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MOMENT SEQUENCES IN HILBERT SPACE

GORDON G. JOHNSON

Suppose / is a real valued function of bounded variation
on [0,1]. Then for each nonnegative integer n, the Stieltjes

integral 1 jndf exists, where for each number x, j(x) = x. A
Jo

necessary and sufficient condition is given for / in order that
the moment sequence for /, {Cn}n=o, is square summable. A
second result establishes that the set of all such square sum-
mable moment sequences is dense in I2.

LEMMA 1. If p is a number, 1/2 < p < 1, and for each nonnega-

tίve integer n, an = 1 — (n + l)~p then

1. lim al = 0 ,
n-*oo

2. Σ α? exists

and

oo

3. Σ (1 — anY exists .
n—Q

Proof. To establish 1,

lim al = lim (1 - n~p)n

•re—>oo n-*oo

= exp [lim n In [1 — n~p]] .
n-*oo

Since 1/2 < p < 1 ,

lim n In [1 — n~p] = — p lim n/[np — 1] = — oo

and hence the result.

To establish 2, it will be sufficient to show that for sufficiently
large n

an

n^(l + n)~p

i.e., that [1 - n~p}n~l ^ n~p.

Let np = k and g = p~ι — 1 (note that g > 0); we have then to

show that

[[1 - k~']ψ S ΛΓ1 - ΛΓ2 .

Recall that

201
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[1 - k~γ ^ e'1

and hence that

[[1 - k"ι]ψ ^ e~k9 .

Now if k is large we have

e~k9 ^ k'1 - k~2

and the result is established.
The third part follows immediately from the definition of an.

THEOREM 1. If f is a real valued function of bounded variation

on [0,1] and, for each nonnegative integer n, \ jndf = Cn exists, then
Jo

if and only if

ί; Γ/(i) - Γ fdro- - oT < -
Λ=lL Jan J

where the sequence {an}^=ois as given in Lemma 1.

Proof. Let us first establish the necessity of the condition.
Suppose ΣΓ=oQ < oo.

If n is a positive integer

Cn =

S an f l

i"d/+ 3ndf
0 J α %

= o;/(α.) - Γfdj + [ jndf.
JO Jan

Let 7Λ = ( n fdjn/al, then
Jo

Cn = o;[/(o.) - 7.] + /(I) - /(o.)α: - [ fdj« .

Let δn = [ fdjn/(l - O , then

Cn = al[f{an) - 7.] + /(I) - /(«>;: - (1 - α;)δre

Cn = al[δn - 7.] + [/(I) - δ j

and
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cι = (α:[δ. - 7j + [/a) - κ\y

Since the sequence {[δn — 7TC]}~=i is bounded it follows from Lemma
1 that

Hence, since Σ~=o Cl < <*>, we have that

Σ [/(i) - δnγ < -

i.e.,

Σ /(I) - /diV(l - a:) < oo

and therefore the condition is necessary.
Now let us establish the sufficiency, i.e., suppose that

oo f 1 2

Σ /(I) - fdJVQ - al)

exists.

Now Cn = [/(I) - Γ fdjn^ - ΓVdiw for n = 0,1, 2,

As befor

Σ ( Γ 7 # Y
W=l\Jθ /

exists and hence we have only to consider

= Σ ([/(I) - 5̂

= Σ (/(I) - Γ fdj*/[l - al] + f(l)K/[l - al]

Recall the assumption that

Σ (/(i) - Γ /Φ*w/[i - a:])2

exists and hence we need only consider
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Σ (/α)o;/[i - a:\γ

= Σ (/(D)2αf/[I - α:]2

w = l

which also exists. Hence it follows that Σ~=o Cl exists.
As an immediate consequence of this result we have the following

results, which are stated here without proof.

PROPOSITION 1. If there is a δf 0 < δ < 1, such that /(I) - f(x) g
1-xifδ^x^l then ΣΓ=o C* < oo.

PROPOSITION 2. If there is a δ, 0 < δ < 1, s^cft £&αί / Λαs α
continuous derivative on [δ, 1] ί/iew Σ " = o Cl < oo.

PROPOSITION 3. //" £Λere is α number δ, 0 < δ < 1, α number
a > 1/2 and a number B > 0 swcλ,

1/(1) - f(x) I ^ B\l - x\« for x in [δ, 1]

then Σ»=o Cl< oo.

Consider the following example. Let / = 1 — (1 — j)ιβ on [0,1],

then Cn = [jndf = 2n[j2(l - f)n~l if n ^ 1, and hence Cn+1 = 2(w +
Jo Jo

1) (V2(1 - j 2 ) n . It then follows that (2n + 3)Cn+1 = (2w + 2)Cn and this

yields the following for n = 1, 2, . , Cn + 1 = dΠΓ=o[(2ί +_4)((2ί + 5)].
By the use of Stirlings formula we have that C*+1 ^ QV π (n + 3/2)~1/2

and hence Σ " = o Cl does not exist.
The following lemma is stated without proof.

LEMMA 2. If t is a positive integer and n is a nonnegative

integer less than t, then

t

and

Σ f* ) W ( - l ) m = 0

DEFINITION 1. Suppose {Cm}^=0 is a real number sequence and n
is a positive integer. Let φn(0) = 0, 9>n(l) = Co and if x is in (0,1) Π
[kin, (k + l)/n) where k = 0,1, 2, , w - 1 let
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= Σ ίn] Σ ( n 7 *
t=0\tJi=0\ %

Σ ί] Σ ( 7 )(- iyci+t.
\ t J i \ I

THEOREM 2. The set of all square summable moment sequences is
dense in I2.

Proof. Let, for each nonnegative integer t, εt = {̂ Jr=o where δi3-
is the Kronecker δ. Associated with each such sequence εt, there is
a function sequence {φktt}ΐ=i as given in Definition 1. For each non-
negative integer t and each positive integer k there is a number

sequence Ck,t = {£»,*,*}»=<> associated, where CΛtktt = Jndφk>t.
Jo

A straight forward computation yields

cn,k,t = Σ (- ιy-m(m/kr( k)lk

™=o \mj \ t — m

and therefore

±c\ - Σ H T Σ

ϊ i— n— \ L J L-W —

This, using Lemma 2, becomes

" ι I t \ Ί

Σ f— Λ\m(<mlk\n

Σ
f h

- V
w=0 \ C / Lm=0

-Ml
n=0 \ t

Σ

2ίyfc7(A:2 - m 2 )

+ 2Σ I

t ( tV ίk\2

= Σ m2ί k'2tk2/(k2 - m2)
™=o \m / \ t /

+ 2 Σ ί * )m'(- l)w Σ ί*V(- i ) ^ ) k~2tk2l{k2 - mi)
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if k > t.
Note that

(A;2 - m2) = (ί!)~

and t h a t

Km k-2tk2( I /(&2 - mi) = (£!)~2 .

k-*oo \t / I

Then it follows that

* ( t\2

- m2t{t\)-2

t-ι I t

Σ=0 \mI
+ 2Σ W(- ir Σ

\mI ί

= 1 .

Hence, if ί is a nonnegative integer

l im | |C t , t | | = l . ( | | -II is V norm)

Let us now show that

lim i I sέ - eΛ, t | | = 0 .

Suppose ί is a nonnegative integer and k is a positive integer

greater than t.

\Vn,t ~ ^n,k,t)

= (Kt - ct,tttγ + Σ cιktt

Now

\h1 V I— ^t,k,t) [ -L ,

and
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Km

since

Km (1 - CukΛY = Γl - (tir± I * )mt(- l ) w +

and hence by Lemma 2

lim (1 - CtΛ,tY = 0
fc->oo

Combining this with the fact that

.ZJ Cn>k,t — 1

yields, lim^oo | |ε t — ε fcίt|| = 0 for each nonnegative integer t.
Since {et: t — 0,1, 2, •} is a complete orthonormal set for I2 and

each point can be approximated by a square summable moment se-
quence, it follows that the set of all square summable moment sequences
is dense in I2 and hence the theorem is established.
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