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ON THE ENGEL MARGIN

T. K. TEAGUE

The marginal subgroup for any outer commutator word
has been characterized by R. F. Turner-Smith. This paper
considers the marginal subgroup E(G) of G for the Engel
word e2(x, y) = [x, y, y] of length two. The principal result
is that an element a of G is in E(G) if and only if
[%> y, a][a, y, x] is a law in G. The method of proof relies
upon properties of Engel elements established by W. Kappe.

Among other results are the following: (a) E(G)/Z2(G)
is an elementary Abelian 3-group of central automorphisms
on the commutator subgroup Gf. (b) If Z(G) C\γs(G) has no
elements of order 3 or if Gf is Cernikov complete, then E(G) =
Z2(G). (c) If [G:E(G)] = m is finite, then the verbal subgroup
e2(G) is finite with order dividing a power of m.

1* Notat ion and assumed results* Let φ(x19 , xn) be any word
in the variables xl9 , xn. The verbal subgroup φ(G) is the subgroup
of G generated by all elements of the form φ(al9 , an) with au , a%

in G. We say φ is a law in G, or that G is in the variety determined
by φ, if φ(G) = 1.

The associated marginal subgroup Φ*(G) of G consists of all a in
G such that φ(gl9 ••-, agi9 •••, gn) = φ(gl9 •••, gi9 •••, flr,) for every &
in G, 1 ^ i ^ n. We also refer to 0*((τ) as the ^-margin of G.

For a?, #, di in G, define [α;, y] = ίϋ"1^"1^^/ = α;"1^^, [α1? , αw] =
[[α1? •••, α%_J, αn], and [x, (n + 1)?/] = [[x, ny], y]. Similarly, for sub-
groups H and K of G, [£Γ, ίC] denotes the subgroup generated by all
elements of the form [h, k], where heH,keK. We define [H, (n +
1)K] = [[H, nK], K]. If fli, , fl. are subgroups, then [fli, - -., Hn] =
[[-Hi, * #> H»-i], fl»].

The word 71 = dQ = x is an outer commutator word of weight
one. If 9 = Θ{xu , xm), λ = X(yl9 *-,yn) are outer commutator
words of weights m and n respectively, then φ = ^ ( ^ , •••, xm+%) =
[θ(xl9 , »„,), λ(a?Λ+1, , xm+n)] is an outer commutator word of weight
m + n. We write ^ = [θ, λ]. Particular examples are the derived
(or solvable) words, defined by dn = [dn-ί9 dn_i], and the nilpotent
(or lower central) words, defined by τ»+1 — [τ», 7i].

The following two theorems appear in [15]:

THEOREM 1.1. For any group G and word φ,
( a ) φ(G) is fully invariant in G and φ*(G) is characteristic

in G.
( b ) φ(φ*(G)) = l.
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( c) if K/φ*(G) is the center of G/φ*(G), then [K, φ(G)] = 1. In
particular, [^*(G), φ{G)\ = 1.

( d ) if H is a subgroup such that G = Hφ*(G), then φ*(H) =
Hf)Φ*(G) and φ(G) = φ(H).

THEOREM 1.2. Let Θ and X be two words in independent variables
and φ = [θ, λ]. Then, in any group G,

( a ) Φ(G) = [θ(G),X(G)].
( b ) i/ U=CG(Θ(G)), V=Cβ(\(G)),L/U=\*(G/U), andM/V =

Θ*(G/V), then φ*(G) = L n M.

An immediate result of Theorem 1.2(b) is that 7*+i(G) = ZJfi),
the wth center of G. It is this theorem which makes possible a
classification of marginal subgroups for all outer commutator words,
since the variables in θ and λ are independent of each other
(see [16, p. 328]).

An element x of G is called a left (right) Engel element of G if
for every y in G there is a positive integer n such that [y, nx] — 1
([x, ny] = 1). The Engel word of length n is en(#, y) = [x, ny]. We
note that Theorem 1.2(b) can not be used to determine e*(G), since
e»-iθ&, 2/) a n ( i V a r e n ° t independent.

For H a subgroup of G, [G: H] is the index of H in G. If H is
a proper (normal) subgroup of G, write i ϊ < G(H <]G). If G is isomor-
phic to a subgroup of a group K, write G £ ϋΓ. C^(Jϊ) is the cen-
tralizer of i ϊ in G. For # in G, xG denotes the subgroup generated
by all conjugates of x in G.

2Φ The Engel margin* In this section "Engel word" will mean
"Engel word of length two". We write M(G) = d*(G) and E{G) =
e2*(G) for the metabelian and Engel margins of G respectively.

Recall that [Zn(G), ΊJG)\ C Zn_m(G) for all positive integers
m and n.

LEMMA 2.1. In any group G,
( a ) dt{G)ICG{dn^{G)) = dU(G/Cβ(dn^(G))). In particular, M(G) =

{a e G I [[α, $], []/, ̂ ]] is α law in G}.
( b) Zn{n+1)I2(G) c d*(G). J ^ particular, ZZ{G) c M(G).

Proo/. Part (a) follows from Theorem 1.2(b) with β = λ =
We prove (b) by induction on n. For n = 1, ^(G) c d*(G) =

For w > 1, let G = G/CG(dn^(G)). Then

d*(G) = dί^ίG) 2 Znin_im(G)

by part (a) and the induction hypothesis. Furthermore,



ON THE ENGEL MARGIN 207

), n{n - 1)/2(G)] c Zn{n+1)l^n{n_1)l2{G) = Zn(G)

and [Zn(G), dn^{G)\ c [Zn(G), 7.(G)] = 1 so that

[^u+1)/2(G), rc(w - 1)/2(G)] c 0 , ( ^ 0

Consequently,

Zn{n+1)l2(G)

and Znln+ι)/i(G) £ ώί(G)C(?(4_1(G)) = d*(G), as desired.
We define JS^G) = {α e G | [αa;, #, ?/] = [a;, #, t/] for all a?, i/ e G} and

L(G) = {α G G | [a, x, x] is a law in G} to be the subgroup of right
Engel elements of length two. It is not difficult to show that
E(G) c E,(G) and Eλ(G) is a characteristic subgroup of G.

The following properties of L(G) were established by W. Kappe
in [6]:

LEMMA 2.2. In any group G, where a e L(G), g, h, e G,
( a ) L(G) is a characteristic subgroup of G.
( b ) [a,g,h] = [a,h,g]-1.
( c ) [α, [fir, λ]] - [α, Λ A]2.

( d ) [a,g,[h,g]] = l.
( e ) α4

THEOREM 2.3. In any group G,
( a ) ZIG) c J57(G) c L(G).
( b ) ^ ( G ) - {α e G i [α, x] e Cσ(ajσ) /or αZί xeG} = L{G).
( c ) [α, α;] G Cσ(a?σ) Π CG(α) /or αZZ α e Eλ(G), xeG. Furthermore,

[a, x]rs = [αr, xs] for all integers r and s.
( d ) aG and xL{G) are Abelian for all a in L(G), x in G.
( e ) E^G) £ CG((xGY) < G /or αW a? in G.

Proof. Part (a) follows immediately from the definitions.
( b ) Let aeE^G). Then [ay, x, x] = [?/, a;, x] for all #, 7/ in G.

This is equivalent to saying that 1 — [[ay, x][y, x]"\ x] — [[a, x]y x
[VJ %][y, χ]~\ χ] — [la, χ]y> χ] f ° r a ^ x> V ί n G. Since α? and 1/ are

independent, we may conclude that a is in EJfi) if and only if 1 =
[α, x, xy] for all x, y in G or, equivalently, [α, a;] G C^ίίc0) for all x.

That ^ ( G ) c L(G) follows from [α, a?, α;y] = 1 by letting 2/ = 1.
Finally, let a e L{G). We have for x, y in G that

[α, a?, £*] - [α, a?, a? [a?, y]] = [α, a?, [x, y]][a, x, x][x'y} .

From the definition of L(G) we must have that [α, x, x] = 1. By
Lemma 2.2(d) we also have that [α, a?, [α;, ?/]] = 1. Hence [α, a?, xy] = 1
and aeE^G).
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( c ) Since a is a right Engel element, we have that [α, x] is in
CG(a) by [6, Lemma 2.1]. Part (b) says that [α, x] e CG(xG) for all x
in G. The remainder of part (c) follows from [13, Theorem 3.4.4].

( d ) From part (c) we see that ax = a[a, x] e CG(a), since a and
[α, x] are in CG(ά). This implies that aG is Abelian.

The proof that xL{G) is Abelian follows similarly from the observa-
tion that xa = x[x, α], [x, a] e CG(xG) c: CG(x).

( e ) By part (c) we may conclude that [a, xy] e CG((xy)G) = CG(xG)
for all a in -EΊ(G), x, y in G.

Let a e E^G). By Lemma 2.2(c), we have [α, [xw, xz]\ =
[[α, x% xz]2 = 1. This implies that a e CG((xGY).

THEOREM 2.4. In any group G, E(G) = {a e G | [x, a, y][x, y, a] = 1
/or αW x, y in G}.

Proof. Set ^ ( G ) = {a e G \ [x, ay, ay] = [x, y, y] for all x, y in G}.
We see then that E(G) = E,(G) Π E2(G). Let S be the set described
on the right in the statement of the theorem. Suppose ae S, xeG.
Then 1 = [x, α, x][x, x, a] = [x, a, x]. This implies that a e EJfi) = L(G).
Since also ^(G) c E,{G), it suffices to show that E(G) Π £Ί(G) = Eλ(G) D
JBi(G) = ^ ( G ) Π iSf. Then, for x, y in G, a e E^G) C) E2(G) if and
only if

b , 2/, 1/] = K α#, a?/]

= [%, ay, y]l%, ay, a]y

= [[x, V][x, a]\ y][[x9 y][x, a]", a]y

= [x, V, yF'Λlx, a\\ y][x, y, a]^yy[[x9 a\\ a]y .

By assumption, [a, x] e CG{xG). Since CG(xG) <\ G, we also have
that [a, x]y e CG(xG). Consequently, conjugation by [x, a]y is irrelevant
in the last statement above because all the commutators are in xG.
Therefore, the above is equivalent to

[x, V, V] - [x, y, y][[x, αp, y][x, y, a]y[[x9 a]y, a]y

or

1 = [x, α, y][x, y, a][[x, a]y, a]

for all x,yeG,ae E(G).

Now a and [x, a]y are elements of aG. By Theorem 2.3(d), aG is
Abelian. This implies that [[x, a]y, a] = 1. Therefore, E(G) is con-
tained in the set S.

We have already shown that S is a subset of JSΊ(G) = L(G).
Consequently, all the above arguments are reversible and we may
conclude that S = E(G).
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LEMMA 2.5. ( a ) E(G) n CG{Gr) = Z2{G).
( b ) [x, α, y] = [α, ?/, #] /or αW x, y in G, a in L(G).

Proof. ( a ) We need only verify that E(G) n Cσ((?') c Z2(G) by
Theorem 2.3(a) and the remark before Lemma 2.1. Let aeE(G)f]
CG(G'). By Theorem 2.4, 1 - [#, α, y][x, y, a] for all x, y in G. But
a e CG{Gf) implies that [x, y, a] = 1 and thus that [#, α, y] = 1 for all
a?, 2/ in G. Hence α e ^2(G)

( b ) [α, y, x] = [a, x, y]~ι by Lemma 2.2(b), = [[x, a]~\ y]~ι =

(([», «, l/ΓT1)^'*1 = l>, α, 2/] since [α, a?] G CG(xG) by Theorem 2.3(c).

From Theorem 2.4 and Lemma 2.5(b) we have our characteriza-
tion of E(G):

THEOREM 2.6. For any group G, E(G) = {aeG\[x, yy a][a, y, x]
is a law in G}.

COROLLARY 2.7. For any a e E(G), [a, G, G]3 = [α3, G, G] = 1.

Proof. Let x, yeG. By Theorem 2.6, [x, y, a][a, y, x] = 1. Then
[x, y, a] = [α, [̂ , y)]~ι = ([α, α?, T/]2)"1 by Lemma 2.2(c), = [α, y, x]2 by
Lemma 2.2(b). Hence 1 = [x, y, a][a, y, x] = [α, y, x]2[a, y, x] = [α, y, x]3.

By Theorem 2.3(d) we have that aG is Abelian. Hence [a, x, yf = 1
for all x, yeG implies [a, G, G] has exponent dividing three, and
[α, x, yf = [α3, x, y] = 1.

COROLLARY 2.8. .For α^τ/ ̂ roup G, E(G) c Z8(G) c Λf(G).

Proo/. Let aeE(G). By Lemma 2.2(e) we have that a'
Since also α3 e ^2(G) c Z3(G) by Corollary 2.7, it follows that α e Z^G).

We recall a theorem of F. W. Levi (see [12]): If e2 is a law in
a group G, then G is nilpotent of class at most three and 73(G) has
exponent dividing three. This, together with Theorem l.l(b), yields
the first statement in the following:

THEOREM 2.9. E(G) is nilpotent of class no greater then three
and metabelian, and jz(E(G)) has exponent dividing three. If CG{Gr) c=
E(G), then M{G) = Z3(G).

Proof. Suppose CG{Gr) c E{G). By Lemma 2.5(a) this implies
that α ( G ' ) - Z2(G). From Lemma 2.1(a), M(G)/CG(G') - Z(G/CG(G')).
Hence M(G) = Zt(G).
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THEOREM 2.10. Let G be a group, M = M{G), E, = E,(G) = L(G).
Then

( a ) [G'f M, JSi] - [G'f El9 M] = [M, G, G'] = 1.
( b) [G, M', Et] = \M, ElfG] = [Gr, M'\ = 1. Jrc particular, {M, E,\ c

Proof, ( a ) By Lemma 2.1(a), [M, G] c Cβ(G') n f f = Z(G') so
that 1 = [Λf, G, G']. Now let aeEltmeM,xe G'. By Lemma 2.2(c),
[α, [m, $]] = [α, m, x]2 = 1. This implies [G', M, £Ί] = 1. Consequently
[G', S l f M] = 1 by [13, Theorem 3.4.8(i)].

( b ) As in the proof of part (a), we have M c Z(Gr) so that
1 = \G\ M\. Let a e Elf x e M', g e G. Then [α, [g, α?]] = [α, ^, x]2 = 1.
Hence [M', G, ΐ/J = 1 and, as above, [Mf, Elf G] = 1.

3. Central automorphisms on G\ It follows from Theorem
2.10(a) that [M(G), G'] c ^(G r). This implies that M(G)/CG(G') acts
as an Abelian group of central automorphisms on G\ Then

(E^G) ΓΊ M{G))I{EAG) ΓΊ CG(G0) £ M(G)/CG(G')

is also such a group. Denote the corresponding group of automor-
phisms on G' by 2t2. Furthermore,

E(G)/Z2(G) = (E(G) Π M(G))/(E(G) ΓΊ Cff(G')) £ SX2

by Lemma 2.5(a) and Corollary 2.8. Let % c St2 denote the corre-
sponding group of automorphisms. From Corollary 2.7 we see that
E(G)/Z2(G) has exponent 3. Hence %1 is an elementary Abelian 3-
group of central automorphisms on G'.

THEOREM 3.1. ( a ) // the exponent Έxj>(Z(G')) = n is finite,
then Exp (SI2) divides n.

( b ) If G' is a p-group, % c; §I2 is periodic, then % is a p-group.
( c ) Assume Gr is polycyclic; that is, G' has a finite ascending

normal series with cyclic factors. Then E(G)/Z2(G) is finite.

Proof. ( a ) Suppose Z(G') has exponent n. Then, for x e Gf,
a e 2I2, 1 = [x, a)n = [x, an] by Theorem 2.3(c). Consequently, an = 1
and §I2 has exponent dividing n.

( b ) Now assume SI is periodic. By Theorem 2.10(a) we may
conclude that [G', M(G), E^G)] = [G'9 % 2t] = 1. Thus SI stabilizes
the normal series 1 < [Gf, SI] < G' of G'. By [1, Corollary 5.3.3] we
have that 31 is a p-group.

( c ) Smirnov [14] has shown that a solvable group of automor-
phisms of a polycyclic group is polycyclic. Since then SCr is finitely
generated, it must be finite.
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THEOREM 3.2. // 2C2 Φ 1 is not torsionfree, then G' has a proper
subgroup of finite index and Z{G') is not torsionfree.

Proof. For 1 Φ a e %2, the homomorphism from G' into Z(Gf)
defined by fa(x) = [x, a] for each x in Gr is nontrivial. We choose
a G EX{G) n M(G)\Et(G) n Cβ{G') such that [x, a] = [x, a] for all x in G'.
If a has finite order, then there is an integer n such that an e CG{Gr).
Thus 1 = [x, a]n = [a;, αw] and G'/Ker/α £ Z(G') is a nontrivial direct
sum of cyclic groups each of order bounded by n. In particular,
there are subgroups H and C of Gf such that G'/Kerfa = H/Kerfa +
Cf/Ker fa and C/Ker/α is nontrivial and finite. Consequently H < Gr

and (? '/#= C/Ker/α is finite.
Let 1 Φ a e 2I2, 0(α) = w < °° Then there is an x e G' such that

1 Φ [x, a] e Z(G'). But [x, a]n = [x, an] = 1 so that the order of [x, a]
divides n.

COROLLARY 3.3. If E{G) > Z2{G), then Gr has a proper subgroup
Of finite index.

Proof. If E(G) > Z2(G), then %_ is a nontrivial torsion subgroup
of 2C2. Hence 2t2 Φ 1 is not torsionfree and the theorem applies.

It is known that no complete, or even Cernikov complete, group
can have a proper subgroup of finite index (see [7, p. 234]). From
this fact we derive part of the following:

COROLLARY 3.4. // Gr is Cernikov complete, or if Z(G) Π Ύ3(G)
has no elements of order three, then E{G) = Z2(G).

Proof. We shall show that % = 1. By Corollary 2.8, E(G) c
ZZ{G). Hence [G\ E(G)] = [(?', StJ £ Z(G) n Ύ*(G).

Let ae%l9xe G'. Then, by Corollary 2.7 and Theorem 2.3(c),
1 = [x, α3] = [x, α]3. By hypothesis, this implies that 1 = [x, a]. Con-
sequently a = 1.

EXAMPLE 3.5. We now construct a group G such that Z2(G) <
JS(G) < Z3(G).

Let J3" = <αL, a2, a3: x
z). Levi and van der Waerden [8] have shown

that H has nilpotence class exactly three and is in the variety deter-
mined by e2. Hence E(H) = H = Z3(H) > Z2(H). Let K be any group
of nilpotence class at least three having no elements of order three
(see for example [12, p. 198]). By Corollary 3.4, E(K) = Z2(K) <
Z3(K) c K. Letting G = H x K, we see that E(G) = E(H) x E(K) =
JJ x Z2(K). Hence Za(G) < #(G) < ZS(G).
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REMARK 3.6. Define NA(G) = Γl {NG(H) \ H maximal Abelian sub-
group of G} to be the A-Norm of G. Kappe [6] has shown that
a e NA(G) if and only if [g, h] = 1 for g, h in G implies that [α, g, h] = 1.
From Theorem 2.6 it follows immediately that E{G) c NA(G)

4* Finiteness conditions* We shall say that a word φ satisfies
the Schur-Baer property if [G: φ*(G)] — m finite implies φ{G) finite
with order which divides a power of m for all groups G.

Schur showed that τ2 satisfies the Schur-Baer property; Baer
extended this result to any outer commutator word φ (see [15]).

Recall that a group G is residually finite if for every x in G,
x Φ 1, there is a normal subgroup Nx of G such that xί Nx and
G/Nx is finite. A group is locally residually finite if every finitely
generated subgroup is residually finite.

We shall need the following theorem. For a proof (due to P.
Hall), see [15, Theorem 2].

THEOREM 4.1. // φ generates a locally residually finite variety,
then φ satisfies the Schur-Baer property.

THEOREM 4.2. // φ e {e2, e3}, then φ satisfies the Schur-Baer
property.

Proof. Suppose φ — e2. A group in the variety generated by φ
is nilpotent by Levi's Theorem. A finitely generated nilpotent group
is residually finite by P. Hall [4]. Therefore, a finitely generated
group in the variety generated by φ is residually finite and Theorem
4.1 applies.

Let φ = ez. Heineken [5] has shown that a group in the variety
generated by φ is locally nilpotent. Hence a finitely generated group
in this variety is also residually finite and the theorem follows as
above.

Recall that a group is an SN* group if it possesses an ascending
normal series with Abelian factors (see [7]). Also, the unique maxi-
mum locally nilpotent normal subgroup of a group is called its Hirsch-
Plotkin radical (see [12]).

We note that in P. HalPs proof of Theorem 4.1 that we may
extend the result somewhat if we put some restrictions on G itself.
That is, if Φ*(G) is locally residually finite for all G in some quotient-
and subgroup-closed class Σ, then φ satisfies the Schur-Baer property

THEOREM 4.3. If G satisfies the maximum or the minimum
condition, or if G is an SN* group, then en satisfies the Schur-Baer
property for G.
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Proof. Suppose G satisfies the maximum condition. Then, by
[12, Theorem VI. 8. j], we have that the set of left Engel elements
(of all lengths) is the Hirsch-Plotkin radical R. Since then et{G) c: R
is locally nilpotent, it is locally residually finite. By the preceding
remark, we have that en satisfies the Schur-Baer property for G.

Vilyacer [18] has shown that an Engel group satisfying the
minimum condition is locally nilpotent. Plotkin [11] has proved that
an Engel group which is also an SAT* group is locally nilpotent.
Hence the remainder of the theorem follows as above.

The validity of the Schur-Baer property in general is one of
several conjectures which have been proposed for the group functions
φ and φ* (see [9] and [16]). Modified solutions of two of these come
from the following lemma.

LEMMA 4.4. Suppose G is in a class of groups in which the
Schur-Baer property is satisfied locally for φ. If G is locally re-
sidually finite and <j> is finite-valued on G, then φ(G) is finite.

Proof. This follows from the arguments used in the proofs of
Proposition 1 and its two corollaries in [17].

We note in particular in these proofs that there is a finitely
generated subgroup H of G such that φ{H) = φ(G). It follows that
H/φ*(H) is finite. Since H and φ satisfy the Schur-Baer property,
φ{H) = φ(G) is finite.

The following two theorems are immediate from these observations.

THEOREM 4.5. If φz {e2, e3}, G is locally residually finite, and φ
is finite-valued on G, then φ{G) is finite.

THEOREM 4.6. If φe {e2, e3}, φ is finite-valued on G, and G is
finitely generated and residually finite, then G/φ*(G) is finite.
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