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MAXIMAL SUBFIELDS OF TENSOR PRODUCTS

BurToN FEIN AND MURRAY SCHACHER

Let D, and D; be finite-dimensional division rings with
center K such that D; @x D: is a division ring. If L; and L.
are maximal subfields of D; and D., respectively, then clearly
L, ®x L, is a maximal subfield of D; ®x D.. In this note
the converse question is considered: does there exist a
maximal subfield L of D; @x D, which is not isomorphic to
L:®x L; for maximal subfields L; and L. of D; and D?
Examples are given to show that such noncomposite L may
fail to exist even when K is a local field. For K an algebraic
number field, however, it is shown that infinitely many non-
composite I, always exist.

We say that a division algebra with center a field K is a
K-division ring if it is finite-dimensional over K. Throughout this
note D, and D, will denote K-division rings such that D, @z D. is
a K-division ring. We say that a maximal subfield L of D, @ D,
is a composite if L = L, @x L, where L, and L, are maximal sub-
fields of D, and D,, respectively.

A gsufficient condition for D, @x D, to be a division ring is for
(ID:: K], [D,: K]) =1 [2, Theorem 10, p. 52]. This condition is
necessary if K is either an algebraic number field or a local field
since for these K the exponent of a K-division ring equals its index
[2, Theorem 25, p. 144, and Theorem 32, p. 149]. This condition is
not, however, necessary for K arbitrary, as is shown in [1]. We
begin by determining, for the case when ([D;: K], [D;:K]) =1
necessary and sufficient conditions for a maximal subfield of D, @z D,
to be a composite.

THEOREM 1. Let D, and D, be K-division 7rings such that
(ID,: K1,[D,: K]) = 1, and let L be a maximal subfield of D, @x D,.
Then L 1s a composite if and only if L has subfields L, and L,
with [L,: K)* = [D;: K] and [Ly: KI* = [D,: K].

Proof. Let n;=[D;: K|'?, 1=1,2. If L, is a maximal sub-
field of D, then [L;: K] =mn,; i =1,2. It follows thatif L = L, ®x L,
is a composite with L; a maximal subfield of D;, then [L;: K] = n,,
1+ = 1,2. This establishes one direction of the Theorem.

Suppose now that L has subfields L, and L, with [L;: K] = n,,
1 =1,2. Since L is a maximal subfield of D, @xD. we have
[L: K] = nym,. As (n, m,) = 1, it follows that L = L, ®@x L,. Thus
to conclude L is a composite we need only show that L; splits D,
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1=1,2 [2, Theorem 27, p. 61]. We have (D, @xD,) ®xL =
(D, @x L) @:, L] @, [(D. @x L) @;, L]. Since L splits D, @y D,,
(D ®@x L)@, L = A, is in the class of the opposite algebra of
A, = (D, @x L) @;, L in the Brauer group of L. In particular, these
algebras have the same exponent. Since (n,, 7,) = 1 and the exponent
of A; divides n;, it follows that A, and A, are complete matrix algebras.
Thus L splits D, @x L,. Since n, is prime to [L: L,] = n,, L, splits
D,. Similarly, L, splits D,, proving the proposition.

COROLLARY 2. Let D, and D, be K-division rings such that
(ID: K], [Ds: K]) =1 and let L be a maximal subfield of D, ®x D,.
If L is Galois over K with solvable Galois group, them L is a com-
posite. In particular, if K is a local field and L is Galois over K,
then L 1s a composite.

Proof. Take G; to be a Hall subgroup of order [D,: K]'* of the
Galois group of L over K. Let L, and L, be the fixed fields of G,
and G,, respectively. Then L = L,@®x L,, and L is composite by
Theorem 1. The final assertion of the corollary follows from the
result that Galois groups over local fields are solvable [6, Proposi-
tion 3.6.6, p. 101].

Corollary 2 is false without the restriction that L have a
solvable Galois group. By [5, Theorem 9.1, p. 472] there is a field
K, a K-division ring D, and a maximal subfield L of D such that
L is a Galois extension of K with group A;. By [2, Theorem 18,
p. T, D= D, @®x D, where D, and D, are K-division rings with
D, of index 20 and D, of index 3. However, L clearly has no sub-
field L, with [L,: K] = 3, since A; has no subgroup of order 20.

Theorem 1 is false without the assumption that ([D;: K], [D,: K])=
1. In [1] an example is presented of two quaternion algebras D,
and D, central over a field K such that D, @x D, is a cyclic division
algebra. If L is a maximal subfield of D, @x D, with L | K cyclie,
then L contains a subfield of degree two over K but is not a com-
posite as composites would have Galois group Z, X Z,.

While one might expect that there should always exist maximal
subfields of D, @x D, which are not composites, this is not the case
even when K is a local field. Our next result treats the case when
K is local and [D, ®x D.: KI'* is a product of two primes. The
general case may be expected to be much more complicated.

THEOREM 3. Let p and r be distinct primes, p <r, and let K
be a local field with residue class field GF(q) where ptq, rtq. Let
D, and D, be K-division rings of indices p and r respectively. If
either ptr —1 or g =1(mod pr), then every maximal subfield of
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D, @x D, is a composite. If p|r —1 there are infinitely many
primes q and Q,-diwision rings D, and D, (where Q, is the q-adic
field) of indices p and r, respectively, having wmaximal subfields
which are mot composites.

Proof. Suppose ptr — lor ¢ =1 (mod pr). Let L be a maximal
subfield of D, ®x D, Then [L: K] = pr. Since ptq, r/q, L is
tamely ramified over K. L will have subfields of degrees » and r»
over K if L is either unramified or totally ramified over K. From
Corollary 2 we also see that L will be a composite if L is Galois
over K. Let e and f be, respectively, the ramification and residue
class degrees of L over K. Thus ¢f = pr and we may assume that
e>1 and f>1. If ¢g=1 (mode) then L is normal over K [3, Theorem
6, p. 680]. Thus L is a composite if ¢ = 1 (mod pr), so we assume
that ptr — 1 and etg — 1. By [3, Theorem 2, p. 678], we may
assume that L = K({, @), where { is a primitive (¢ — 1)th root of
unity, a° = {’n, 1 is an integer, and 7 is a prime element of K.
Let ¢/ — 1= (¢ — 1t. If e divided ¢, then ¢/ =1 (mode). But
(f,e —1) = 1lsince ptr — 1l and p <r. Thus ¢ =1 (mode), against
our assumption. Thus (¢, t) = 1 so there is an integer j with jt = 4
(mod e). Let 8 be any root of x* — {7 in an algebraic closure of K.
Then K (¢, B) is isomorphic to L by [3, Theorem 3, p. 679]. But
(*e K since K contains all (g — 1)th roots of unity, so [K(B): K] = e.
Thus L has a subfield isomorphic to K(B8) which is of degree ¢ over
K. Since L also contains an unramified extension of degree f over
K, Theorem 1 shows L is a composite.

Now suppose p|r — 1. Let b be an integer, b==1 (modr),
b* =1 (modr). Take ¢ a prime, ¢ = b (mod ). There are infinitely
many such ¢ by Dirichlet’s theorem. If ¢» — 1 = (¢ — 1)t, then =
divides ¢t. Let D, and D, be Q,division rings of indices p and #»
respectively. Let { be a primitive (¢° — 1)th root of unity and let
a” = {q. Since [Q,¢ a): Q,] = pr, @, @) is a maximal subfield of
D, @« D, [2, Theorem 23, p. 144]. If Q. ¢, @) were a composite, it
would have a subfield £ with [E: Q] = r. E would be totally and
tamely ramified over @,, and so E = Q,(8) where pB" = ("q for some
integer j. Thus Q,( &) = QL B so 1=jt (modd) where d =
(r,q* — 1) by [3, Theorem 3, p. 678]. Since d = r, we have jt =1
(mod ). But 7|t, a contradiction.

We remark that there are other examples where every maximal
subfield of D, @x D, is a composite. In [4] an example is constructed
of a field K and two quaternions D, and D, over K such that every
maximal subfield of D, @x D, (which is a division ring) is a com-
posite.

Our final result shows that over number fields it is never the
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case that every maximal subfield of a tensor product is a composite.
We use freely the classification of rational division algebras by
means of Hasse invariants [2, Chapter 9].

THEOREM 4. Let K be an algebraic number field, D, and D,
K-division rings such that D, @z D, is a division ring. Then there
are infinitely many maximal subfields of D, @x D. which are mnot
composites.

Proof. Suppose that [D;: K] = »% [D,: K] = m* and m < n. Let
[, +++, &} be the set of finite primes of K for which the Hasse
invariants of D, @x D. are nonzero. Let & be a finite prime of
K, 7 e¢{P, -, A). Let K; be the completion of K at &7, K. the
completion of K at &?. Let K,(®;) have degree mmn over K; and
K.(a) have degree n over K.. We write fi(x) for the monic minimal
polynomial of «; over K, and f(x) for the monic minimal polynomial
of a over K.. Let g(x) be monic in K[x] of degree nm “sufficiently
close” to fi(x) in the Z#-topology, ¢ =1, ..., m, and “sufficiently
close” to (x — 1) "f(x) in the <P-topology. If mm is even, take
g(x) also “sufficiently close” to («® + 1)™"* at all infinite primes of K.
Here “sufficiently close” means close enough to guarantee

(1) g(x) is irreducible over K

(2) For any root 8 of g(x), the field L = K(B) has local degree
nm at F,1 =1, -+, m, and & splits into n(m — 1) primes of degree
one and one prime of degree m in L.

(8) If nm is even, L is totally imaginary.

This is possible by [6, Ex. 3.2, p. 116].

It follows from the theory of Hasse invariants that L splits
D, ®x D,. Since [L: K] = nm, L is a maximal subfield of D, @x D..
Suppose there were a field £, LD ED K, [E: K] =n. If ris a prime of
E dividing & of degree greater than one, then 7 must remain irre-
ducible in L since otherwise L would have two primes of degree >1
dividing < But then if v is the prime of L extending 7z, the
local degree of v over &7 is divisible by [L: E] = m. Thus m would
divide # which is not the case since D, @y D. is a division ring.
This shows that &7 splits completely in E. But then the local
degree of any prime of L dividing & is at most [L: E] = m < n.
This proves that E can not exist and so L is not a composite.
Since there are infinitely many choices for &7, there are infinitely
many such L.
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