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THE HANF NUMBER OF OMITTING
COMPLETE TYPES

SAHARON SHELAH

It is proved in this paper that the Hanf number m°® of
omitting complete types by models of complete countable
theories is the same as that of omitting not necessarily com-
plete type by models of a countable theory.

Introduction. Morley [3] proved that if L is a countable first-
order language, T a theory in L, p is a type in L, and T has models
omitting p in every cardinality » < 2,, then T has models omitting
p in every infinite cardinality. He also proved that the bound 3,
cannot be improved, in other words the Hanf number is 3,. He
asked what is the Hanf number m® when we restrict ourselves to
complete 7' and p. Clearly m® < 2,. Independently several people
noticed that m¢ = 3, and J. Knight noticed that m¢ > 2..

Malitz [2] proved that the Hanf number for complete L., ,-theories
with one axiom v ¢ L,,, is 3,. We shall prove

THEOREM 1. m® = 1,.

NoraTioN. Natural numbers will be 1, 7, k, I, m, n, ordinals «, 3, J;
cardinals \, #. | A| is the cardinality of A, 3, = S 2% + No-

M will be a model with universe | M|, with corresponding count-
able first-order language L(M). For a predicate Re L(M), the cor-
responding relation is R¥ or R(M), and if there is no danger of con-
fusion just R. Every M will have the one place predicate P and
individual constants ¢, such that P = P¥ = {¢,: n < 0}, n # m=>¢, # C,,
(we shall not distinguish between the individual constants and their
interpretation). A type p in L is a set of formulas @(x,) € L; » is
complete for T in L if it is consistent and for no ®(x,) € L both
TUpU{®@)} and TU » U {— ®(x,)} are consistent.

An element be|M| realizes p if o(x)ep implies M = @[b]
(= -satisfaction sign), and M realizes p if some ac|M| realizes it.
A complete theory in L is a maximal consistent set of sentences of
L. For every permutation 8 of P, model M, and sublanguage L of
L(M) we define an Ehrenfeucht game EG(M, L, 6) between player I
and II with ® moves as follows: in the »th move first player I chooses
1€ {0, 1} and @i € | M| and secondly player II chooses a“c|M|. Player
II wins if the extension 6* of 6 defined by 6*(al) = a) p.eserves all
atomic formulas of L. That is if R(x,, ---, #,) is an atomic rormula in
L, 6*%(b;) is defined then M &= R[b,, ---, b,] iff M = R[6*(,), ---, 0%(b,)]-
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REMARK. So if I chooses ai e P, II should choose al = 6(al).

Define I'(n,) = {0: 0 a permutation of P, n < n,= 6(c,) = ¢, and
only for finitely many » 6(c,) # c.}.

M| L is the reduct of M to the language L & L(M), that is
M| L is M without the relations R¥, Re L(M), R¢ L, and constants
¢, € L(M),e,¢ L.

THEOREM 2. For every ordinal a < w, there is a countable first-
order language L, a complete theory T, in L, such that

(i) »={P)} U {x, # c.: n < 0} is a complete type for T,.

(ii) T, has a model of cardinality 3, omitting p.

(iii) T, has mo model of cardinality > 2, omitting p.

REMARK. Clearly Theorem 2 implies Theorem 1.

Proof. We shall define by induction on « < @, models M, such
that

(1) || M,||, the cardinality of |M,|, is, 2, and of course
P=PM,) = {c,:n < 0w} and except for the e¢,’s L(M,) has only
predicates.

(2) There is no model elementarily equivalent to M, of cardinality
> 3, which omits 7.

(3) If @B)(@=p+ 2) then Q,c L(M,) and |Q.(M,)| = 2.

(4) For every finite sublanguage L of L(M,) there is n, =
n(L) < w, such that for every permutation 8¢ I"(n;) player II has a
winning strategy in EG(M,, L, 6).

(5) In (4) if @B)(@ = B + 2) then in the winning strategy of
II, if I chooses a} € Q.(M,) then II chooses a)* = ai.

The induction will go as follows. First we define M,, M,, and M,;
later we define M,., by M, when (3pR)(@ = B8 + 2); last for limit
ordinal 6 we define M;, M;,,, M,., by M, a <.

But before defining the M,’s, let us show how this will finish
the proof. We choose L, = L(M,). T, is the set of sentences of L,
that M, satisfies. Clearly (ii), (iii) are satisfied. To prove (i) let
P(%,) € Lg, so for some finite sublanguage L of L, ®(x;)e L. By pos-
sibly interchanging ®(x,) and — @(x,) we can assume M, = ®lc,].
For & = n(L) let 6, be the permutation of P interchanging ¢, c;, and
leaving the other elements fixed.

Clearly 6eI'(n;), hence player II has a winning strategy in
EG(M,, L, 6). By Ehrenfeucht [1] this implies ¢, and ¢, = 0(c, 1)
satisfy the same formulas of L. Hence M, &= @lc.,] = Ple], hence
M, = ®le,]. As this holds for any k= n(L) M, = (Y2)[P@®) A Aicary © F#
¢; — P®)]. Hence T,U » U {— @(x,)} is inconsistent. So p is complete
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(for T,, L,) and we finish.
So let us define

Case I. a=0,1,2

(A) Let us define M,:

| My| = P, and its only predicate is P (and of course the individual
constants ¢,, which we will not mention in later cases). Clearly (1),
(2) are immediate. (8) and (5) are satisfied vacuously. As for (4), let
ny = max {n + l:¢,e L}. Clearly 0 is an automorphism of M,| L (the
reduct of M, to L).

So player II will play by the automorphism: if I chooses al, II
will choose al = 6(a)), and if I chooses ai, II will choose a) = 67'(al).

(B) |M,|=|M,|UP(M), where P(M)= (M), where
F(A) = the power set of A = {B: B& 4}.

The predicates of M, are those of M, P, and ¢,

&(M) = {{c, A):ce | M|, Aec P, cec A}.

As in (A) it is clear that M, satisfies the induction conditions, as
if #e I'(n,) L < L(M,), L finite, then 6 can be extended to an automor-
phism of M, by

0(4) % (6(c): e A} .

(C) Let us define an equivalence relation E, on P,(M,): AE.B
iff for some 6e I'(0) A = 6(B)[ = {0(c): ce B}].

This is an equivalence relation, as 77(0) is a group of permuta-
tions, and as | I"(0) | = W,, each equivalence class is countable. Define

lel = |M1| U Qz(Mz)
QM) = {S: S< P(M,), A, Be P,, AEB—Ae S —— Be S}
&(M) = A, S>: AeP,SecQ, AcS).

The relations of M, will be the relations of M,, and Q,, ¢,. By
the definition of @,, each deI'(n,) [L a finite sublanguage of L(M,)]
can be extended to an automorphism 6* of M, | L, which is the iden-
tity over @,. As before (1), (2), (4) hold, and as 6* is the identity
over @, also (5) holds. As for (3) each FE,-equivalence class is
countable, and |P,(M)| = 2'¥' = 2%, the number of FE-equivalence
classes is 2,, s0 |Q,| = 271 = 2,.

Case II. We define M,,,, where M, is defined, 3R)(@ = B + 2).
Let

]Ma+1| = |Ma| U ﬁ(Qa(sz)) -
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The relations of M,,, will be those of M, and in addition
Qa+1(Ma+1) = g(Qa(Ma))

atr(Mar) = {Ka, A):a€ Qu(Mo), A€ Quis(Mari), a € A} .

Clearly Conditions (1), (2), (3) are satisfied. As for (4), (5) the
winning strategy of player II in EG(M,,,, L, 6)[6 € I"(n;)] will be as
follows: when I chooses elements in | M, | he will pretend all the game
is in | M, | and play accordingly; and if player I chooses @i € Quyi(M,..),
then player II will choose a}™* = ai. As M, satisfies (5) this is a
winning strategy, and trivially it satisfies (5).

Case III. 6 a limit ordinal, M, is defined for & < 6; and we shall
define M;, M,,,, M;...

PART A. By changing, when necessary, names of elements and
relations, we can assume that for a < g8 < 4,

|M,| N |Ms| =P, and L(M,) N L(M;) = {P, c,:n < w},

but that if (38)(@¢ = B + 2) then still Q,e L(M,). Choose an increas-
ing sequence of ordinals @, n < ®, 0 = U.<., @, and AR) (@, = B + 2).
Define M, as follows

| M| = U M, .

n
n<w

The relations of M, will be those of M, for each n < w and R}
R} = {{c,ap:¢c =c,e P,ac (M, — P)}.

It is easy to check that Conditions (1), (2) are satisfied. Condi-
tions (3) and (5) are vacuous. So let us prove Condition (4) holds. Let
L be a finite sublanguage of L(M;); then L & U<, L; U {E}, where
L;=LnN L(Ma].) is a finite sublanguage of L(M,,j). Define n; =
max [{ny;: 7 < n} U {n}]. Let 6el'(n;). We shall describe now the
winning strategy of player II in EG(M;, L, 6). When player I will
choose € {0, 1}, ai € M,,, j < m,, player II will pretend all the game
is in the model Maj, and so play his winning strategy for EG(M,,j, LN
L(M,,), 0). If player I chooses i€ {0, 1}, a;e M,, j = n, then player
II will choose a; "€ M,, [where i = 0 =Fk = 6(j), 7 = 1 =3 = 6(k)] such
that for any m < n of, = @} = a7’ = a7

Note that for j = n,, in M, | L, every permutation of elements of
M., is an automorphism, as the only relation an ae|M,, | satisfies is
Rilc;, al.

PART B. Here we define M,,,. Let A4* = ., Qa,(M.,), and
| My, | = | M, | U F(A%).
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The relations of M,,, will be those of M;, and in addition

PJ(M6+1) = ]Ma I; Pa+1(Ma+1) = ﬁ(A*)
&1(M,,,) = {¢b, By: be A*, Be ZP(A*), be B} .

It is easy to see that Conditions (1), (2) are satisfied, and (3), (5)
are vacuous. So let us prove (4) — let L be a finite sublanguage of
L(M;.,). So

L g U Li U {Rﬁy Pﬁy P6+1’ 645+1}7 L’b = L ﬂ L(Ma.,-) .

i<ngy
Define again
7, = max [{nL,-:j < o} U {nm}] -

Let 0e I'(n;) and we should describe player 1I’s winning strategy
in EG(M;,, L, 6). When player I chooses an element in M, j < n,
player II will ignore all elements chosen outside M., and play by his
winning strategy in EG(M.;, L;, 6). In the other cases player II will
play so that the following conditions are satisfied for every =

P (1) a%e Py (M) = ay e Py (M)

P (2) if ¢; = 0(cy), then afe| M, | =a,e| M|

P (3) if m < n then al = al < a,, = a}

P (4) if m,l <n and a) e A% ale P;,, then a) € a} = a} € a}

P (5) ifane Py, l<w, e =0(c) then a5 N Qy(M.) = ai N Qo (M)

P (6) if ¢;=0(c)] =k <w, then {ay:m=n,aycP;,> and
{at: m = n, al, e P;,,) genarate corresponding finite Boolean algebras
of subsets of Q,,(M,,) and Qu; (M) correspondingly; then the cor-
responding atoms in those algebras are both infinite, or have the
same power.

It is easy to see that this can by done, and it is a winning
strategy.

PART C. Here we define M;,,.

Define equivalence relations FE,,,, E}., on P;.,(M,,,): if A, Be
P, .(M;;,), then A, BS A* = Uuco Qu,(M..,); define AE} B iff AN
[Uosnsn Qu,, (M )] = B N [Uwsm>n Qu,,(Ma,)]; AE; B iff for some =
AE?. B.

Clearly each E7,, is an equivalence relation, KE},, refines E@',
hence E,;,, is an equivalence relation.

It is clear that

| Psi(M1) | = Qi
but for every n < w, A ¢ P;, (M;,,)
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i {B. Be P5+1(M.3+1), BE;LMA} | = | tqé(mLéjn Qam(Mam)) l

= 2% =3, <3,

hence

I {B: Be P5+1(M5+1), BE&+1A} l = ; A=235.

So each E;,, — equivalence class has cardinality < 3,, hence there
are 1,., E;,-equivalence classes.
Define M,,,:

’ Ma+2| = | Ms+1! U Qa+2(M5+z)

where
Q5+2(M5+2) = {S: S —g P5+1(MB+1), A, BG S, AE’,;.HB = A € S "__"Be S} .

Clearly IQ5+2(M5+2)| = :5+2-
The relations of M,,, will be those of M;,,, and Q;.,, and

Eore(Ms40) = {KA, S): Ae Py (M), S€ P o(M,;,,), Ac S} .

It is easy to prove all conditions are satisfied as in Case II, if
we notice that by Condition P (5) if for any instance of any game
EG(M,.,, L, 0)[6 € I"(n;)] in which player II plays his strategy, if af,al™
are chosen for some 7 and they belong to P;.,(M;.,) then they are
E; . -equivalent (as {n: 6(c,) = n} is finite).
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