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FOURIER TRANSFORMS OF ODD AND EVEN
TEMPERED DISTRIBUTIONS

E. 0. MILTON

In this paper certain previous results of the author con-
cerning Abelian theorems for the Fourier transform of distri-
butions are generalized to two new distribution spaces, those
of odd and even tempered distributions. These spaces arise in
the consideration of Fourier sine and cosine transforms of
distributions.

In [2] Abelian theorems concerning the Fourier transform of func-
tions provided the initial motivation for similar results about the
Fourier transform of distributions. They also contributed directly to
these results through the representability of certain types of distri-
butions by functions. It turns out that the analogous procedure is
possible with Fourier sine and cosine transforms, leading to the space
of even tempered distributions (Sζf) and the space of odd tempered
distributions (S^r).

The basic idea is to generalize the facts for the classical trans-
form that the Fourier transform of an even function is actually a
cosine transform and the Fourier transform of an odd function is
actually a sine transform. Then as in [2] Abelian theorems can be
obtained for these transforms of distributions which are representable
in certain ways by functions. In § 5, results of this type are obtained
for semiregular distributions, those which are regular over a subset
of their respective supports.

With this approach, classical results for both the Fourier sine
transform and Fourier cosine transform yield distributional results
for these two transforms and can then be combined to yield results
about the Fourier transform of a distribution itself. Thus, not only
do we have a direct generalization of results for Fourier sine and
cosine transforms of functions and hence an alternate approach to
Abelian theorems about the Fourier transform, but we are dealing
with the larger distribution spaces, £f' and £/£.

2. Notation and definitions* The evaluation of a distribution
T at a test function φ will be denoted by <T, φ}. All integrals are
Lebesgue integrals and fe BV(Ω) will mean the function/ is of bound-
ed variation over the set Ω. #—• ±α is shorthand for the two state-
ments x —> α~ (approach from the left only) and x —• α+ (approach from
the right only). As usual, f ~ Kg (x—*a) for K Φ 0 will mean f/g —•
K as x —> α. If at any time the variable in a given expression is not
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clear from the context, a subscript will be used as an indicator, such
as Tt or [&ζ]ξ.

A distribution is said to be regular if it is defined by a locally
integrable function /, that is, if <Γ, Φ> = (Tf, φ) = Γ f(x)φ(x)dx
for each test function φ. Then a distribution which is regular over
a subset of its support will be called semiregular. A distribution
which is not semiregular is said to be singular. We denote by &"
the class of all tempered distributions [3, p. 188]; &* is the corre-
sponding test function space. Also g7' is the class of all distributions
with bounded support [3, p. 99]; g7 is the corresponding test func-
tion space.

DEFINITION 2.1. The space S^{S^) is the subset of all even (odd)
functions in Sf. Thus φ e Sζ(S^) if φ e g", φ is an even (odd) func-
tion, and for any arbitrary integer k ^ 0 there exist constants Ckm

such that

I xkφ^(x) I ̂  Ckm (m = 0, 1, 2, . •) - oo < x < oo .

An example of an element of £^ is given by e~χ2, since e~χ2 e S^
and is even. Thus xe~χ2 e £^, since if φ is an even differentiate
function, then Kφ' is odd for any constant K.

DEFINITION 2.2. A sequence of functions φά e Sζ(£%) converges
to zero in S^{S^) as j -^ oo [φ. -* 0 in Sζ(£ζ)] if for arbitrary in-
tegers k, m ^ 0 the sequence xkφ^m)(x)—*0 uniformly in JB.

If / is a complex valued function absolutely integrable over
(—oo, oo), then the Fourier transform of/ is the function of the real
variable σ defined by

f(σ) - J^[f(x); σ] = (2^^ Γ f(x)e~iσ

J — oo
dx .

Under the same conditions, the Fourier sine transform will be denoted
by fs(σ) = ^~s[f(x);σ] and the Fourier cosine transform by fc(σ) =
^Af(F)'f<r]' Also, for the one-sided Fourier sine transform we use
the symbols ft(σ) = J?s

+[f(x); σ] and for the one-sided Fourier cosine
transform ft(σ) = ^c

+[f(x); σ]. At times certain comments will apply
to either fc or f89 so in such a situation the symbols / and ^ 7 will
be used. Finally, if TeS' then the Fourier transform of T is the
distribution J?"[T] or f defined by <f, φ) = <Γ, φ} for any test
function φeS^.

3. Classical preliminaries. The development of Fourier sine
and cosine transforms of distributions is carried out along lines that
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are standard for the Fourier transform. However, the only result
of that theory which is needed explicitly is that ^(^^φ) =
^~\^φ) — Ψ for any φe5< Therefore, some basic properties of
the Fourier sine and cosine transforms of functions need mention.

THEOREM 3.1. If feL1 then f exists, is uniformly continuous
and bounded, and satisfies:

( i i ) | / ( f ) | - 0 as | f | - > o o
(iii) &%[f(kx); ξ] = (1/1 k \)J?t [f(x); ξ/k], k e R, k Φ 0.

If f is m-times differentiate, then
);«1 m even

j ^[m.ξ] modd

and

l ζ m j r Λ f W > ξ ] meven

( v ) ^ [ / W > ξ l \ ξ ^ [ m ; i ] m o d d .

Also
( v i ) ^

If xmfeLι and fe L1, then f(ζ) is m-times differentiate and

( ) ^ / ^ ) ; ! ] m even

(Vlll) f (ζ) = i

v 7 J . v/ ( ( - l j - / * ^ ^ - ^ ) ; ? ] TO

(ix) |/'-)(f)|^(27r)-1"||iB-/(!c)|Ui.

The proof follows easily by standard techniques.

COROLLARY 3.2. If <pe<9ζ, then

( i ) ^ Ά Ψ [ 2 m ) ; ζ ] = - ? m J ? Λ < P ; ξ ) . _ , O Q v
('Wί' — X. Δ. o. j

( i i ) ^ [ 9 > ( 1 — 1 ) ; f] = 0

if ψe Sζ, then

(iv) j ^ — » ; f ] = 0 ( m - 1 , 2 , 3 , . . . ) .

For odd and even functions in U the use of the Fourier and
inverse Fourier transforms reduces to the use of sine and cosine
transforms, respectively.

THEOREM 3.3. If f is an even {odd) function in L1, then

jr[f(x); ζ]=jr[Λx)] ξ] (

Also
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The proof is immediate from the definitions of the quantities in-
volved and the results of multiplying different combinations of odd
and even functions.

For the purposes of the applications in §5, we need to mention
a classical Abelian theorem covering Fourier sine and cosine trans-
forms. This result will later be generalized to odd and even tempered
distributions.

THEOREM 3.4. Let feL\0, oo) such that

(x~ag(x) 0 < x < a

[x βh(x) a < x <

where a ^> 0, geBV[0, a], and heBV[a, oo], then
(i) i/ 0 < a < 1 cwd /5 ;> 0

//"(») ^ g(0+)(2/π)ι^Γ(l - a) sin (ττα/2)| a; \"~ι (x > ± oo) ,

/J-(a?) - sgn (x)g(0+)(2/π)^Γ(l - a) cos (πa/2)\ x I*-1 (x > ± oo) .

(ϋ) if a < 1 omd 0 < β < 1

/ί(a?) - A(oo)(2/τr)1/2Γ(l - /3) sin (πβ/2)\ x Γ 1 (a? > 0) ,

/ϊ-(α?) - sgn (a;)A(oo)(2/7r)1/2Γ(l - /9) cos (πβ/2)\ x | ^ (α? > ±0) .

Proo/. See [2, p. 164].

4* Fourier sine and cosine transforms of distributions* Just
as the fact that φe<9* implies φ e £f is important in the development
of the Fourier transform of an element of S^'9 the analogous facts
for £ft and ^ are of equal importance in the development of the
Fourier sine and cosine transforms.

THEOREM 4.1. If φe<9ζ(S^0), then ^φe&ζ&φe&ζ) and
= Ψ {^S[^SΨ] = <P). Moreover, φn-*0 in Sζ(S^) implies

that JKΦn-^O in Sζ(J?sφn->0 in ά%). Thus the mapping
is a continuous isomorphism of Sζ(S^) onto

Proof, φ e <9ζ => xmφ e L1 for any integer m ^ 0, thus by Theorem
3.1 φce g\ Also by Theorem 3.1 [(vii) and (vi)]
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for arbitrary nonnegative integers m and I, that is φc —-> 0 as | ξ | —>
oo faster than any power of 1/| ξ !. Also <^c(-f) = ̂ β(f), thus φc 6 ^ .
Similarly for φ s e ^ . If <pe^f, then the fact that J^[J^\φ\ =φ
follows from Theorem 3.3 and the fact that if φ e S^ then J Π J ^ " 1 ^

^ r " % ^ » = 9> [3, p. 192]. Similarly for φe<9ζ and J C Now if
φn —> 0 in jPf, then as above

By Definition 2.2 the right hand side of this inequality approaches
zero as n approaches infinity and hence ζmφ%c —* 0 uniformly, that is
φne-+0 in £ζ. Similarly for φ8.

It is not at all surprising that the motivation for the definition
of Fourier sine and cosine transforms of distributions is supplied by
a classical result.

THEOREM 4.2. If feL1 and φz£Se(&ζ), then

Proof. This is a special case of the well-known result (related
to the Parseval formula) that if / and g belong to U, then

Γ ^[f(ξ);x]Q(x)dx = Γ f(x)jr[g(ξ);x]dx .
J — oo J—co

See, for example, Bochner and Chandrasekharan [1, p. 2] or Titchmarsh
[4, pp. 50-54].

DEFINITION 4.3. An even (odd) tempered distribution is a con-
tinuous linear functional on the vector space

THEOREM 4.4. Sζ' z> &' and S^r z> S^\ We denote this space by

Proof, φ e Sζ(S^) implies φ e S^ and φi -• 0 in Sζ(Si) implies
<Pj —• 0 in S^. Hence a continuous linear functional on S^ is also a
continuous linear functional on S^(S^). Thus £^\άV) z> &".

Now that all of the necessary machinery has been developed, it
is possible to define the desired transforms. This is a direct analogue
of the definition of the Fourier transform of an element of Sf\

THEOREM 4.5. If T is an even (odd) tempered distribution then
we can define the Fourier cosine (sine) transform Tc = ̂ cT(fs =

of T by
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(4.1)

for arbitrary ψ e S%Si). Thus JβΌiJ^s) is a continuous mapping of
S?(£Ό') onto &?{&*)

Proof. Jί φeSζ, then φc e Sζ by Theorem 4.1, that is if Te S?,
then <Γ, φc} is meaningful and <*^T, <P} = <T, J^φ} defines a linear
functional on Si. If 9>, —> 0 in Si && j-+ <*> then φ i c —> 0 in Si as
i-> oo by Theorem 4.1. Thus <T, ̂  β> —0 and hence <^CΓ, <P;> —0
as j-+oo. That is, equation (4.1) defines a continuous linear func-
tional on Si9 and hence an element of Si'.

Finally, if Tύ-^T in S^' then (Tjf ψ}-+(T, ψ) for arbitrary
f e ^ . Thus C^ΓTi, <P> = <JP, , , ^ » -> <T, ̂ Γ^> = < ^ T , φ> for ar-
bitrary φeSi, that is J^Tj-> J^T in ^ ' . Similarly for J?ST.

At this stage we have established the fact that Si' and Si' both
contain S" but have not indicated whether or not the containment
is proper. The following examples clarify the relationships of the
three spaces. Define the expression O(f) by

<O(/), φ} = lim I f{x)φ(x)dx ,
X—*<x> J — X

for functions / and φ defined on the whole real line. Also, let g be
given by

α;) I a; < a

where h is any function integrable over the interval (—α, a). Then
0(#) is not an element of Sf\ as can be seen by the fact that it is
not defined for the test function given by φ(x) — e~χ2. This same test
function is also an element of £s, which indicates that 0(g) is not in
S? either. But given an arbitrary element φ of *$£,

<0(g), φ) = lim Γ g(x)φ(x)dx
X^oo J~X

= lim 1 g(x)φ(x)dx + \ g(x)φ(x)dx + I g(x)φ(x)dx
X—oo [_J~X J-α Jα J

S α

g(χ)<p(x)dx ,

which exists since βr is integrable over ( —α, α) and φ is continuous.
This functional is clearly linear. To show continuity, consider <Pj—>

0 in Si. Then | (0(g), φόy \ = ^ max,e[_o,α]

(̂α )ώα? which tends to 0 as j tends to infinity. Thus 0(g) is a

continuous linear functional on Si and hence an element of Si'. A
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similar argument with 0(g) where g is given by

9(x) =
xeχ2 I x I > a

h(x) I x I < a

with h any function integrable over (—a, a) shows that there is at
least one element of £ζ' which is neither in S?9 nor S^' and thus
completes the argument that no two of the three spaces S/", <Pf, and
S% are equal. Thus SfJ and S^V are in fact bigger spaces than Sf\

Since &? and &%' both properly contain S?' it is trivial that
S>V Π £<%' 2 Sf*. But it is interesting to note that S?t' Π S<V is
exactly &". To show this we first need a lemma.

LEMMA 4.6. Let φά be a sequence of elements of Sf converging
to 0 as j —> oo. Writing each φ0- as φje + φ3 Q, where φje + φJQ is the
usual decomposition of a function into even and odd parts, <Pj-+0 in
S? implies φje —> 0 in Sζ and φJQ —> 0 in S^.

The proof follows from the fact that φe(x) = (l/2)[φ(x) + <P(-x)\
and φo{x) -

THEOREM 4.7. £??[&%' = Sff.

Proof. As mentioned above £? Π S% 2 ^ ' . To show ^ ' 2
^ t ' Π 1$?' consider an element T of ^ ' Π *$?'. For an arbitrary ele-
ment φ of Sζ

and each term on the right hand side of this equality is well defined,
hence T is a linear functional on S^f. To prove continuity consider
a sequence of test functions φ5 in Sf such that φό —• 0. Each 9>y =
9̂ yβ + ^i 0

 a n ^ by Lemma 4.6 φά —> 0 as j —> oo implies < îe —• 0 and
^ i o —> 0 in their respective function spaces as j —> oo. Thus

<r, ^ > - (T, φjey + <τ, φhy — o as j — oo

and T is a continuous linear functional on £f.

5* Applications* In this section we obtain Abelian theorems
for the distributional Fourier sine and cosine transforms defined
above. As mentioned in the introduction, these results generalize
known Abelian theorem for the Fourier sine and cosine transforms
of functions to the distributional setting. These results can then
be combined to yield an alternate approach to Abelian theorems
about the Fourier transform in Sf\ Thus we are not only working
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with larger spaces than Sf\ but can combine results of the same
type to get results about S?9.

The following theorem is a necessary preliminary to investigating
the sine and cosine transforms. It is a direct analogue of a result
for the Fourier transform and can be proved by a very slight modi-
fication of that proof.

THEOREM 5.1. The Fourier cosine transform of a distribution
Teg 7 ' is (the distribution defined by) the function

(5.1) v(ξ) = (2πΓiχTx,cosxξ}

The right hand side is also defined for every complex number ξ and is
an entire function of ξ. Similarly the Fourier sine transform of T is

(5.2) w(ξ) = (2π)~^(TXf sina f) ,

which is also entire.

Proof. Modifying the proof by Schwartz [3, pp. 189-190] yields
the result as follows. Since sinα f € |fβ and ί?e, equation 5.2 makes
sense. Also w(ξ) is an infinitely differentiable function of £ [3, Chapter
III, Theorem 1]. Both statements are true if ζ is complex, hence
w(ζ) is entire. Now, if <pe[£%]ξ

sinxξd

- ( 2 π Γ ' 2 Γ <Γ., smxξφ(ξ))dξ [3, III, I; 8]
J—oo

= Γ W(ξ)φ(ζ)dζ = <Γβ ( e ) f φ(ξ)> ,
J—oo

hence J ^ T = w. Similarly for

THEOREM 5.2. Let Te^ζ' with support in (— oo, oo) such that
T equals the distribution corresponding to a function f over [α, oo)
and corresponding to a function g over (—oo,δ] for real num-
bers b < a. If feL^a, oo) and f(x) = x~"p(x) over [c, oo), and if
geL'i—oo, b) and'g(x) = ( — x)~βq( — x) over (—©o, d], where c> a, c>
0, d < 6, d < 0, 0 < a < 1, peBV [c, oo), and qeBV [-d} oo), then
fc is a regular even tempered distribution defined by a function Φ
such that

Φ ~ (2τr)-1/2p(oo)Γ(l - a) sin (πa/2)\ x I*"1

+ (2τr)-1/2g(oo)Γ(l - β) sin (πβ/2)\ x \*-1 {x > ±0) .

Also, if Te £%' and satisfies the above conditions, then Ts is a regular
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odd tempered distribution defined by a function Φ and

Φ(x) ~ sgn (αO(2ττ)-1/2;p(co)Γ(l - a) cos (πa/2)\ x \a^

+ sgn (x)(2π)-1i2q(oo)Γ(l - β) cos (πβ/2)\ x \'~l (x > ±0) .

Proof. For the first part of the theorem T can be written as
T = Tg + S + Tf where the supports of Ta, S, Tf are ( - oo, b - ε],
[b — ε, a + δ], and [α + δ, oo), respectively, for positive δ and ε. S
has compact support, hence Sc is regular defined by u(x) = (2ττ)~1/2

<Ti, cosa ί) as in Theorem 5.1.
Then for ^ and Tg we have f/β = T/c and f̂ β - Γ;β. But

fc(x) = (2π)~1'2 [ f(t) cos xtdt + (2τr)-1/2 Γ/( ί) cos xtdt
Ja+δ Jc

= φ ) + (27r)-1/2(°β/(ί)cosajίd;ί ,

and

gc(x) = (2τr)-1/2 Γ g(t) cos a ίdί + (2^)-^ Γ *g(t) cos
J — oo Jd

cos xtdt + w(x) ,

where v and n; are functions bounded above and below. Also,

^e[T] = ^Ό[Tg + S + Tf] = f9c + Sc + f/β - Γ;c + Tu + Γ/β

where

0(α;) = %(») + v{x) + w(a;) + (27Γ)-1'2 Γ flr(ί) cos
J

cos

The first three terms of Φ are bounded as x—> ± 0 , and the behavior
of the last two is given by Theorem 3.4 with the function g appear-
ing there being 0. The behavior of the last term is a direct applica-
tion of the theorem and the behavior of the fourth term is obtained
by applying the theorem to g(—x). The proDf of the second part of
the theorem is similar.

In a result such as this, one of the terms in the sum will domi-
nate, depending upon the relative sizes of the powers of \x\.

We can now combine these results to yield an alternate proof to
a result previously obtained for the Fourier transform [2, Theorem
3.4, p. 167].

COROLLARY 5.3. Let TeS^' satisfy the conditions of Theorem
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5.2. Then T is a regular distribution defined by a function Φ and

Φ ~ (2τr)-1^(oo)Γ(l - β)eπis^x^1-β)i2\χ\β-1

+ (2π)^2p(oo)Γ(l - a)eπissn{xH<x"1)l2\ x f-1 (x > ±0) .

Proof. For any φeS^,

9 φe + φ0) = < ^ T , φe}

by Theorem 3.3. But this equals

(5.3)

since Γ e ^ ' ^ ^ ' Π ^ ' . Then by Theorem 5.2 the distributions
^~CT and ^ 7 Γ are regular and correspond to functions, say X and Ψ,
having the given asymptotic behavior. But expression 5.3 equals

<Γ χ + TΨ, φe + φo>

since

< ^ Γ , ^0> - <^;Γ, ^e> = 0 .

Thus if Φ = X + W, then by Theorem 5.2 Φ behaves as stated.
For a discussion of Abelian theorems of this type with x —> ± oo,

see [2, p. 167].
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