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A COMPACT SET THAT IS LOCALLY HOLOMOR-
PHICALLY CONVEX BUT NOT
HOLOMORPHICALLY CONVEX

MICHAEL FREEMAN AND REESE HARVEY

It is shown that a certain simple imbedding T of the
ordinary two-dimensional torus in C2 contains a poly normally
convex compact ^-neighborhood of each of its points, but T
is not holomorphically convex in even the weakest presently
accepted sense. This example illustrates some of the limita-
tions of a theory of lower dimensional sets in Cn. In partic-
ular, it shows the difficulty of developing a theory based on
local information.

In the following K will denote a compact set in Cn, ^(K) the
Banach algebra of continuous functions on K, and έ?{K) the algebra
of functions holomorphic on some Cn neighborhood of K. Also, let
A{K) denote the Banach subalgebra of ^{K) obtained by taking the
closure of the image of έ?{K) in ^{K). A compact set K is said to
be holomorphically convex if K and the spectrum of A{K) are home-
omorphic under the natural map. In [5] a notion of the "envelope of
holomorphy", for K a compact subset of Cn, was introduced; there
it was proved, in particular, that K is equal to its envelope if and
only if K is holomorphically convex. The Cartan Theorems A and
B for open holomorphically convex sets in Cn admit analogues for
compact holomorphically convex sets in Cn (see [5]). One might con-
jecture that the E. E. Levi problem for open sets in Cn admits a
compact analogue. That is, one might conjecture that if K is locally
holomorphically convex (i.e., for each point zeK there exists a com-
pact neighborhood N of z in K such that JV is holomorphically convex)
then K is holomorphically convex. The example presented below
shows that this is not the case.

If "holomorphic approximation" holds on a compact set KcCn

(i.e., έ?{K) is dense in <if (if)) then the spectrum of A(K) = <Sf (if)
is of course homeomorphic to K so that K is holomorphically convex
according to the above definition. Even if a compact set K has the
property that "local holomorphic approximation" holds (i.e., for each
point z e K there exists a compact neighborhood N of z in K such
that 0>(N) is dense in &(N)) the set K need not be (globally) holo-
morphically convex because of the example presented below. In
particular, this provides an example of a compact set in Cn where
local holomorphic approximation holds but global holomorphic ap-
proximation does not hold; as distinguished from the well-known
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fact that if K is a compact subset of the complex line C and local
holomorphic approximation holds then it is true that global holomorphic
approximation holds (see for example [2]).

In [4] a notion of a "totally real set in C*" was introduced in
order to better understand the properties of Rn in Cn which are
crucial for the development of Sato's theory of hyperfunctions. Sato's
basic theory [12] was shown to hold with Rn replaced by a totally
real set. In the definition of a compact totally real subset K of Cn

there are two local requirements which heuristically ensure that K
has no (locally) "complex structure of dimension ^ 1" (see [4], Defini-
tion 3.4 and the Remark 1 afterward). The example presented below
shows that the local information contained in the assertion that K is
a totally real set (which is more than just local holomorphic convexity
but less than local holomorphic approximation) is not sufficient to
ensure that K is holomorphically convex. In particular, in the duality
result, Corollary 3.10 of [4], the hypothesis that K be holomorphically
convex is necessary.

We would like to acknowledge that R. 0. Wells has independently
verified that the example given here is not holomorphically convex.

The example is very simple. It is just the two-dimensional torus
T imbedded in C2 as T = {z: ( |^| - 3)2 + x\ = 1, y2 = 0}. In fact, (a)
the envelope of holomorphy of T is the set

f= {z:(|Si|-3)2 + « l , 2 / 2 = 0}

obtained by filling up T in C x R x {0}; but (b) each point a of T
has a compact T-neighborhood N on which the polynomials C[zl9 z2]
are dense in the Banach space ^(N) of continuous functions on N.
Of course this implies in particular that each compact subset of N is
polynomially and hence holomorphically convex.

The proof of (a) rests on the observation that T has a basis for
its neighborhood system consisting of the Hartogs domains

U£ = {z: IflsJ - 3)2 + x\ - 1 |< ε, \y2\ < ε}, ε > 0

(which are clearly circled in z1 for each fixed z2), and on the proposi-
tion below, which asserts that the envelope of holomorphy of Uε is

Uε = {z: (1^1 - 3)2 + xt < 1 + ε, \yz\ < ε},i- ^ ε > 0 .
Δ

This shows that any function holomorphic in a neighborhood of T
has a holomorphic extension to a neighborhood of T. Moreover, since
each Uε is holomorphically convex, so is T = f|£>o Ut. Thus T is the
envelope of holomorphy of T (see [5] for the precise definition of
envelope of holomorphy of T).
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PROPOSITION. ϋε is the envelope of holomorphy of Uε for 0 <
ε ^ 1/2.

Proof. The open set Uε is a domain of holomorphy because it is
pseudoconvex (see [3] or [8]) The fact that the functions z~~*
flsxl — 3)2 + x\ and «—> \y2\

2 are plurisubharmonic on Uε, e <̂  1/2,
implies that Uε is pseudoconvex by [8] Theorem 2.6.7 (iii).

Each function / holomorphic on Uε has a holomorphic extension
to Uε. For this it suffices to see that the Hartogs-Laurent expansion
(see [13] page 130) for / on Utf

(1) f(z) = jtjΛΦΐ,

is normally convergent on Uε, for then its sum will extend / as as-
serted. Here the coefficients fn are holomorphic on {z2: x\ < 1 + e , | y2 | < ε}.
From the normal convergence of (1) on Uε it follows that

(2) Σ sup {\fn(zύzΐ\: zeKδ}< oo ,
n=—oo

where 0 ^ δ < e and Kδ = {z: {\zx\ - 3)2•+ x\ = 1 + δ, |i/2| ̂  δ} (a pro-
duct of a torus in C x R and a closed interval in R). Now the
maximum principle applied (for fixed z2) to z1—+fn{z%)z1 shows that
the suprema in (2) become no larger if extended over

Kδ = {z: (Is,I - 3) 2 + x\ ̂  1 + δ, \yt\ ^ δ).

Thus (2) holds with Kδ replaced by Kδ, and since any compact subset
of Uε is contained in the interior of some Kδ, the normal convergence
of (1) on Uε is proved. Thus Uε is the envelope of holomorphy of Uε.

PROPOSITION. Each point a of T has a compact neighborhood N
in T such that C[zl9 z2] is dense in

Proof. Two cases will be distinguished.
( 1 ) The point a is not on one of the top or bottom circles | zt \ =

3, z2 = ± 1 + (K. Then a is a totally real point of T (i e., the ordinary
real-linear tangent space Ta to T at a is not complex-linear). The
proposition is known for this case (see [11], [9] or [6]) but a simple
direct proof can be based on the real-analyticity of T. It will be
shown that a has an open neighborhood U such that U Π T is mapped
into R2 by a biholomorphic map ψ = (ψly ψ2): U—^C2. Then if N is
any compact subset of Γfl /7, the ordinary Weierstrass Theorem im-
plies that C[wu w2] is uniformly dense in ^(ψ(N)). Since ψ is
invertible, the polynomial combinations of ψu ψ2 are dense in
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If U is taken from the beginning as a polycylinder, then ψ1 and ψ2

are approximable on N by polynomials in zu z2, which proves the pro-
position in case (1).

The map ψ will be found by constructing its inverse. Note that
there is an open neighborhood V of 0 in JR2 and a real-analytic map
φ: V-+ T such that (̂0) = a and d0φ(R2) = Ta. Here dQf denotes the
Frechet derivative of / at 0. Then there is an open set V in C2 such
that V Π R2 — V and a holomorphic map φ: V—>C2 such that φ\ V — φ.
Clearly, d0φ(R2) = Ta. Moreover, Ta Π iTa = {0}, so C2 = Ta + %Ta =
dQφ(R2) + idQφ(R2) = dQφ(R2 + iR2) = ^ ( C 2 ) . Thus d0^ is invertible, so
φ has a holomorphic inverse ψ near 0 by the inverse function theorem.

(2) |αj = 3, α2 = ± 1 + iO. Then there is a closed disk D =
fo: I Si — e&i I ̂  s} on which the graph of gfa) — (sign α2)l/l — (|^| — 3)2

defines a compact set N = {fe, ^(^)): 1^ — αj ^ s} c T. Clearly, N is
a Γ-neighborhood of a. Moreover, the level curves of g, as arcs
of radii > 1, do not disconnect C and have no interior points. There-
fore, by Mergelyan's Theorem [10] (§5, Theorem 1.5), the polynomial
combinations of z1 and g are dense in ^{D). The proposition is
proved by transporting this property to N via the homeomorphism

There is a result (going back to Grauert [3]) of a positive nature
which enables one to conclude from local information that a compact
subset K of Cn is holomorphically convex. Briefly, the method is as
follows (cf. [11], [9] or [6]). Suppose that in some Cn neighborhood
Ua of each point aeK there exists a C2 nonnegative strictly plurisub-
harmonic function φ such that K Γ\ Ua equals {ze Ua:φ(z) = 0}. By
using a partition of unity one can construct a nonnegative strictly
plurisubharmonic function φ in a neighborhood U of K such that
K = {z e U: φ(z) = 0}. Then for sufficiently small e > 0, each of the
sets Wε = {z e ?7: ̂ (2) < ε} is a Stein open neighborhood of ϋΓ and K is
^(TΓ,)-convex. Hence iΓ is holomorphically convex. The use of this
result is limited by the fact (see [7]) that sets K which satisfy the
local condition described above must be (locally) contained in a ^
submanifold of Cn all of whose points are totally real.

On the other hand, this technique is extended in [1], where such
a function φ (which is only required to be plurisubharmonic-not
strictly) is constructed in a neighborhood of a point on a two-manifold
where its tangent space is complex linear but whose second-order
behavior is sufficiently "hyperbolic" (in a precise sense given in [1]).
This result is delimited by the above example T, which (in the same
sense of [1]) exhibits a kind of "parabolic" behavior at such points.
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