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REPRESENTATIONS OF 5*-ALGEBRAS

ON BANACH SPACES

BRUCE A. BARNES

This paper deals with continuous irreducible representations
of a I?*-algebra on a Banach space. The main result is that if
π is a continuous irreducible representation of a E*-algebra A
on a reflexive Banach space X, and if there is a subset S of A
such that the intersection of the null spaces of the operators
π(a) for all a e S is a nonzero, finite dimensional subspace of X,
then X is a Hubert space in an equivalent norm and π is simi-
lar to a ^-representation of A on this Hubert space.

In [7], R. V. Kadison raised the question of whether every con-
tinuous representation of a J3*-algebra on a Hubert space is similar
to a *-representation. Recently, J. Bunce, in [4], answered Kadison's
question affirmatively for a class of B*-algebras which includes the
GCR algebras of Kaplansky. Also, the present author proved an
affirmative result concerning this question in [2] (a new proof of this
result is given in §2; see Corollary 2.3). However, the general ques-
tion remains open. In this paper we consider this question of Kadison
in the special case where the representation is assumed to be irredu-
cible. Actually, the problem we consider (in the irreducible case) is
more general than Kadison's problem, since we allow the representa-
tion space to be a Banach space X. Then we prove under certain
conditions on the representation that X is a Hubert space in an
equivalent norm, and that the given representation of the J3*-algebra
is similar to a "'-representation of the algebra on this Hubert space.
A precise statement of our main result is in the abstract above. It
is an open question whether the existence of a continuous irreducible
representation of a £>*-algebra on a Banach space X necessitates that
X is a Hubert space in an equivalent norm.

At this point we introduce some notation and terminology.
Throughout this paper X is a Banach space and A is a B*-algebra.
All norms, except for particular norms introduced in context, are
denoted by || ||. The normed dual of X is denoted by X*. If xeX
and aeX*, we often use the notation (x, a} for a(x). &(X) is the
algebra of all bounded linear operators on X. If Te&(X), then
&(T) and ^yK(T) denote the range and null space of T, respectively.

A nonzero subalgebra B of &(X) is irreducible (or acts irredu-
cibly) on X if the only closed 5-invariant subspaces of X are {0} and
X. B is strictly irreducible if the only J5-invariant subspaces of X
are {0} and X. If π is a nonzero representation of A into
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then π is [strictly] irreducible if the image algebra π{A) is [strictly]
irreducible on X. Throughout this paper π is a continuous represen-
tation of A into

2* Representation of a J3*-algebra on a Banach space* As we
stated previously, π will always denote a continuous representation
of A into &(X). In this section we find general conditions which
imply that X is a Hubert space in an equivalent norm, and that π
is similar to a *-representation of A on this Hubert space (Proposition
2.2 and Proposition 2.5). Proposition 2.5 is used in the next section
to prove the main result of the paper.

LEMMA 2.1. Let H be a Hilbert space, and let B be a *-subalgebra
of &(H) acting strictly irreducibly on H. Let \\ ||2 denote the Hilbert
space norm on H, and assume that || || is a norm on H with the
properties:

(1) there exists K > 0 such that K\\ x ||2 ^ || x \\ for all xe H, and
(2) every Te B is continuous on the normed linear space

Then || || is equivalent to || ||2 on H.

Proof. Assume that ae (H, || | |)*, the dual space of {H, || ||),
and a Φ 0. By (1), a is continuous on H with respect to || ||2. There-
fore, there exists ze H, z Φ 0, such that a{x) — (x, z) for all xe H
where ( , ) is the inner product on H. Given w e H, there exists
TeB such that T*z = w. Then the functional β(x) — (x, w) is con-
tinuous with respect to || ||, since β(x) = (x, w) = {Tx, z) = a(Tx),
and T is continuous on (H, || ||) by (2). Thus the continuous linear
functionals on (H, || ||) are exactly the functional a of the form
a(x) — (x, w) for some w e H.

Now if ae (H, \\ | |)*, let 0(a) be the unique weH such that
α($) = (x, w) for all xe H. By the previous argument, Φ is a con-
jugate linear isomorphism of (H, || ||)* onto H. Furthermore, since

(x,w)\^\\a\\\\x\\^ K\\a\\\\x\\2 for all xeH, then | |φ(α:) | | 2 =

\\w\\2 ^ K\\a\\. Then by the Closed Graph Theorem, there exists
J > 0 such that J | | Φ{a) ||2 ^ || α: || for all ae (H, \\ | |)*. It follows that
for every w e H,

J\\w\\t7> sup - % ^

In particular, J\\ w ||2 ^ \\w \\~\w, w), which implies that J | | w\\*t
\\w\\2. Therefore, || || and || ||2 are equivalent on H.

Let K be a modular maximal left ideal of A. Then there exists
a positive functional a on A such that
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K= {aeA:a(a*a) = 0}

(see [5, Theoreme (2.9.5)]). The quotient space A - K = {a + K: a e A}
is an inner product space with inner product (a + K, b + K) — a(b*a).
Furthermore, by [10, Theorem 2], the norms

\a + K\ = α(α*α)1/2

and

| | α + K\\2 = inί{\\a + k\\:keK}

coincide on A — K. It follows that \\a + K||2 is a Hubert space norm
on A — K, and that the left regular representation of A on A — K
(i.e., aeA acts on b + Kby a(b + K) = ab + if) is a ^-representation
on this Hubert space.

We use these remarks in the proof of the next proposition.

PROPOSITION 2.2. Assume that π is irreducible, and assume that
there exists xe X such that the left ideal

K = {αe A:π(a)x = 0}

is modular maximal in A. Then X is a Hilbert space in an equiva-
lent norm, amd π is similar to a *-representation of A on this
Hilbert space.

Proof. Let K be as in the statement of the proposition, and let

\\a

As noted above, A — K is a Hilbert space in the norm || ||2, and the
left regular representation of A on A — K is a *-representation on
this Hilbert space. Since if is a modular maximal left ideal of A,
then A acts strictly irreducibly on A — K. Define a norm, || ||, on
A - K by || a + K\\ = \\ π(a)x \\. If a e A and k e K, then

\\a + K\\ = \\a + k + K\\ = \\π(a + k)x\\ ^ || π\\ \\ x || || a + k \\ .

Therefore, || a + JBΓ|| ^ (|| π \\ \\ x ||) || a + K\\2 for any aeA. Thus (1)
of Proposition 2.1 holds. If aeA,

\\a(b + K)\\ = \\π(ab)x\\ £ \\ π{a) \\ \\ π(b)x \\ - || π(a) \\ || b + K\\ .

Thus a acts continuously on (A — K, || ||), and this verifies that (2)
of Proposition 2.1 holds. Then by Proposition 2.1, || ||2 and || || are
equivalent on A — K. It follows that {π(a)x: a e A} is a closed π(A)-
invariant subspace of X, and since π(A) acts irreducibly on X, then
{π(a)x: aeA} ^ X. Define a norm | | . ||' on X by \\π(a)x ||' = || a + K\\t.
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Then II II' is a Hubert space norm on X, and || ||' is equivalent to
the given norm || || on X. Finally, it follows from [3, Theorem 4.1]
that π is similar to a ^-representation of A on this Hubert space.

As a corollary we have a new proof of [2, Theorem 8].

COROLLARY 2.3. Let A be a B*-algebra, and let π be a continuous
irreducible representation of A into &(X). Assume that A/ker (π)
contains a minimal left ideal. Then the conclusion of Proposition
2.2 holds.

Proof. Denote by 7 the natural quotient map of A onto A/ker (π).
Let N be a minimal left ideal of A/ker (π). Choose bey^N) and
yeX such that π(b)y Φ 0. The set Y= {π(a)y: a e y^N)} is a non-
zero 7r(A)-invariant subspace of X. We prove that π(A) acts strictly
irreducibly on Y. Assume that yίf y2 e Y and yλ Φ 0. There exist
al9 a2 e Ύ^iN) such that yk — π(ak)y, k = 1? 2. Since N is a minimal
left ideal of A/ker (TΓ), there exists aeA such that a2 — aax eker(π).
Then π(a2) — π(a)π(ai)1 so that τr(a)y1 = y2. Now an easy algebraic
argument using the fact that π(A) acts strictly irreducibly on Y
shows that for any nonzero vector xe Y, K — {ae A: π(a)x — 0} is a
modular maximal left ideal of A. Then Proposition 2.2 applies.

REMARK. Proposition 2.2 and Corollary 2.3 hold under the weaker
hypothesis that A is a Banach *-algebra with the property that every
modular maximal left ideal of A is the left kernel of a strictly pure
state of A. For examples of algebras with this property see [3].

Next we apply Corollary 2.3 to the case where A is a GCR algebra
as defined by I. Kaplansky.

COROLLARY 2.4. If A is a GCR algebra and π is a continuous
irreducible representation of A into &(X), then X is a Hilbert space
in an equivalent norm and π is similar to a *-representation of A
on this Hilbert space.

Proof. The quotient algebra A/ker (π) has no ideal divisors of zero
by [8, Lemma 2.5]. Therefore, by [8, Lemma 7.4], A/ker (TΓ) contains
a minimal left ideal. Then the result follows from Corollary 2.3.

As mentioned in the Introduction, J. Bunce has proved that every
continuous representation of a GCR algebra on a Hilbert space is
similar to a * -representation [4, Theorem 1].

Now for each positive integer n, let An = {ae A: || a || <Ξ n). If
x e Xy let [τr(A%)x] denote the weak closure of the set π(An)x in X.
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PROPOSITION 2.5. Assume that π is irreducible and there exists
x e X such that

X = U MAn)x] .

Then X is a Hilbert space in an equivalent norm, and π is similar
to a *-representation of A on this Hilbert space.

Proof. By the Baire Category Theorem, [τr(A%)α;] must have non-
empty interior for some n. Note that since π(An)x is a convex subset
of X, then by [6, Corollary 14, p. 418] the norm closure of π(An)x
is [π(An)x]. Then an easy computation shows that there exists an
integer m such that [π(Am)$] contains the closed unit ball of X.
Define a map T: A —> X by T(a) = π(a)x, ae A. We have shown that
if y is in the closed unit ball of X, then there exists ae A such that
|| a || <ί m and

\\T(a) - 2/H = \ \ π ( a ) x - y\\ < 1 / 2 .

Then a direct application of a theorem of W. Bade and P. Curtis [1,
Theorem 1.2] proves that T is onto. Therefore π(A)x = X.

Let K = {ae A: π(a)x = 0}. Let A — K be the quotient space
{a + K: aeA] equipped with the usual quotient norm. Define a map
Φ: A — K—> X by Φ(a + K) = π(a)x. Then Φ is one-to-one, continuous,
and onto (since π(A)x = X). Therefore, by the Open Mapping Theorem
Φ maps closed subsets of A — K onto closed sets in X. By [5, Theoreme
2.9.5] there exists a modular maximal left ideal / of A such that
KczJ. Then Φ(J) is a closed π(A)-invariant subspace of X. There-
fore K = J. By the remarks preceding Proposition 2.2, A — K is a
Hilbert space in the usual quotient norm. Therefore, X is a Hilbert
space in an equivalent norm. Then π is similar to a ^-representation
of A on this Hilbert space by [3, Theorem 4.1].

3. Some preliminary lemmas. In this section we prove several
lemmas which we apply subsequently in the proof of the main result.

LEMMA 3.1. Assume that X is reflexive and that A has an
identity. Assume that a = a* e A. Then

X -

Let E be the projection in £%?{X) with &{E) = <yf^(π(a)) and <yΓ{E) =
). If *sfs*(π(a)) Φ {0}, then there exists a sequence {an} c A

such that \\ an \\ = 1, n ^ 1, and

st. op. lim π(an) = E .
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In this case \\E\\ <; | | π | | .

Proof. Let sp(α) denote the spectrum of α in i . If λ£sp(α) ,
let R(X) = (λ — α)""1. Since a = a*, then sp (α) is real and || R(X) || =
(d(λ))"1 where d(λ) = inf {| X - α: |: a e sp (α)}. Set λn = ί(l/π), π ^ 1.
Then λ Λ gsp(α), w ^ 1, and |{λΛ.K(λft)} is a bounded sequence in A.
It follows from [6, Corollary 5, p. 597] that

X =

and that {Xnπ(R(Xn))} converges in the strong operator topology to
the projection E defined above. For n^l, let an — XnR(Xn). If
^V(π{a)) Φ {0}, then 0 e sp (α), so that d(Xn) = 1/n, n^l. Therefore,
| | α j | = \Xn\d(Xn)~1 = 1 and | | π ( α n ) | | ^ | |τr | | for n^l. Then || JE71| ^

11*11-

Let A+ denote the set of positive elements of A. If a: is a
positive functional on A, the left kernel of a is the set

Ka = {a e A: α:(α*α) = 0} .

LEMMA 3.2.

(1) Let M be a closed left (or right) ideal of A. If a, be A+

and a + be M, then ae M.
(2 ) If a, b e A+, then &{π(a)) c &{π(a + b)) and yi^(π(a + 6))c

^r(τr(α)).
( 3 ) If aeAt ^r(π(a)) = ^Γ(π(a*a)).

Proof. Let a, δ, and M be as in the statement of (1). Let a be
an arbitrary positive functional on A such that MaKa, where Ka is
the left kernel of a. Then a(a + b) — 0, so that a(a) = 0. Then
aeKa. By [5, Theoreme (2.9.5)], M is the intersection of the collec-
tion of all Ka such that MczKa. Therefore aeM.

Now assume that a, be A+. Let

M = {c e A: &(π(c)) c &(π{a + 6))} .

If is a closed right ideal of A and a + beM. By (1), ae M. There-
fore, &(π(a))a&(π(a + &)). Similarly, α + b is in the closed left ideal

N = {c e A I ̂ r (π(α + b)) c

Thus .κr(π(α + b))
If ae A, then ^"(ττ(α)) c .^^"(^(α^α)). Consider the closed left

ideal

π{a*a)) - {0}} .
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Since a*aeN, then by [9, Corollary (4.9.3)], aeN. This proves (3).
If xeX and feX*, let (f\x) denote the operator defined on X

by (f\x)(v) = f(y)x- Tf xΦO and / Φ 0, then the operator (f\x) has
one dimensional range. Conversely, every bounded operator on X
with one dimensional range is of the form (/1 x) for some xe X and
feX*. Note that || (f\x)\\ = \\f\\ \\x\\.

LEMMA 3.3. Let X be reflexive. Assume that {En} is a sequence
of projections in &?{X) such that

(i) there exists M > 0 such that \\ En \\ ^ M, n JΞ> 1, and
(ii) there exists a positive integer m such that dim (&(En)) = m,

( 1 ) Then there exists a subsequence {Enj) of {En} and an operator
^(X) with finite dimensional range such that

wk. op. lim (EnJ = E .
k

( 2 ) Furthermore, if {yn} c X, yn—> y, and En(yn) = yn for n ^
1, then E(y) — y.

Proof. First assume that m = 1. Then there exist sequences
{xn} c X and {/Λ} c X* such that En = (/Λ | ajΛ), π ^ 1. By hypothesis,
M ^ II ( Λ I ^ ) II = 11/* IIII α» ll Therefore, we may assume t h a t || xn || =
1 and | |/Λ || ^ Λί for n ^ 1. Then, since X is reflexive, we can choose
a subsequence {-%} of the positive integers such that wk. limfc x%k =
x and wk.* \imkfn]c — f for some xeX and / e l * [6, Theorem 28, p.
68]. Then it is immediate that (fnic\xnk) converges in the weak op-
erator topology to (f\x). Thus the conclusion of the lemma holds
when m = 1.

Now we proceed to prove (1) by induction. Let m > 1 be a fixed
integer, and assume that (1) holds for m — 1. Let {En} be a sequence
of projections satisfying (i) and (ii). For each n^l, choose xn e &(En)
such that ||a?Λ | | = 1. By (i), for an arbitrary ze^V(En) we have

This implies that dn ^ 1JM where dn is the distance from *„ to
Choose gn e X* such that gn(xn) = dΛ, || g, || = 1, and gn{^V{En)) = {0}.
Let Λ = d?g%. Then || (/. | *.) || = | | / . || = ώ-1 ̂  Λf for w ̂  1. Set
Gn = En — ( / n | * n ) . By the choice of fn and *Λ, GM is a projection.
Furthermore, dim (•$?((?„)) = m - 1 and || GTC || ^ 2M for all Λ ̂  1.
If follows from the induction hypothesis and the argument in the first
paragraph of the proof that there exists a subsequence {EKk} of {En}
and an operator E with finite dimensional range, such that {Enk}
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converges to E in the weak operator topology.
Now we prove (2). Assume that En(yn) = yn for n 7> 1 and yn

y in X. Let a be an arbitrary functional in X*. Then

(βy - y, a) \ ̂  \ {E{y) - Enk(y%k), a) | + | (ynjc -y,a)\

- Enk)y, α> I + I (Enk(y - ynk\ a) \

- Enk)y, a) | + (M + 1) || y - y%k\\ \\ a \\ .

Since the right hand side of this inequality approaches zero as k —>
4- c*>, then E(y) = y.

4. The main result* In this section we prove the main result,
the statement of which follows.

THEOREM 4.1. Let X be a reflexive Banach space. Assume that
A is a B*-algebra and that π is a continuous irreducible representa-
tion of A into &(X). Assume that there is a nonempty subset S of
A such that the intersection of ^V(π(a)) for ae S is a nonzero finite
dimensional subspace of X. Then X is a Hilbert space in an equiva-
lent norm and π is similar to a *-representation of A on this Hilbert
space.

We assume throughout the proof of the theorem that A has an
identity. It is not difficult to verify that there is no loss of generality
in making this assumption.

Now let S be the nonempty subset of A hypothesized in the
statement of the theorem. Then

W = Π
aeS

is a nonzero subspace of X. Let Γ = { α e i + : I f c ^ ( φ ) ) } . By
Lemma 3.2(3),

a)) = W .

The set T is partially ordered in the usual ordering of positive ele-
ments of A. Furthermore, T is a directed set since iί a, be Γ, then
α + 6 e T, a + b^ta, and a + b ^ b. By Lemma 3.1, for each aeT
there exists a projection Ea such that &(Ea) = ^^(π(α)) and ^i^(Ea) =

Let J? be the closure of U α e r ^ ί ^ α ) - We begin the proof
of Theorem 4.1 with two lemmas.

LEMMA 4.2. The net {Ea}aeτ converges in the strong operator
topology to a projection Ee &(X) with &{E) = W and ^V(E) — Z.
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Proof. The collection {Ea: ae T) is ordered in the usual ordering
of projections, i.e., E^F if EF = FE = F. If a, be T, then a+b
eT, and by Lemma 3.2(2), we have &(π(a)) c &(π(a + &)) and
^T(π(a + b)) c ^K(π{a)). It follows that Ea+b(I - Ea) = 0 and that
(/ - # α ) # α + δ - 0. Therefore, # α ^ #„+,, and by symmetry, Eb ^ J£β+6.
This proves that when c, de T and d ^ c, then J57β ^ 2?d. Also by
Lemma 3.1, there exists M> 0 such that ||2£β || ^ Λf for all aeT.

By the construction of {Ea}aeτ, we have that W = Γ\aeτ&(Ea).
Let F = (Jeer ^ W Note that Y is a subspace of X since when
α, 6 G Γ , then ^V{Ea) U Λ\Eb) c Λ^(Ea+b). Recall that Z is the
closure of F. Let 2G^, and let ε > 0 be arbitrary. Choose 7/G F
such that 11 ^ — y\\ < ε. Choose α e T such that Eay = 0. Then if
5 G Γ and 6 ^ α, we have that 2£β ^ Eb, so that ^7/ = 0. Thus for
all δ ^ α , || Ebz \\ = \\ Eb(z - y) \\ ̂  Me. This proves that the net
{Eaz}aeτ converges to 0 whenever zeZ. Also if aeT and weW,
then Ea(w) — w. This proves that the net {Eaw}aeτ converges to w
whenever we W. It follows that Z f] W = {0}. Next we prove that
X — Z 0 W. Assuming this result, the previous argument implies
that {Ea}aeτ converges strongly in &(X) to the projection E with
&g{E) = W and ^T(E) = Z.

Let x be a vector in X. The net {βj}α er is bounded in X. Since
X i s reflexive, it follows from [6, Corollary 8, p. 425] that there ex-
ists a vector veX and a subnet of {Eax}aeτ that converges weakly
to v. Thus there exists a directed set (Q, ^ ) and a map m: Q—> T
such that {2£»(ff)<&}geρ converges weakly to v, and such that for each
aeT, there exists qeQ such that when peQ and p ^ g, then m(p) ^
α. If 6 G JΓ, let Qδ be the cofinal subset of Q defined by Qb —
{qe Q: m(q) ^ 6}. Then the net {Em{g)x}geQb converges weakly to v, and

Ebv = Eb(wk. lim Em{q)x)
aeQb

= wk. lim {EbEm{q)x)

= wk. lim (Em(q)x)

qεQb

= V .

Thus veW. Let a be an arbitrary functional in Z1, the annihi-
lator of Z. Then since x — Em[q)xeZ for all qeQ, we have lim9eρ
α(x — Em{q)x) = 0. Thus α(# —1;) = 0 for all ae Z1. Therefore, x — veZ,
so that x = (x — v) + v e Z + W. As we noted previously, the fact
that X = ZQ) W implies that the bounded net {Ea}aeτ converges
strongly to the projection E with range W and null space Z.

LEMMA 4.3. Assume that xeW, x Φ §. If ye Z and ε > 0, then
there exists an invertible element ueA such that \\y — π{u)x\\ < ε.
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Proof. It suffices to prove the lemma when y e ^V{Ea) for some

aeT. In this case x e ^V(π(a)), y e &(π(a)), and ^Γ(π(a)
= X (Lemma 3.1). Let ε > 0 be arbi t rary . There exists zeX such
t h a t \\y — π(a)z\\ < ε. Since π(A) acts irreducibly on X, there exists
be A such t h a t

|| π(ab)x — π(a)z || < ε .

Then || y — π(ab)x || < 2ε, and since π(b*a)x = 0,

||2/ - π(αδ + b*a)x\\ < 2ε .

Since α& + 6*α is self-adjoint, we can choose a number λ with
I λ I || x || < ε and such that u — λ + (<x6 + 6*α) is invertible in A.
Then 117/ — π(u)x\\ < 3ε. This proves the lemma.

Now we complete the proof of Theorem 4.1. By hypothesis W is
finite dimensional, say m dimensional. Fix x e W, x Φ 0. Assume yeZ.
By Lemma 4.3, there exists a sequence of invertible elements {un} c
A such that lim% 7r(^)$ = y. For each ^ g: 1, let

TΓn = π{un)(W) = Π ^ ( ^ f e 1 ) ) .
αeϊ1

Set τ/w — π(un)x. Then TF̂  is a m dimensional subspace of X and
2/* G Wn for w ^ 1. Let Tn = {ae A+: Wn a <yf^{π{ά))}. For each a e Tn

there exists a projection Ea with &(Ea) = ^4^(π{a)) and ^4^(Ea) =
) . By Lemma 4.2 there exists a projection i?% with

Wn, \\En\\ ^ | |τr | |, and such that

( 1 ) st. op. lim Ea = En .

By Lemma 3.3 we may assume (by passing to a subsequence if neces-
sary) that there is an operator F with finite dimensional range such
that

( 2 ) wk. op. lim En = F ,

and ye &(F). The subspace τr(A).τ is dense in X. Then since F has
finite dimensional range, yeF(π(A)x). Choose be A such that y —
Fπ(b)x. Fix an integer n ^ \\b ||, and let An = {ae A: \\a\\ ^ %}. We
now prove that ?/ is in the weak closure of π(An)x. Let U be a weak
neighborhood of 0 in X, and choose F a weak neighborhood of 0 in
X such that F + V + V c U. By (2) we can choose an integer k so
large that

E k π ( b ) x - yeV.

By (1) we can choose an element ae Tk such that

Ejz(b)x - Ekπ{b)x e V .
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B y L e m m a 3 . 1 w e c a n c h o o s e a n e l e m e n t c e A s u c h t h a t \\c\\ <^ 1 a n d

π(cb)x - Eaπ(b)x e V .

Then π(cb)x — ye Uand || cb || <̂  n. Therefore, y is in the weak closure
of π(An)xy as asserted.

Now let E be the projection with &(E) = W as in the state-
ment of Lemma 4.2. Assume yeW. Since i? has finite dimensional
range and π(A)x is dense in X, then there exists be A such that y =
Eπ(b)x. By Lemma 4.2,

st. op. lim Ea — E .
aeT

Let ε > 0 be arbitrary. Choose α e Γ such that || y — Eaπ(b)x || < ε. By
Lemma 3.1, there exists a sequence {an}aA such that | | α w | | = 1 and

st. op. lim π(an) = Ea .

Now choose k so large that \\y — π(akb)x\\ < 2ε. Since ε > 0 was
arbitrary, this proves that y is in the norm closure of π(An)x where
n is any integer such that n ^ || b ||.

By Lemma 4.2, X = Z 0 W. The arguments given above imply
that given any yeX, there exists a positive integer w sufficiently
large such that y is in the weak closure of π(An)x. Therefore, the
theorem follows from Proposition 2.5.

Added in proof. We have found a proof of Theorem 4.1 which
is considerably simpler than the one presented here. Using a modifi-
cation of an argument due to P. G. Spain in [J. London Math. Soc.
(2), 7 (1973), p. 385], we can show that a continuous representation
π of a I?*-algebra A on a reflexive Banach space X can be extended
to a continuous representation π of the second dual of A on X Also,
π is continuous with respect to the appropriate weak topologies.
Then combining this result with arguments similar to those appearing
in §2, it is not difficult to derive Theorem 4.1.
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