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DENDRITIC COMPACTIFICATIONS OF CERTAIN
DENDRITIC SPACES

B. J. PEARSON

A dendritic space is a connected space in which every
two points are separated by a third point. In this paper we
describe a very natural method for obtaining a dendritic
compactification of any connected space for which a dendritic
compactification exists. The method is an extension of the
familiar process of compactifying E! by adjoining —oco and
+ oo,

In what follows, an arc is a Hausdorff continuum with only two
noncut points. A ray is an arc minus one of its noncut points. The
space X is semi-locally connected at the point p if each open set
containing p contains an open set V containing p such that X — V
has at most finitely many components.

LEMMA. If the space X 1is arcwise commected but is nmot semi-
locally comnected at the point p, then there exists an open set U con-
taining p such that if V 1is an open set containing p and lying in
U, then X — V has infinitely many components that intersect both
V and X — U.

Proof. There exists an open set U containing p such that for
each open set V containing p and lying in U, X — V has infinitely
many components. Let V be an open set containing p and lying in
U, and let & be the collection of all components of X — V that
intersect both V and X — U. Suppose .&° is finite. Let W be the
union of V and all components of X — V lying in U. It follows
from the arcwise connectivity of X that each component of X — V
intersects V. Therefore W= X — U.% so that W is open. But

W% U, X‘— W= Uy ’
and C is a component of X — W if and only if Ce &% Therefore .&¥

is infinite.

THEOREM 1. If the connected space X has a dendritic compact-
ification, then X is arcwise connected and semi-locally conmected.

Proof. Suppose X has a dendritic compactification X*. Since
X* is a dendritic continuum, it is locally connected, and it then fol-
lows from Theorem 7.1 of [3] that the interval ab of X*, which consists
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of ¢ and b and the set of all points of X* separating a from b, is
an arc. Suppose ab contains a point z not in X. Then X* — {a} is
the union of two disjoint open sets U and V such that ae U and
be V. But then X is a connected subset of UU V, so that XS U
or X< V. Therefore ab = X.

Suppose X is not semi-locally connected at p. There exist open
sets U and V in X* such that pe V= VS U and an infinite net
{C,} of distinct components of X — V intersecting both V and X — U,
where the closures are taken in X*. For each a let z,eC,N V.
Some subnet {,} of {x,} converges to a point x in X*. For each n
let y.,€C,, N (X — U). Since X* is compact, the net {y.} has a
cluster point y in X*. Now weV and ye X* — U, so that x # y.
But then no point separates « from y in X*.

THEOREM 2. If the space X 1s dendritic, semi-locally connected,
and arcwise connected, and each ray in X is a subset of some arc in
X, then X is compact.

Proof. Let pe X. Suppose {z., is a net of points in X — {p}
with no cluster point. Suppose that for each a and each point x of
the arc pz, different from p there is a 8 > « such that x ¢ px;. Let U
be an open set containing p such that for each « there is a 8> a such
that x;,¢ U. There is an open set V containing p and lying in U such
that X — V has at most finitely many components. There is an «, such
that x, € X—V. Let ¢ pa,, such that px, & V. Thereis an a,>a,
such that 2, € X — V and ¢ px.. Let x, € px, such that px, & V.
There is an «, > a, such that z,,e X — V, ¢ px., and z, ¢ pa,,.
Continue this process. There exist m and n» such that m = n and
some component of X — V contains both », and .. But then no
point of X separates w,, from .. This is a contradiction, and hence
the set R of all points # in X — {p} such that for some a, x <€ pz, for
each B> « is nonempty. Let z,ye R. There is an «, such that
xepx, for B> a. There is an @, such that yepz;, for g > a.
Hence if B> a,, a,, then z, y€ px;. It follows that if z, y e R, then
either px = py or py & px. Therefore there exists a point ¢ of X
distinet from p such that R = pg or R = pq — {g}. For each a let
Y. be the last point of px, on pg. Let U be an open set containing
qg. There is a point y such that pyq and yg & U. Since y € R, there
is an a such that if 8> «, then ye px;,. Hence y,cyq for g > «,
so that the net {y,} converges to ¢. It follows that there is a subnet
{¥a,} of {y.} converging to ¢ such that if m < m, then y, precedes
Yo, On pg and 2, ¢ pg. There exists an open set V containing ¢ and
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lying in U such that X — V has only finitely many components.
Hence there is an m such that if » > m, then x, € V. It follows
that ¢ is a cluster point of {x.}.

An incorrect version of the following lemma is stated as Lemma
3 to Theorem 3 in [1]. The lemma stated here may be used as a
substitute without altering the proof of that theorem.

LeMMA. If H and K are two separated conmected sets in the
arcwise connected dendritic space X, then some point of X separates
H from K.

Proof. Let acH and be K. Since H and K are separated,
there exists a point p of the arc ab not in HU K. Let U be the
set of all points x # p such that px contains a point of ap — {p},
and let V=X — (UU {p}). Suppose the point = of U is a limit
point of V. Then there exists a net {x,} of points in V — pb con-
verging to x and a net {y,} of points in pb such that for each «, y,
is the last point of pb on px,. Some point y of pb is a cluster point
of {y.}, and hence no point of X separates x from y. This is a con-
tradiction. Therefore U is open, and it follows by a similar argu-
ment that V is open. Since H and K are connected, H< U and
K < V. Therefore p separates H from K.

THEOREM 3. The dendritic space X has a dendritic compactifica-
tion if and only if X is arcwise conmected and semi-locally connected.

Proof. Suppose X is arcwise connected and semi-locally connected.
Let pe X, and let X* be the union of X and the collection of all
maximal rays in X starting from p. Let &2 be the collection of all
open sets U in X such that X — U has at most finitely many com-
ponents. For each U in .&“ let U* be the union of U and the col-
lection of all maximal rays starting from p and having a subray
lying in U. Let &*={U*|Ue%”). It is easily seen that if
U Ve, then UNVes” and (UNV)* = U*NV* Therefore .o7*
is a base for a topology of X*, and X with its original topology is
a subspace of X*. Now for each maximal ray R in X starting from
p the point R of X* is a limit point of the point set R. Therefore
X is dense in X*. Furthermore R U {R} is an arc from p to R.
Therefore X* is arcwise connected. Suppose Uec.&” and C is a com-
ponent of X* — U* containing a point R of X* — X. If R has a
subray in U, then Re U*. Hence there is a point x in R — U. Let
K be the component of X — U containing x. Since

X-UgX*-U*,
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it follows that K & C. Hence each component of X* — U* contains
a component of X — U. Therefore X* is semi-locally connected. Let
a and b be points of X. There is a point # of X such that X — {«}
is the union of two disjoint open sets U and V in X such that
ac U and be V. Since the only component of X — U is V U {x}, it
follows that Ue . &” and similarly that Ve $Z Since UN V= @, it
follows that U*N V* = @. If Re X* — X, then there is a subray
S of R such that x¢S. Hence SS U or S& V, so that Re U* or
Re V*. Therefore X* — {x} = U* U V*. It follows that x separates
a from b in X*. Now let ae X and Re X* — X. There is a subray
S of R such that a¢S. Some point & of X separates a from S in
X, and it follows as before that x separates a from R in X*. Finally,
let P and R be two elements of X* — X. There exist disjoint rays
Q and S such that @ S P and S< R. Some point & of X separates
Q from S in X. It follows that x separates P from R in X*. There-
fore X* is dendritic. It remains to be proved that X* is compact.
Suppose R is a ray in X* starting from a point ¢ in X*. Now
X* — X is totally disconnected since each two points of X* — X are
separated by a point of X, and if 2 and y are points of X, then the
arc xy in X* is a subset of X. It follows that R — {¢} < X. Hence
there is a maximal ray S in X starting from p and containing a
subray of R. Since SU {S} is an arc in X*, R is contained in some
arc in X*. It now follows from Theorem 2 that X* is compact.
This completes the proof.

Two other methods for obtaining dendritic compactifications of
dendritic spaces may be found in the literature. In [2] Ward proves,
by embedding in a Tychonoff cube, that every locally connected
dendritic space satisfying a certain convexity condition has a dendritic
compactification. In [1] Proizvolov proves, by considering maximal
collections of closed connected sets having the finite intersection pro-
perty, that every locally peripherally compact dendritic space has a
dendritic compactification.
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