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THE PRODUCT OF F-SPACES WITH P-SPACES

NEIL HINDMAN

A condition on a basically disconnected space X is known
which is necessary and sufficient for the product space X X Y
to be basically disconnected for every P-space Y. This same
condition, when applied to an F"'-space X, guarantees that X x Y
is an F’-space whenever Y is a P-space and is necessary for
this result. The principal result of this paper establishes that
this condition is not sufficient when applied to F-spaces. A
condition which is sufficient but not necessary is also derived.

1. Introduction. The notation and general point of view are
those of the Gillman and Jerison textbook [5]. In particular, all
hypothesized spaces are completely regular Hausdorff. The reader
should recall from [4] the following characterizations. A space X is:
a P-space if and only if each cozero set is closed; a basically discon-
nected space if and only if each cozero set has open closure; a U-space
if and only if disjoint cozero sets can be separated by an open-and-
closed set; an F-space if and only if disjoint cozero sets can be
completely separated; and an F’-space if and only if disjoint cozero
sets have disjoint closures. It is clear from these characterizations
that the conditions named grow progressively weaker.

In [3] Gillman asked for a necessary and sufficient condition that
a product of two spaces be an F-space and, parenthetically, for a
necessary and sufficient condition that a product of two spaces be a
basically disconnected space. Curtis had shown [2] that if X x Y is
an F’-space then either X or Y must be a P-space. It is easily seen
that if X X Y has any of the properties listed above so must both X
and Y for X and Y nonempty. Observing also that the product of a
space X with a discrete space Y has any of the above mentioned
properties which X has, one can rephrase the question in the form:
For which spaces X with property A does the product X X Y have
property A for every P-space Y?

This question was answered for the properties F’ and basically
disconnected in [1]. The condition was that the space be countably
locally weakly Lindelof (appreviated CLWL). That is, for every
countable collection {I",}7-, of open covers of X and each point x of X
there must be a neighborhood V of x and, for each %, a countable
subfamily 4, of I", such that V<elu 4,.

Since F-spaces are F’-spaces the condition that X be CLWL is
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clearly necessary for X x Y to be an F-space for each P-space Y. The
obvious question, since basically disconnected spaces are F-spaces, is
whether that condition is also sufficient [1, 4.7]. It is shown in §3
the answer is no. That is, there are a CLWL F-space X and a P-space
Y such that X X Y is not an F-space.

In §2 sufficient conditions for the product of two spaces to be an
F-space are derived. The same conditions suffice when “F-space” is
replaced by “U-space” throughout.

2. Conditions guaranteeing that a product space is an F-space.
We shall have need of the following lemma from [1, 38.2].

LeMMA 2.1. Let feC*(X xXY), where X is CLWL and Y is a
P-space. If (%, yo) € X X Y then there is a neighborhood U X V of (2, %)
such that f(x,y) = f(x,y,) whenever (x,y)e U X V.

It is shown in [6] that this in fact characterizes CLWL spaces
in the sense that if X is not CLWL then there is some P-space Y such
that the conclusion of Lemma 2.1 fails. (The proof is a slight modifi-
cation of the ‘“necessity” proof in [1, 3.3].)

DEFINITION 2.2. A point 2 of X is a basically disconnected point
of X if whenever U is a cozero set of X and xecclU then in fact x ¢
int clU.

It is clear that X is basically disconnected if and only if every
point of X is a basically disconnected point. The proof of the following
lemma can be taken verbatim from [1, 3.4].

LemmA 2.3. If X is CLWL and x is a basically disconnected
point of X and Y is a P-space then (x,y) is a basically disconnected
point of X XY for every y in Y.

The reader should recall that a space X is weakly Lindelof if each
open cover of X has a countable subfamily whose union is dense in X.

THEOREM 2.4. If X is a CLWL F-space (respectively U-space)
and there is a weakly Lindelof subspace D of X such that every point
of X\D s a basically disconnected point and if Y is a P-space then
X XY is an F-space (respectively U-space).

Proof. Let feC*(X xY). By Theorem 3.3 of [1] X XY is an
F’-space so clpos f Neclneg f = @. (Here pos f = {(x, ¥): f(z, y) > 0}
and neg f = {(x, ¥): f(#, ¥) < 0}.) To show that X x Y is an F-space
it suffices to show that pos f and neg f can be completely separated.
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Define an equivalence relation on Y by agreeing that v, ~ ¥, if and
only if the following three conditions hold for every z in D: (1) f(x,
y) = f(x, v); (2) (x,y)eclpos f if and only if (x,y.,) eclpos f; and
(8) (x, ) eclneg f if and only if (2, ) €clneg f. It is clear that ~
is an equivalence relation. Let I” be the set of ~ equivalence classes.

We claim that each element V of /" is open. To see thislet VerI
and y,¢ V. For each z in D there is a neighborhood U, x V, of (x, v,)
such that f(«', ) = f(@',y,) whenever («/,y)e U, xV,, by Lemma
2.1. Further, since X and Y are completely regular, U, and V, may
be chosen to be cozero sets in X and Y. Now {U,: € D} is an open
cover of D so there exists a countable subset {®(n)};-, of D such that
DccelUsU,m- Let V, = Ni=.V.m- Since Y is a P-space V, is a
neighborhood of y,. We claim that V, £V, and hence that V is open
as desired. To see this, let y,¢ V,. We will show that y, ~y,. To
see that condition (1) holds suppose instead that f(z, v, # f(z, v.)
for some x in D. Without loss of generality we may assume that
flx,y) < f(x,y) so that there exist neighborhoods U’ x V' of (z, v,)
and U” x V" of (x,y,) such that f(a', ¥') < f(z"”,y”) whenever (2, y')
e U XV and (x”,y")e U’ xV”. Now U N U” is a neighborhood
of x, a point of D, so there is some 7 and some Z such that Ze
UimwNU NU". Now (T, ) € Usiy X Vo and (%, yo) € Upy X Vi 50
f@,y) = f(Z,y). But Z,y)eU xV' and &,y)e U’ x V" so
f&,y) < f(&,y,), a contradiction.

To see that condition (2) holds suppose instead that there is
some 2 in D such that either (z, y,) eclpos f and (z, y,) € clpos f or
(x, y) €clpos f and (x, y,) eclpos f. Suppose that the former case
holds. Then there is a neighborhood U’ x V' of (z, y,), where U’ and
V'’ are cozero sets, such that (U" x V)N pos f = @. For each n in
N let U, = U,,, NU'. Then U, is a cozero set in X so U, U, is a
cozero set of X. Also, since Y is a P-space, Ni-Vom = V, is a
cozero set. Therefore, U3, U, x V, is the cozero set of some continuous
function on X x Y, say Us-.U, XV, = cozg. Further, if (2/,%')e
U U, <V, then f(a',y) = f (', %), since (2',¥') € Uyny X Vi for
some #, and f(2',y,) =< 0 since (&',y,)e U xV’'. Thus f(@,¥9y) =0
and so coz g and pos f are disjoint cozero sets. Consequently clcozg N
clpos f = @ and so there is a neighborhood U” X V" of (z, y,) which
misses cozg. But U” N U’ is a neighborhood of z, an element of D,
so that there is some » and some % such that Ze U,,, N U' NU" =
U,.NnU". Now (%,y,)e U, xV, so (%, y,) e€cozg while (Z, y,) e U" x V"
so (%, y,) €coz g, a contradiction. By interchanging y, and y, in the
above argument one sees that it is also impossible to have (z, y,) in
clpos f while (z, v,) € cl pos f.

One also sees in an identical fashion that condition (3) holds. Thus
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Y, ~ ¥, as desired.

Now choose y, in V for every V in I" and define f, in C*(X) by
the rule f,(z) = f(z, ¥,). Now X is an F-space so, for each V in I,
there exists g, in C*(X) such that g, = 0 on neg f, g, = 1 on pos f
and 0=< g, <1. Define g in C*(X xY) by the rule gz, y) = g,(x)
where V is that element of /" in which y lies. (The function g is
continuous since each V in I” is open.) Let h, and %, be the charac-
teristic functions of cl pos f and (X x Y)\cl neg f respectively. Define a
function k on X x Y by k = (¢ V h) A h,. Then k = 1 on clpos f and
k=0 on clneg f so to complete the proof it remains only to show
that & is continuous.

Let (x,y)e X xY. If 2¢ D then x is a basically disconnected
point of X and so, by Lemma 2.3, (z,y) is a basically disconnected
point of X x Y. Consequently each of g, h, and &, are continuous at
(2, ¥), and so k is continuous at (z,y). If x €D and (z, %) ¢clpos f U
clneg f then there is a neighborhood of (z, %) on which k agrees with
the continuous function g so that & is continuous at (x,y). If xeD
and (z,y)eclpos f then (z,y,)eclpos f where V is the member of
I" in which y lies. Therefore, g(x, ¥) = g,(x) = 1. Let ¢> 0 be given.
Then there is a neighborhood U of # on which g, > 1 —e. Let U’ X
V’ be a neighborhood of (z, y) which misses clneg f. Then (UN U") x
(VNV’) is a neighborhood of (x, y) on which £ > 1 — ¢ and hence k&
is continuous at (x,y). Similarly if e D and (z, y) e clneg f and & >
0 one can find a neighborhood of (z,%) on which k <e. Thus k is
continuous and hence X x Y is an F-space.

To prove the parenthetical theorem it is only necessary to note
that if X is a U-space one can choose the functions g, in the above
argument to assume only the values 0 and 1. (The characteristic
function of an open-and-closed set is continuous.) Consequently the
function k& assumes only the values 0 and 1 and the set A = {(, y):
k(xz,y) = 0} is an open-and-closed set containing neg f and missing
pos f. Thus X x Y is a U-space.

Corollary 2.5 is the strongest result we have been able to obtain.
It is shown in Example 3.2 that the conditions given on X are still
not necessary in order for its product with every P-space to be an
F-space.

COROLLARY 2.5. If X is a CLWL F-space (respectively U-space),
and there are a subset D of X and a partition 4 of X into open-and-closed
sets such that every point of X\D s a basically discomnected point
and UN D s weakly Lindelof for each U in 4, and of Y is a P-space,
then X XY is an F-space (respectively U-space).
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Proof. Let feC*(X xY) and for each Uin 4 let k, e C*(U X Y)
such that k&, =1 on pos fFN(U XY) and k, = 0 on neg f N (U X Y).
Define k& in C*(X x Y) by the rule k(z, y) = ky(x, y) where x € U. The
parenthetical statement is similarly proved.

Corollary 2.6 appears in [6] and Corollary 2.7 appears in [8].

COROLLARY 2.6. If X is a weakly Lindelof F-space (respectively
U-space) and Y is a P-space then X XY is an F-space (respectively
U-space).

COROLLARY 2.7. If X is a compact F-space and Y is a P-space
then X XY s an F-space.

3. ExaAMpPLES. The first example establishes that the condition
that a U-space be CLWL is not sufficient to guarantee that its product
with each P-gpace is an F-space.

ExaMpPLES 3.1. A CLWL U-space X and a P-space Y such that
X x Y is not an F-space.

Let w, + 1 have the order topology and let D = {cew, + 1: ¢ is
not the supremum of countably many predecessors} with the relative
topology from w, + 1. (The space D differs from the space of [5, 9L]
only by the inclusion of the endpoint, w,.) Since we have deleted all
non P-points of w, + 1 we have that D is a P-space. Following the
hints in [5, 9L] one easily sees that elements of C*(D\{w,}) are constant
on a tail.

Let p be a free ultrafilter on N, the set of natural numbers.
Let E = NU (w, + 1) where every point of E is isolated except w..
Let basic neighborhoods of @, be of the form Z U], w;] where Zep
and v < w,. (We shall use the interval notation to indicate subsets
of w, + 1and w, + 1. Thus the interval [0,7[in Fis {pcw, + 1: 0 =
o < 7} and does not include points of N.)

Let X = (E X D)\((NU {w;}) X {w,}) and let X have the relative
topology. The reader will observe that the space X bears a strong
resemblance to the space constructed in [4, 8.14]. Both E and D are
Hausdorff spaces with bases of open-and-closed sets so X is a completely
regular Hausdorff space. It is easily verified that E is CLWL, that
the product of a CLWL space with a P-space is CLWL and that open
subspaces of CLWL spaces are CLWL. Consequently, since D is a
P-space, one has that X is CLWL.
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Note that E satisfies the hypotheses of Theorem 2.4 and so E x
D is a U-space. Consequently, to show that X is a U-space it suffices
to show that X is C*-embedded in £ x D. To this end let f e C*(X).
For each n in N there exists 7, < w, such that f is constant on {n} x
(17, @I N D). (We have observed that continuous functions on D\{w.}
are constant on a tail.) Define the extension f* of f to have this
constant value at (n, w,). Similarly there is some v, < w, such that
f is constant on {w,} X (17, w.[ N D) and we may define f* to have this
constant value at (@,, ®,). The extension f* of f is clearly continuous
at every point of ¥ X D except possibly (w,, ®,).

For each ¢ in D\{w,} there is an «, < w, such that f is constant
on la,, w,] x {7} (since w, is a P-point of E\N). Let v =sup{v,:ne
N U {0}} and let a = sup {«,: 0 € D\{w,}}.

Let ¢ > 0 be given and let # € N such that | f(m,v + 1) — f(w,,
v + 1)| < ¢ whenever me N and m > n. Thenon (Jja,w,] U {m: me N
and m > n}) X |7, w,] f* differs from f*(w,, w,) by less than e. Con-
sequently f* is continuous as desired.

Now, let Y = w, + 1, where every point is isolated except w,,
whose basic neighborhoods are as in the interval topology. Since w,
is not the supremum of countably many predecessors we have that Y
is a P-space.

We claim that X XY is not an F-space. To see this define f
in C*(X xY) by the rule f((n,7),7) =1/n if ne N, is even and
>, f((n,7),Y) = —1/n if neN,v is odd and 7> and f =0
elsewhere. (An ordinal is even if it is a limit ordinal or the sum of
a limit ordinal and an even finite ordinal.)

For each v < w, f is clearly continuous on the open subset X X
{v} of X xY. Also, for each 7 < w, f is identically 0 on the open
subset (£ x ([0,7[N D)) x|z, w,Jof X xY. Finally, for each 0 < w,, f
is identically 0 on the open subset ({6} x D) xY of X xY. Thus f
is continuous on all of X x Y.

Now let U and V be open sets with cl pos f S U and cl neg f S U.
We claim that clUNelV %= @ and consequently that pos f and neg f
are not completely separated. Let v be even, with ¥ < w,. For each
ze D such that 7 > 7 one has ((w,, 7),7) eclpos f so there is some
7. < @, such that (|7, ;] x {c}) x {7} SU. Let p, =sup{n:ce]y,
w,[]N D}. Then (|, @[ X {®,}) X {¥} S clU. Similarly, for each odd
v < w, there is some p, < w, such that (Jg,, @[ X {@}) x {7} S clV.
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Let g = sup {¢t;: v < w,}. Then g < w,and (¢t + 1, w,), w,) eclUNelV
as desired.

The following example shows that the sufficient condition obtained
in Corollary 2.5 is not necessary.

ExAMPLE 3.2. A U-space which does not satisfy the hypotheses
of Corollary 2.5 but whose product with each P-space is a U-space.

Let » be a free ultrafilter on N. Let B= NU (», + 1) with
every point of B isolated except w, whose basic neighborhoods are of
the form Z U {0: v< 0 £ w,} where Ze p and 0 < w,. (This is the space
T of [7].) Note that Bis a CLWL U-space with only one non basically
disconnected point. Consequently by Theorem 2.4, its product with
any P-space is a U-space.

Let C = w, + 1 with every point of C isolated except w, and with
basic neighborhoods of w, as in the interval topology. Then C is a
P-space. Let X = B x C. Then X is a U-space. If Y is any P-space
then X XY is homeomorphic to B X(C xY) and C x Y is a P-space
so X XY is a U-space, by Theorem 2.4.

Suppose X satisfies the hypotheses of Corollary 2.5 and let D and
4 be as given there. There is some member U of 4 such that (w,,
®,) € U. Note also that D 2 {w.} x C since (®,,7) is a non basically
disconnected point of X whenever 7€ C. Since U is open there is
some ¢ in C such that 6 < , and {w;} X {yeC:6 <7} €UND. Let
peC such that g < w, and {yeC:0 <7 < 4} is uncountable. Let
Fr=Bx{vy=pmU{Bx{reC:v>pu}}. Let I ={VnUND):
Verl}. Then II is an open over of UN D, no countable subfamily
of which has dense union in UND. This is a contradiction since
Un D is weakly Lindelof.

The author wishes to express his gratitude to the referee for his
constructive and thoughtful criticism.
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