* is a
refinement of # and

(4.3) r t ^ 2-ί~3

(4.4) r<+1 ^ i - r ,

(4.5) 67ί ^ ηi+ι .

Let /3; = Ίi U α(7<) U U α?>~1(7ί) and β = /50 U /Si U . Then /3
is an equivariant countable open cover of X — A and is a refinement
of a since α is equivariant. Conditions (i), (ii) and (iii) follow directly
from the construction of β.

Let us verify condition (iv). Observe that by (4.3) and (4.4), and
since the map a is isometric, every member of β is an open ball
contained in A^_γ — Cl (Aj+1), for some i = l, 2, . Thus if a member
V of β meets a member U of /9* then F e β^ (J /Si U /3;+i and, by
(4.3) and (4.4), U and F are open balls of radii <: r ^ ^ 2~ί~2.

Since the map a: X—> X is isometric, to prove condition (iv) it
suffices to show that (StβU) Π (ag(StβU)) = 0 for each ?7e/3 and q =
1, •••,# — 1. Let Z7e/3 and suppose that J7e/S*. Then the center
x of the open ball U is in C .̂ By the remark above, for every y e
Sί^ Z7 we have d(x, y) < rt + 2ri_ι < βr^!. If we suppose that (Stβ U) Π
(aq(StβU)) Φ 0 for some q — 1, •••, p — 1, then, since the map α is
is isometric, it would follow that d(x, aqx) < βr^! ^ ^ , which contra-
dicts to (4.5) and (4.2).

Suppose now that dim (X — A) ^ n. Then the open cover β has
an open refinement ω of order ^ w + 1. Since C< is compact, there
is a finite subcollection ω, of ω which covers d Let βl — ω{ U

U U α*""1^) and /3' = /3ί U β[ U . Then β' is an equivariant



EQUIVARIANT EXTENSIONS OF MAPS 237

countable open refinement of β which satisfies the conditions corre-
sponding to (i), (ii) and (iii). Condition (iv) for β' follows from the
fact that it holds for β and that β' is a refinement of β.

Let us verify condition (v). Suppose that σ is a subcollection of
βf containing p distinct elements whose intersection is nonempty. For
each Weσ, there is an integer q, 0 ^ q < p, such that aqWeω; let
q(W) denote the smallest integer with this property. Then this
defines a map q: σ —> {0, , p — 1}. Note that Card q~\j) ^ n + 1, for
each j = 0, •••, p — 1. For if Wo, •••, Wr are distinct elements of
q~ι{j), then a''(W0), , α'XTF,) e ω and α'(W0) Π Π as(Wr) Φ 0 and,
consequently, r <̂  π, since Ord ω ^ n + 1. Since tf = q^φ) U U
q~ι{p — 1), it follows that Cardσ ^ p-(n + 1).

This completes the proof. Let us observe that conditions (i),
(ii) and (iii) imply the following lemma.

LEMMA 4.6. If β is a cover constructed in Lemma (4.1), then for
every xe A and for every neighborhood V of x in X there exists a
neighborhood W of x in X such that if Ue β and U' Π W' Φ 0 then

V.

(4.7) LEMMA (Replacement by polyhedra). Let (X, a) be an object
of jyp such that X is a compact metric space and let A be an equiva-
riant closed subspace of X containing the fixed point set F(a) of α.
Then there exists an object (Z, c) in <SsfP such that Z is a Hausdorff
space with a periodic map c: Z-+Z and:
( i ) Z contains A as an equivariant subspace.
(ii) Z— A has a countable locally finite triangulation K, \K\ — Z— A,
such that the map c is simplicial and free on K.
(iii) There is an equivariant map of pairs: (X, X— A)—*{Z, \K\) which
is the identity on A.
(iv) There is an equivariant retraction r°: A U I K° \ —> A.
(v) If dim (X - A) ^ n then dim K ^ p (n + 1) - 1.

Proof. Let β be an equivariant open over of X — A satisfying
the conditions of the Covering Lemma (4.1). Let K be the nerve of
β and Z be the disjoint set sum of A and \K\. Given a member U
of β, we shall also be denoting by U the vertex of K corresponding
to U; and StLU will denote the open star of the vertex U in the
complex K, while Stβ U will, as before, denote the union of the members
of β intersecting U.

For a subset S of X, let S denote the union of A Π S and of the
open stars of the vertices corresponding to the members of β which
are contained in S; i.e., S = (A f] S) U (U [StKU\Ua S]). The space
Z is topologized by means of the subbasis consisting of all the open
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subsets of \K\ and all the sets of the form U, where U is an open
subset of X.

Before we proceed with the rest of the proof, we shall establish
the following lemma:

LEMMA 4 8. For every x e A and every neighborhood V of x in
X, there is a neighborhood Ov of x in Z such that if y eθv Π (Z — A)
and s is an open simplex of K containing y then all the vertices
of s (as members of the cover β) are contained in V.

Proof. Given a neighborhood F, we choose a neighborhood W
of x according to Lemma (4.6). Let Ov = W. Then if y e Ov Π (Z — A)
and s is the carrier of y in K, some vertex U of s is contained in
W; and all the other vertices are contained in V since they meet
Ua W.

Continuation of the proof of (4.7). The fact that Z is Hausdorίf
follows readily from lemma (4.8). Since the cover β is equivariant,
it follows that a: X-+X defines a periodic map on K which, together
with the map α, define a periodic map c\Z—*Z of period p. The
continuity of c follows from the fact that β is equivariant; and con-
dition (iv) of (4.1) implies that the map c is free on K. Thus condi-
tions (i) and (ii) hold.

The map μ: (X, X — A) —»(Z, Z — A) of condition (iii) is defined
by the identity on A and a canonical map X— A—>\K\ of X— A
into the space of the nerve of the covering β which can be described
as follows: if x e X — A, then the barycentric coordinates of μx with
respect to the vertex U of K is

d(x, X - U)
Σ(,X- U)

Veβ

Since β is equivariant and the map a is isometric with respect
to d, it follows that μ:X—>Z is equivariant. The continuity of μ
follows easily from the definition of the topology, just as in [2].

A retraction r°: A U I K°\ —> A may be defined as follows. Let Λ°
denote the set of orbits of the map c on K° and let φ: Λ° —• K° be
any cross-section of the identification map K°-+Λ°. Let N° = φ(Λ°).
Since c acts freely on K°, it follows that K° is the disjoint union
K° = N° U c(N°) U U ^-'(N0); thus for each vertex V of K° there
is a unique vertex U of N° and a unique integer j , 0 ^ j < p, such
that V = cjU. Given a vertex U of N°, let r°U denote any point of
A such that d(U, A) = d(U, r°U) (such a point exists since A is com-
pact). If V is any vertex of K°y choose UeN° and an integer j as
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above such that V = cjU and define r°V = aj(r°U). Since the map a
is isometric, we have d(V, A) = d(V, r°V). Defining r° to be the identity
on A, we obtain a retration r°: A U | K° | —• A. To prove the continuity
of r°, it suffices to consider the restriction r°\(A U iV0), since the sets
A U (ajN°) are closed and the intersection of any two of them is A.
Thus let U be a vertex of AT0, let s = r°U and let £ = B(z, ε) be an
open ball with center 2 and radius ε. Let V = B{z, ε/3) and let Ov

be a corresponding neighborhood of x in Z satisfying the assertion of
Lemma (4.8). Then r\(A U NQ) Π Ov) a B. Moreover, r° is equivariant
by its definition.

Now, if Aim {X-- A) <L n, then by (4.1), (v), Ord β ^ p(n + 1)
and hence dim K ^ p(w + 1) — 1. This proves condition (v).

REMARK. One can easily show that the space Z is, in fact, com-
pact and metrizable.

5* Proof of the extension Theorem (1*1)* By (2.4) we can
assume that Y is an equivariant subspace of a Hubert cube Q with
an isometric periodic map b: Q —> Q of period p such that the map
Y—> Y is the restriction of δ.

We shall first prove case (ii) of (1.1). Suppose that Y is an ANR.
Then there is an equivariant compact neighborhood C of Y in Q and
a (not necessarily equivariant) retraction r: C—>Y. Let δ = d(Y, Q—C);
then δ > 0. By the uniform continuity of r there exists a function
η: R+ —* R+ (R+ = the set of positive numbers) below the diagonal
(η(έ) ̂  ε) such that

(5.1) If y e C and d(y, Y) ^ rj(ε) then d(y, ry) ^ ε.

Consequently, d(¥y, bjry) g ε, for every j = 0, , p — 1, since 6
is isometric.

Let n — p (dim (X — A) + 1) — 1. Define a sequence of positive
numbers ε0, « ,εΛ as follows:

(5.2) ε% = δ ; εw_, = - W - M for 0 < m ^ w .
2 V 4 /

By the uniform continuity of / there is a ς > 0 such that if x9 x' e
A and d(x, xf) S ξ then d(fx, fxf) £ ε0.

Let (Z, c) be a space with a periodic map c: Z—> Z of period p,
a triangulation if of Z — A, an equivarient map μ:X—>Z and an
equivariant retraction r°: A\J \K°\—> A as provided by the Replace-
ment Lemma (4.7). Let L be the subcomplex of K consisting of the
simplices s of K such that d(r°U, r°V) < ξ for all vertices Z7, F of s.
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LEMMA 5.3. A U \L\ is an equivariant neighborhood of A in Z.

Proof. Let zeA. By the countinuity of r° there is a neighbor-
hood N of z in Z such that d(r°U, z) < ξ/2 for every Ue (A U K°) Π
i\Γ. Thus JWC A U | £ | since every simplex of K in JV is in L.

We shall construct an extension of / over A\J\L\. By induc-
tion, we construct a sequence of equivariant maps

hm:AΌ\L™\ >Y

such that hm extends hm_γ and that the following condition (5.4.m)
holds:

(5.4.m) diam (hms) <. εm , for each m-simplex s of Lm .

Define hQ: A (J |L°| -> Γ by &0ί7 = /r oi7, for each vertex U of L.
Suppose that hm^: A U 11/™"11 —̂  F is defined so that condition (5.4.m-l)
holds. Let M = Lm — Lm~1 be the set of the m-simplices of L; and
let Λ denote the set of orbits of the simplices of M under the map
c. Let φ: Λ—*M be any cross-section of the identification map Λf—•
Λ and N = φ(Λ). Since c acts freely on ίΓ, it follows that M is the
disjoint union M — N (J (cJV) U U {cp~1N) and thus for each simplex
t of M there is a unique simplex s of N and a unique integer i, 0 ^
j < p, such that £ = cys.

By (5.4.m-l) we have for each simplex s of M

diam (/^(s)) ^ 2sm_1

and 2εm_x ^ ^(εm/4) ^ εm/4 ^ δ. Therefore Conv (hm^(s)) c C.
Let t be a closed m-simplex of Λf. Choose a simplex s oΐ N and

an integer i, 0 ^ i < p, such that £ = cjs; thus £ e cW. The map
hm-ι I s: s —* F c C, where s is the boundary of s, can be extended in
Conv (/v-i(s)) to a map u: s-+C. Then both % and row. s —> Y extend
ftw_i|s. Note that if sees then by (5.2),

d(ux, Y) £ 2εm_1 = V{ϊf

and by (5.1),

d(rux, ux) ^ — .
4

Therefore

(5.5) diam ((ru)s) <̂  diam
4 4 2
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Let v{t): t-> Y be defined by

(5.6) v{t) = bjorouocp-j .

Then the map v{t) agrees with ^W_L on i, since hm^ is equivariant.
It follows that the maps vιt), teM, together with hm_u define an
equivariant map

hm:A{j\Lm^\[J \M\ = A\J \Lm\ > Y.

The fact that hm satisfies the inductive condition (5.4.m) follows
from the fact that v{t\ teM, satisfies it by (5.5), (5.6) and since b is
isometric.

This completes the inductive step of the construction of hm. The
maps hm define a map h: A U | L | —» Y by h \ (A U | L |) = hm. The map
h is continuous on | L \ since it is defined simplicially there. Hence,
it suffices to prove the continuity of h on A. Let z e A and let
B(hz, ε) be an open ε-ball in Y with center fz = hz. Let en = (l/2)e
and let positive numbers e0, •• ,ε%_1 be constructed as in (5.1). By
the continuity of the maps

AU | i P | - ^ - > A — Y

there is a neighborhood G of z in Z such that f(A Π (?) c B(fzf ε/2),
G Π \K\ is the union of open simplices of K, and for each simplex s
of K in G, fr°(s°) c B(fz, εo/2) (here s° denotes the set of the vertices
of s). Then diam (s°) < ε0 and, by the construction of (5.1), it follows
that diam (hs) < ε/2. Therefore hG c B(hz, ε). This completes the
proof in case (ii).

In case (i), when Y is an AR, there is retraction r: Q—• Y, i.e.,
we may take C = Q, which is convex. In this case the construction
simplifies: we may take εn = oo which makes conditions (5.1) and (5.2)
vacuous and L = K. By inductions we can define a map λ: A U I -K"| —•
Y as before. The continuity of h must, however, be proved as in
case (ii), by using the numbers defined in (5.1).

In either case, we have constructed a symmetric map h: A U
ILI —• Y, where A U IL | is a symmetric neighborhood of A in if in case
(ii) and L = iΓin case (i). Define g = ho μ\μ~ι(A \J\L\): μ~\AU |L|) —
Y. Then h is a symmetric extension of / over the symmetric neigh-
borhood μ~\A U IL I) of A in X which in case (i) is the whole of X.

This completes the proof.

6* Equivariant absolute retracts*

THEOREM 6.1. Let (X, a) be an object of Ssfp such that X is a
compact metric space with dim X < oo. Then:
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(i) X is an EAR iff both X and the fixed point set F(a) are ARys.
(ii) X is an EANR iff both X and the fixed point set F{a) are ANR's.

Proof. By (2.4) we can assume that (X, a) is equivariantly
embedded in a finite-dimensional cube In with an isometric periodic
map a: In —• In of period p which we still denote by a: In —> I*. Let
F = F(ajn); then F{ax) = f n l .

We shall prove case (ii); case (i) is just simpler and was done
in § 1. If X is an EANR then there is an equivariant retrac-
tion r: W —> X of an equivariant neighborhood W of X in In to X.
The retraction r defines a retraction of ί7 Π W to f i l l . Since
α: In —• /% is isometric, ί7 is convex and compact, hence it is an AR
(in fact, it is homeomorphic to a cube). Thus both X and F f] X are
ANR's.

Suppose now that both X and F Π X are ANR's. Then by the
Addition Theorem for ANR's ([1], p. 90), it follows that F u l i s an
ANR. By the Equivariant Extension Theorem (1.1), the identity
F [J X—* F {J X can be extended to an equivariant retraction r: U—*
F l) X, where U is an equivariant neighborhood of F U X in I*. Since
F Γ) X is an ANR, there is a neighborhood V of F Π X in i*7 and a
retraction g: F ^ F n l . Note that V U -X" is a neighborhood of X
in f u X Let £70 = r~ι{V Π X). Then ?70 is an equivariant neighbor-
hood of X in 7W and the map Uo —• X defined by a π qτ& is an
equivariant retraction of Z70 to X.

Since the cube In with an isometric periodic map period p is an
EAR (see (3.6)), it follows that X is an EANR

We thus have an answer to our original question.

COROLLARY 6.2. Let E be a Euclidean space, let F be the diagonal
ofExE and let X be an equivariant compact subset of E x E (with
respect to the involution (x, y) —> (y, x)). Then X is an equivariant
retract of E x E if and only if X is a retract ofExE and F Γ) X
is a retract of F.

For, in this case, F is the fixed point set of the involution E x
E->E x E.

Just as in Theorem (1.1), it is an open question whether the finite-
dimensional assumption in Theorem (6.1) is essential:

Question 6.3. Does there exist a space with an involution α: X x
X such that both X and the fixed point set F(a) are AR's but X is
not an EAR?

More specifically, let Q be a Hubert cube and consider the sym-
metry Q x Q —> Q x Q with respect to the diagonal F of Q x Q. Let
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X be a symmetric subset of Q x Q such that X is a retract of Q x
Q and F Π X is a retract of i*7. Does there exist a symmetric retrac-
tion of Q x Q to XΊ

7* Equivariant homotopy• As an application of the previous
results, we prove in this section two equivariant homotopy extension
theorems.

DEFINITION 7.1. If (X, α) is an object of J*fp and I is the unit
interval then an equivariant homotopy is an equivariant map h: X x
/—» Y to an object (Γ, δ) of j^J, where the periodic map on X x I
is αxlj Ix/^Ixί,

If A is an equivariant subspace of X then the maps a and c x l y

define a periodic map (α x 1Z)Γ: T — T, where Γ = ( I x {0}) U (A x I ) c
I x / ; it is the restriction of a x 17. The following lemma is an
equivariant version of the Dowker lemma used in extending homo-
topies:

LEMMA 7.2. Let (X, a) be an object of J^fp such that X is a
metric space, let A be a closed equivariant subspace of X and let
g: (T, (a x lj)τ)-+(Yf b) be an equivariant map, where (Y, b) is an
object j^ς. // g can be extended to an equivariant map gr\ U—>Y
of an equivariant neighborhood U of T in X x I then g can be extended
to an equivariant map h: X x / —» Y.

Proof. Choose an equivariant neighborhood V of A in X such
that (CIV) x la U and an equivariant Urysohn function u:X—+I
which is 1 on A and 0 on X — V; for instance, u may be defined by
using an equivariant distance function d on X with the usual formula:

ux = d(x,X-V)
d(x, A) + d(x, X - V)

Then we define h(x, t) = g'(x, (ux)'t).

THEOREM 7.3. Let (X, a) be an object of JVP such that X is a
metric space, let (Y, b) be an EANE and let f: X-+Y be an equiva-
riant closed subspace of X. Then any equivariant homotopy of f\A
can be extended to an equivariant homotopy of /.

This follows from (7.2) and (3.1). Similarly, (7.2) and (1.1) yield
the following result:

THEOREM 7.4. Let (X, a) be an object of J%fp such that X is a
compact metric finite-dimensional space, let A be a closed equivariant
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subspace of X containing all the fixed points of a, let (Y, b) be an
object of S$7V such that Y is a compact ANR, and let f: X—+ Y be an
equivariant map. Then any equivariant homotopy of f\A can be
extended to an equivariant homotopy / .

The author is indebted to Richard J. Allen who read the manu-
script and helped to remove many mistakes.
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