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ISOMETRIC DILATIONS OF CONTRACTIONS ON
BANACH SPACES

ELENA STROESCU

This paper is concerned with the dilation, in the case of
a Banach space, of operator-valued functions on a group into
representations. Banach-space analogues of Sz.-Nagy’s theorem
and Ando’s theorem are obtained.

Throughout this note Z (resp. R, resp. R*, resp. N, resp. C) is
the set of all integer (resp. real, resp. nonnegative real, resp. non-
negative integer, resp. complex) numbers. Also G is a group, ec G
its neutral element: K:G— R* a submultiplicative function (i.e.,
K(gh) < K(9)K(h) for all g, he G) with K(e) = 1; X a Banach space;
% (X) the Banach algebra of all linear bounded operators on X and
Ie #(X) the identity.

& ™R) (me N, m = ) being the algebra of all m-times differenti-
able functions on R with the usual topology and I" = {z € C; |z| = 1},
&™) is the algebra of all functions f:7"— C such that t— f(e®)
belongs to & ™(R), endowed with the topology induced by & ™(R).
An operator Te < (X) is called &™(I")-unitary if it is & ™(I")-scalar

(2], [4D-

THEOREM. (See also [7] Theorem 1). Let ¢: G— Z(X) be a
function with the property |l ¢,|| < K(9) for all g€ G and ¢, = L.

Then there exists a Banach space X containing X (by an isometric
isomorphism), a norm one projection P of X onto X and a represen-
tation ¢ of G as a group of invertible operators on X such that

(0) /K@ =8l < K() for all Y€ G and ¢, = I.

(i) Pg,x = ¢, for any veG.

(ii) X is the closed vector space spanned by {¢,x;ve G, e X]}.

(iii) If ¢ takes its values from the set of contractions on X,
then G is represented by ¢ as a group of invertible isometries on X.
Moreover, if G is a topological group and for every xe X, the funec-
tion g — ¢, x is left uniformly continuous, then the representation ¢
is strongly continuous.

Proof. Let Y be the vector space of all X-valued functions on
G, y(.) with the property

ly(9)|l = MK(g) for all geG,
257
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where M is a positive real constant and K the submultiplicative func-
tion from the hypothesis. (In what follows we shall denote elements
of Y also by (¥,),cs-) One sees easily that Y endowed with the norm

ly() Il = Sup lly(g) || K(9)~", is a Banach space .
Let X© = @,.; X’ be the direct sum with X7 = X for all geG.
Define a map 6: X® — X by (0y), = X1 ¢,4Y» for all ge G and ye X©.
Then for every ye X'® one has Oy e Y and the set X = {0y; y e X}
is a subspace of Y. Consider the closure of X in Y and denote it
by X.
Now let X, be a subspace of X of elements

Y(.) = (8,2),c6 = (Z16,10.1%),e¢ When  runs over X
(0,5 = 0 for g == h and §,, = 1 for g = h). Define a map
P: X,—X by e@w(.) =yl forall y(.)eX,.

Then one has
@Il = lly@ ] = sup y(9) [1K(9)™" = [ly(.) Il

and
Hy()l = sup g2 K(9)™ = ||zl = [ly(e)]] -

Hence ® is an isometric isomorphism of X, onto X.
Let @: X — X be a map defined by
Qy(.) = ye) for all y(.)eX.

Obv1ously, Q is linear surjective and satisfies ||Qy(.)]|] = ||¥(. )|| for
all y(.)e X. Its extension by continuity to a linear map of X onto
X will be denoted by the same symbol. Then '@ is a norm one
projection of X onto X.

For every ve @G, define a map ¢,: X — X by

537'@?/ = ((@y)yr)ye&' = (Zh¢grh?/h)aea = (2d¢gdzd)aea = 6Oz¢ X

when y runs over X®. (It is made the notation d = vh, z;, = y, for
all 2¢€ G; hence z with these components belongs to X.) One sees
easily that 4, is well defined and linear. Moreover, one has

|60y = sup | Zsdorstn || K(9)*
= sup | 2481 || K(97) " K(9) ™ K(97)
= K@) sup [| Z38ers¥s || K(g7)™ = K(M)||Oy]| -
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That is
(1) 130yl < KM||0y||  for all yeX®.

Then ¢, can be extended by continuity to an element of <% (X) which
will be denoted by $,. One sees easily that ¢,; = ¢.8, for all @, ge G
and ¢, = I. Moreover,

(2) |6yl = 1$-4,0y|| < K(r™)||$,0y|l for all yeX©.
Also $,: X — X is surjective since one has
Oy = ¢,((OY) y-1)yes for all ye X9 and veG.
Thus the property (0) is proved. To show (i) we see that
(@' Q)P (x) = ¢~(¢,x) for all zeX and veG.

Identifying X, and X via @ and writting P instead of ¢7'Q, this
equality reads more naturally as Pg,y = ¢,. The property (ii) is im-
mediate noting that every @ye X can be written Oy = X N (AN
The first assertion of (iii) is immediate because taking K(g) = 1 for
all ge G, the above inequalities (1) and (2) become

(3) |6,0y|| = ||@y]|| for all yeX® and veG.

To prove the second assertion of (iii) we assume still that G is a
topological group and g — ¢,x is left uniformly continuous for each
zec X. Taking into account of (ii) it is enough to show that for any
fixed v € G and y(.) € X,, the map @ — ¢,(3,%)(.) = ($.¥)(.) is continu-
ous. As this map is the composition of @ — av and av — (3,79)(.),
we need only show that for each y(.)e X,, the map a— ($,9)(.) is
continuous. For this it is sufficient to show the continuity at a = e.
But this fact is immediate from the left uniform continuity of g — ¢,
for every e X, because |[($.9)(-) — y(.)|| = sup, || 6,.4(e) — ¢,u(e) |-

COROLLARY 1. Let {T},cpr < Z(X) be a semigroup of contrac-
tions. Then there exists a Bamnach space X containing X, a norm
one projection P of X onto X and a group {Ul,cr of invertible iso-
metries on X such that:

(i) PUx = T,=, for all xe X, teR.

(ii) X is the closed vector space spanmed by

{Uz;te R, xe X} .

(iii) If {T.}ier+ ts strongly continuous, then {U},cr s also
strongly continuous.
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Proof. Taking G = R, the additive group of real numbers defin-
ing ¢ by ¢, = T,, and K by K() = 1, for any te R, we are in as-
sumptions of the previous theorem.

REMARK 1. An invertible isometry is a & ™(I")-unitary operator
with m > 1, ([2], Proposition 5.1.4). Hence Corollary 1 can be under-
stood as a Banach space analogue of Sz.-Nagy’s theorem ([9]) about
of the dilation of a semigroup of contractions into a group of unitary
operators.

COROLLARY 2. (See [9], Theorem I1V). Let Te <z (X) be a con-
traction. Then there exists a Banmach space X containing X, a

norm one projection P of X onto X and an invertible isometry U on
X such that:

(i) IZU”m = T*g, for all xe X, necZ.
(i) X s the closed vector space spanned by

{(Ure;neZ,xe X) .

Proof. Obviously, for this case one takes G = Z the additive
group of integer numbers, ¢ defined by ¢, = T'* and K by K(n) = 1,
for all ne Z.

COROLLARY 3. Let {T,, T,, -+, T,} © <& (X) be a finite system of
not necessarily commuting contractions. Then there ewists a Banach
space X containing X, a norm ome projection P of X onto X and a
finite system of commutative invertible tsometries {U,, Uy, +--, U} on
X such that:

(i) PUNU - Uprw = T T e Thoa
Jor any
Ny Moy »o+, NpE€Z, X .
(i) X is the closed wvector space spanmed by

{UMUp2 o« Urra; myy My +++, M€ Z, € X}

Proof. We take G=2Z, X Z, X --- X Z, with Z;=Z for i =
1, 2,00, define ? bY ¢(n19 Ny ***, np) = Ty eee Tzllnpl and K by
K(n, 1, +++,m,) = 1 for any n,, n,, -+, n,€ Z, then apply the above
theorem.

REMARK 2. Corollary 3 is a Banach space analogue of Ando’s
theorem ([1]). We remark that it is not necessarily to assume any
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property of commutativity also we can take a number of more than
two contractions, (in a Hilbert space this is not true, see [5]).

REMARK 3. The above theorem also asserts that for any sequence
{Tn},,e » C Z(X) of contractions with T, = 1, there exists a Banach space
X > X, a norm one projection P of X onto X and a invertible isometry
U on X such that T, = PU", for any neZ. Also X is the closed
vector space spanned by {U"x; ne Z, x€ X}. (This fact is true in a
Hilbert space if and only if T, is a positive definite sequence.)

COROLLARY 4. Let {T},cp+ € Z(X) be a semigroup of operators
such that || T,|| = Me** (resp. ||T|| =t*+ 1, with 0 =a=1) for all
te R*, where a and M are real positive constants. Then there exists
a Banach space X > X, a norm one projection P of X onto X and a
group of invertible (resp. & ™(I')-unitary with m > « + 1) operators
on X, {U}.er such that:

(0) Me® < ||U,|| £ Me*™ for all te R, if M > 1, or e
Ul = e forallte R, if M <1, (resp. (|t|*+ 1) < || U] = [t]* +
for all te R).

(i) PUzx = T,z for all te R, ze X,

(ii) X s the closed vector space spanned by {Uw;te R, xe X}.

=
1

Proof. Taking G = R the additive group of real numbers, defin-
ing ¢ by ¢, = T, for all te R and K thus: if M > 1, K(t) = Me**
for ¢ = 0, and K(0) = L; orif M <1, K(t) = ¢** for ¢t #+ 0 and K(0) = 1,
(resp. K(t) = |t]*+ 1 for any te R), we have the hypothesis of the
theorem.

Moreover, for the second case we obtain
[ Unell = [[(UY"]| = [n]*(t]* + 1)

for all |»| > 1,te R. Then applying Proposition 5.1.4 from [2], it
follows that U, is a &"™(I")-unitary operator with m > «a + 1, for each
te R.

COROLLARY 5. Let Te <#(X), satisfying ||T"|| < n*+ 1 for all
ne N, with 0 < a < 1. Then there exists a Banach space XD X, a
norm ome projection P of X onto X and a & ™(")-unitary operator,
with m > a + 1, U on X such that:

(0) (nl*+D)' U E|n]*+ 1 for all neZ.

(i) PU™™ = T™x for all neZ, xeX.

(ii) X s the closed wvector space spanned by

{Urz; neZ, xe X} .
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