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CONGRUENCE RELATIONS AND MULTIPLICITY
TYPES OF ALGEBRAS

B. JONssoN AND T. P. WHALEY

Given two multiplicity types 2 and ¢/, the following two
conditions are shown to be equivalent: (1) For every algebra
A of multiplicity type u there exists an algebra A’ of multi-
plicity type p/ such that A and A’ have exactly the same con-
gruence relations. (2) For every k> 0, g, + ftyy + -+ = ¢ +
.u}’c+1 + .-

Introduction. Given an algebra A = U, fi(ie I)), we let Con (4)
be the lattice of congruence relations over A. By the multiplicity
type of A we mean the sequence ft = {ft, tt, *+, s, +++) Where g, is
the number of indices 7 for which the rank of f; is n. The purpose
of this paper is to prove the following result:

THEOREM. If p and t' are multiplicity types with the property
that for every algebra A of the multiplicity type [t there ewists an
algebra A’ of the multiplicity type t' such that Con (A) = Con (4’),
then th + Moy + o0 S M+ M + -+ for k=12, ---,

This result was conjectured in [3], and the special case k¥ = 1 was
proved in [5]. The theorem was announced in [4] for the case when
the multiplicity types are finite, and in [2] without that restriction.

The converse of our theorem is also true; its proof easily reduces
to an elementary but somewhat tedious set-theoretic argument. Rough-
ly, we want to show that if the given inequalities hold, then any
algebra of the multiplicity type ¢ can be transformed into an algebra
of the multiplicity type ¢/ by adding dummy arguments to some of
the operations and by introducing new operations that do not affect
the congruence relations. (Since operations of rank zero do not affect
the congruence relations, we may assume that g, = ¢ = 0.) It is
clearly sufficient to show that, given two sets I and I, partitioned
into subsets I, and I, respectively, with |I,| = g, and |I,| = &/,
(n =1,2, +--), there exists a one-to-one map ¢: I — I' such that, for
each 1€ I, #(t) belongs to some I, with m = n. The existence of
such a map will certainly be assured if we show that I’ can be par-
titioned into subsets J, with z, < |J, | for » = 1,2, --- in such a way
that each member of J, belongs to some I, with m = n. We shall
in fact construct a double sequence of sets J,.(p =0, n = 1) with
Jo,» = I, in such a way that

(a) for a fixed p, the sets J,, form a partitioning of I,
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®) Jyy=Jp, for k=12 -+ .

(¢) each member of J,, belongs to some J,,,, with k < n

@) #, =< |Jpnl for m =12 ---.

The sets J, = J,,, are then easily seen to form the required partition-
ing of I'.

The sets J,,, are defined successively for p =1,2, --., and for
the purpose of the recursive definition we require the cardinals z,, =
|J,,. | to satisfy the further condition that

(©) My + Mios+ oo+ = flys + Mps + oo- fr k=12 -

This condition is satisfied by hypothesis for p = 0. Assuming that
the sets J,, have been defined for a given value of p, we indicate
how the sets J,.,,, are to be chosen, but leave it to the reader to
verify that the conditions (a)-(e) are satisfied.

We let J,.1,, = J,,, for n =1,2, ..., p, but consider three cases
in defining the sets J,.,,, with n > p.

Case 1. p,, is infinite for some n > p.

For n > p+ 1let J,y,n = Jp0 if Y, is finite, but if g, , is infi-
nite, partition J,, into two sets, J,.,, and K, ,, both of cardinality
Yo Let J,.,,., be the union of J,,., and of the sets K,,.

Case 2. ,, is finite for all » > p, but p,, # 0 for infinitely
many values of #.

In this case the set J, .. Ud,,05 U -+ is countably infinite, and
its members can be arranged into a sequence without repetitions, say
@, Qs @3, +++, in such a way that the members of J,, always precede
the members of J,,,.,. Let J,.,,., consist of the elements of J, .,
together with the odd numbered terms of this sequence. LetJ, ., ,.»
be the set consisting of the first #, ,., even numbered terms of this
sequence, J,,,,,.; the set consisting of the next p,,.; even numbered
terms, etc.

Case 3. [, is finite for all n > p and equals zero for all but
finitely many » > p.

Choose m so that g,, =0 for » > p + m. Then g, = 0 for n >
» + m. The elements of the set J,,,4 Udppiz U<+ Udppim can be
arranged into a finite sequence without repetitions, say a, a,, - -, a,,
in such a way that the members of J,,,., always precede the members
of Jppiu—se Let Jppip0n = @ for m > m, let J,4,,,.m be the set con-
sisting of the first g,,, terms of the sequence, J,.;,im, the set
consisting of the next #,.,_, terms, etc. Finally, let J,.,,,., be the
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set consisting of all the terms that remain after J,.1,pims Jpstpim, ***»
Jpi1,pe2 DavVe been defined.

1. Preliminaries. If V is any set and n is a positive integer,
then we let "V be the set of all n-termed sequences x=<%y, X1y =+, Tory
of elements of V. In particular, 2V if the universal equivalence rela-
tion over V. We let id, be the identity relation over V, or the
identity map of V onto itself. If V is a subset of the domain of the
function f, then f | V' is the restriction of f to V. If # is an equiva-
lence relation over V, then for we V we let u/6 be the #-class to
which u belongs, and for eV we let x/0 = {x,/0, x./6, - - -, %._./0).

Since the indexing of the operations is usually not important,
we often regard algebras simply as ordered pairs A = (U, F) con-
sisting of a nonempty set U and a set F' of operations over U, and
we then write Con (U, F) for Con (4). If X & *U, then we let con, (X)
be the smallest congruence relation 6 over A with X< 6. If X con-
sists of a single ordered pair <z, ¥), then we write con, (z, v) for
con, (X). Thus con, (z, y) is the smallest congruence relation over
A that identifies  and y. The following three statements hold for
an arbitrary algebra A = (U, fi(i € I)).

(1.1) If the equivalence relation 6 over U identifies all the ele-
ments in the range of f, for each i¢e I, then e Con (4).

(1.2) Suppose z, y, z€ U and z +# 2, y, and let 6 = con, (z, y). If
z does not belong to the range of any of the operations f;, then
2/0 = {z}.

(1.3) Suppose z, ye U, and let 6 = con, (x, y). If neither x nor
y belongs to the range of any of the operations f;, then /0 = {z, y}.

The proof of (1.1) is trivial. Under the hypothesis of (1.2), ¢ =
U — {#}) U{K#, z)} is a congruence relation over A by (1.1), and
therefore 6 & ¢, hence z/6 = {z}. To prove (1.3) we use a similar
argument, taking ¢ = (U — {x, y}) U ¥z, y}.

By a translation of an operation p over U we mean an operation
p’ obtained from p by fixing some of the arguments. If G is a set
of operations over U, and if G’ is the set of all unary translations
of operations in G, then Con (U, G) = Con (U, G’). We let P(A4) be
the set of all operations over U that preserve all the congruence
relations over 4, and we let P,(4) be the set of all members of P(4)
that are of rank n. Obviously every algebraic function over A be-
longs to P(A4), and every translation of a member of P(A) belongs
to P(4). Our interest in these functions stems from the obvious fact
that if G is any set of operations over U with Con (4) = Con (U, G),
then G S P(4).
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We shall have occasion to work with partial algebras, where the
maps are not necessarily defined for all values of the arguments
(partial operations). The notion of a congruence relation over a partial
algebra is assumed to be familiar, and the notation con,(X) and
con, (x, y) will be applied also to these structures. Following [1], we
call a congruence relation 8 over A strong if for every ¢ e I, and for
every sequence x in the domain of f;, every sequence y with /6 = y/6
also belongs to the domain of f;. The notion of a free closure of a
partial algebra A’ = (U, fi(ie I)) will play a crucial role. By this
we mean an algebra A = (U, fi(i€ I)) such that A’ is a partial sub-~
algebra of A, A is generated by U’, and every homomorphism of A’
into another algebra B can be extended to a homomorphism of A into
B. A more constructive description of free closures can be found e.g.
in [1], §15 and in [3], §4.5. Following [3], call a partial algebra
B =<(V, g,(ie I)> a one-point extension of A’ if there exist ye V — U,
jel, and xe™U’, where % is the rank of f;, such that

V=UU{y, 9 =rUle v},

and g; = f} whenever j = ¢t I. We recall from [3], Corollary 4.5.6:

(1.4) A is a free closure of A’ iff for some ordinal « there exist
partial algebras B, = (V,, g..(i€ I)) (¢ < a) such that

(i) B,= A’ and B, = A.

(ii) For every ordinal & < «, B.,, is a one-point extension of B,.

(iii) For every limit ordinal A < a, B, is the union of the partial
algebras B, with & < \.

Suppose now that A is a free closure of A’. The following facts
are well known, except possibly the last two.

(1.5) Suppose eI, and the rank of f; is n. If 2e"U and
fix)e U’, then x belongs to the domain of f7.

(1.6) If ¢cCon(A4’) and 6 = con, (¢), then 6 is an extension of
é; i.e., ¢ = 60N

(1.7) For any strong congruence relation ¢ over A’, ¢ U XU — U")
is a congruence relation over A.

(1.8) If ¢ is a strong congruence relation over A’, and if ¢ =
con, (¢), then x/60 = z/¢ for all xe U'.

(1.9) For any elements «, y € U that are not both in U’, con, (z, y)
identifies no two distinct members of U’.

(1.10) If A’ is not an algebra, then for each x e U, the intersec-
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tion of all the relations con, (¢, y) with ye U — U’ is id,.

Proof of (1.5). Let B.(¢ < «) be as in (1.4). If z is not in the
domain of fj, then there is an ordinal ¢ < @ such that = is in the
domain of g.,,;, but is not in the domain of g.;. It follows by the
definition of one-point extensions that fi(x) = g....:(x) is the unique
member of V.., — V., and therefore does not belong to U".

Proof of (1.6). The canonical homomorphism of A’ onto A’/¢ can
be extended to a homomorphism % of A onto the free closure of A’/¢
(or onto some other closure of A’/¢). The kernel - of k is a con-
gruence relation over A with ¢ £ 0 S + and + N *U’ = ¢. Therefore,
N0 = g.

Proofs of (1.7) and (1.8). Let 4 = ¢ U*U — U’). Consider any
1¢ I, let the rank of f; be n, and suppose x, y€"U and x/yy = y/r.
If either « or y belongs to the domain of f}, then they both do, and
x/¢ = y/$, hence the elements fi(x) = fi(x) and fi(y) = fi(y) are iden-
tified by 4, and therefore also by «. If x and y are not in the do-
main of f}, then fi(x) and fi(y) belong to U — U’ by (1.5), and they
are therefore identified by +r. This proves (1.7), and (1.8) follows,
since ¢ & 0 & .

Proof of (1.9). Let B¢ =< «) be as in (1.4), and observe that A
is a free closure of each of the partial algebras B.. We may assume
that « and y are distinct and do not both belong to U’. Hence there
exists & < a such that V., contains both z and y, but V., contains
only one of the two; say xe V., ye V.., — V.. Then, since no se-
quence containing y as one of its terms belongs to the domain of any
of the operations g..,; we have

Cont.H ((U, y) = {<Q/', y>7 <y7 x>} U idVgu,l .

Now applying (1.6) with A’ replaced by B, and with ¢ = con,,., (z,¥),
we get
U Ncony (x, ¥y) = U’ N con, ()
2U'N Ve Neony (9)
=*U'N¢ =id, .

I

Proof of (1.10). Again let B.(¢ < «) be as in (1.4). Observe that
« must be a limit ordinal, for B,., always lacks the closure property.
In fact, if y is the unique member of V.., — V., then no sequence
that has v as one of its terms belongs to the domain of any of the
operations ¢.,,;. (Recall that we are excluding operations of rank
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zero. Statement (1.10) is false when there are no operations of posi-
tive rank.) Given z, uwe U with 2z + u, we can therefore find £ < &
such that x, 2, ue V.. Choosing ye U — V., we apply (1.9) with A4’
replaced by B, to infer that con, (z, ¥) does not identify z and u.

2. A basic lemma. The result to be proved here is in fact the
special case of our theorem in which the multiplicity type £ is of the
form 0,0, ---,0,1,0, ---> with an additional condition imposed on
the algebra.

LEMMA. For any positive integer k and any cardinal m, there
exists an algebra B =<V, g) such that the rank of g is k, there is
no subset G of P,_,(B) with Con(B) = Con(V, G) and |G| < m, and
there exist two distinct elements in V that do mot belong to the range
of ¢g.

We may assume that k& > 1, since the case &k =1 is trivial. It
is clear that if the conclusion of the lemma holds for a given value
of m, then it holds for all smaller values, and ;we may therefore
assume without loss of generality that m is infinite.

We begin the proof of the lemma by recalling the basic construec-
tion from [5]. Choose a set I with |I| = m; for convenience assume
that 0¢ I, and let I’ = I U {0}. Choose distinct elements «;, b; asso-
ciated with the indices 7¢ I’, and let W be the set of all these ele-
ments a; and b;. For ¢e I' define h(a,) = a;, hi(b) = b;, and hy(z) = =
whenever xe¢ W — {a,, b,}. As is shown in [5], the algebra C =
(W, hi(ic I)> has the property that there is no subset G of P(C)}
with Con (C) = Con (W, G) and |G| < m. This, incidentally, proves
the necessity of our inequality for & = 1. However, we shall not
make explicit use of this fact, but rather use some of the more
technical properties of C that are established in [5] in the process of
proving the above assertion. These properties are stated in (2.1),
(2.2), and (2.8) below.

(2.1) For all =, ye W — {a,, by},
cong (7, y) = &, v, <y, 23} Uidy ,
cong (ay, ) = *({o} U{a;:ie I') Uidy ,
cong (b, ) = *({x} U {b;:ie ') Uidy ,
cong (a,, by) = 19 {Las, b, <b;, a;p} Uidy .

(2.2) For any function p in P,(C), either p is constant, or else
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there exist 7€ I’ and £ < n such that p(x) = h(z,) for all xe"W.

(2.3) For each je I there exists an equivalence relation over W
that is not preserved by h;, but is preseved by all the other opera-
tions h;.

Statement (2.1) is the same as Lemma 2.2 of [5], and (2.2) com-
bines Lemma 2.6 and Corollary 2.7 of that paper. To prove (2.3),
consider the equivalence relation.

(W — {a;, b)) U {Kay, a;), <b;, b;)} .

To construct the algebra B, choose a set K that is disjoint from
W and has at least m elements. With each index ¢e I associate a
(k — 1)-termed sequence c¢‘ of elements of K in such a way that, for
all 4,jeland £, 7 <k —1,

cd=c¢lif it=jand k=7,

and that there are infinitely many elements in K that are not of the
form ¢i. Let V' = W U K, and define the partial operation g’ of rank
k over V'’ by letting

g'(c, ¢, + -+, ciyy, ) = hy()

for all eI and xe W, and letting ¢’ be undefined in all other cases.
Finally, let B =<V, ¢g> be a free closure of the partial algebra B’ =
<V, 9.

The proof of the lemma will be based on a rather detailed study
of the functions in P(B). Using Statements (2.4)-(2.11) below, we
will show that if G is a subset of P,_,(B) with Con (B) = Con (V, G),
then each of the functions 4;(i € I) is the restriction to W of a unary
translation of some member of G, and that only finitely many funec-
tions h; can be obtained in this manner from each member of G. Since
the cardinal m of I is infinite, this will imply that |G| = m.

(2.4) For every pe P,(B), either p("W) <& Wor p("W)N W = .

Proof. Observe that the relation ¢ = W U idy is a strong con-
gruence relation over B’, and therefore has an extension 6 € Con (B)
such that »/0 = x/¢ for all xe V’. Therefore, if p(y)e W for one
sequence y€"W, then for any other sequence zc "W we have y/0 =
2/, hence p(y)fn(z), which implies that p(z)e W.

(2.5) For every pe P(B), either (V- V)S V-V or p is
constant.
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Proof. Suppose there exists xe¢ V — V’ with p(x)e V’'. By (1.7),
0 =%V — V')Uid, is a congruence relation over B. Therefore, if
ye V — V', then 26y, hence p(x)fp(y), which implies that p(y) = p(x)-
Thus p is constant on V — V’. If ye V', then p(y) is in the relation
cong (y, 2) to the element p(z) = p(x) for every ze V — V', and by
(1.10) this implies that p(y) = p(z).

It is an immediate consequence of (2.5) that if pe P,(B), z€"V,
and p(x) € V', then those terms of z that do not belong to V' can be
replaced by arbitrary members of V,—in particular by members of
W,—without changing the value of the function. This fact will be
used several times.

(2.6) For every pe P(B), either p(V)N K= @ or p =id, or p
is constant.

Proof. Suppose there exists xe V with p(x)e K. Since the ele-
ment d = p(x) belongs to V'’ and is not in the range of ¢’, it follows
from (1.5) that d is not in the range of g. First suppose d # z.
For any ye V — {d}, if we let # = con; (z, ), then it follows by (1.2)
that d/0 = {d}. Since p(y)6d, this implies that p(y) = d. To show
that p(d) is also equal to d, we merely observe that, for each ye V —
{d}, cony (y, d) identifies p(d) and d, and then apply (1.10).

Now suppose d = . By (1.3), if ec K — {d}, then the con, (d, ¢)-
class of d consists of d and ¢ alone, whence it follows that p(e) = d
or p(e) =e. If p(e) = d for one such element e, then p is constant
by the first part of the proof. We may therefore assume that »
maps every member of K onto itself. To show that in this case
p(y) = y for all ye V, it is sufficient to prove that the intersection
of all the relations con;, (y, ¢) with ee K is id,.

It is thus sufficient to show that for any two distinct elements
2, ue V, there exists ec K such that cony(y, ¢) does not identify z
and u. Let L be the set consisting of all the elements ¢! with ¢e I
and £ <k — 1. There exists a finite subset M of K — L such that
Y, 2, and % are in the subalgebra of B generated by WU L U M. Let
©' be the map of V' into V' that takes each member of WU LU M
into itself, and all the elements of K — (L U M) into y. This map o’
is an endomorphism of the partial algebra B’, for every sequence in
the domain of ¢’ is mapped onto itself by o', and every element in
the range of ¢’ is also mapped onto itself. Therefore, o’ extends to
an endomorphism o of B. Every element in the subalgebra of B
generated by W U L U M is mapped onto itself by o, and in particular,
this is true of the elements v, z, and . We now make use of the
fact that K — L is infinite to choose an element ¢ in K that is not
in LU M. Since p(e) = v = o(y), cony (y, e¢) is contained in the kernel
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of p, and since p(z) # o(u), this shows that con; (y, ) does not identify
z and u.

2.7 If xe V— V' and 6 = cong (b, z), then a;/0 = {a;} for all
1el.

Proof. We first note that if p is any algebraic function of rank
one over B, and if p(b,) = a; for some 7¢I, then p is constant. In
fact, if there is a nonconstant function p with this property, then
there is a simplest such function. Since p is neither constant nor
the identity function, there exist algebraic functions gq, qi, - *, ¢
of rank one over B, all of them simpler than p, such that

p(¥) = 9(alv), ¢.(V), * **, Gr(¥))

for all ye V. In particular,

a; = 9(qu(bo), a:(bo), * -, qr-s(b0)) -

By (1.5), g can be replaced by ¢’ in this formula, and we infer from
the definition of ¢’ that ¢.(b,) = ¢¢ for £ < k — 1, and that ¢,_,(b,) is
either a; or a,. We conclude that ¢,_, must be constant, and by (2.6)
the other functions ¢, are also constant. Thus p must be constant,
contrary to our assumption.

Now suppose a,0y. Then there exist elements z, 2, -, 2, €V,
and algebraic functions p,, »,, ---, p._. of one variable over B such
that z, = @, 2, = ¥, and {2, 2c.} = {p(br), pe(2)} for £=0,1, -, — 1.
We have shown that if p(bd) = a;, then p, is constant, and by (2.6),
po(x) = a; also implies that p, is constant. Thus, in either case, a; =
2, = 2. By repeating this argument we infer that z, = a,; for all £ <
n and, therefore, y = a,.

(2.8) If pe P,(B), and if p("W)< W and p is constant on W,
then p is constant.

Proof. By symmetry we may assume that p(x) = o, for allze " W.
In particular then, (b, b, ---, b) = a;. Choosing yeV — V', we
infer that con; (b, v) identifies p(y, ¥, «--, ¥) and a;, and by (2.7) this
implies that »(y, %, -+, ¥) = a;. From this the conclusion follows by
(2.5).

(2.9) Suppose pe P,(B) and €'V, and for ze V let

p’(Z) = p(mOr xl’ ) Tz, z) .

If p' | W= h; for some 7€ I’, then there exists y € "'K such that, for
all ze W,
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p’(Z) = p(yOy Yy yn——Z, z) °

Proof. By (2.5), any term x, that belongs to ¥V — V’ can be
replaced by an arbitrary member of V without changing the function
o | W. It is therefore sufficient to show that if a term x. that be-
longs to W is replaced by some other member of V, then the values
of p” on W do not change. It is clearly sufficient to consider the
case when % = 2 and « is therefore simply an element in W. We
may further assume that z = a,, a;, for if x = a, or © = a,, then the
a’s and the b’s can be interchanged in the argument that follows.

For ye Vlet q(y) = p(y, a,). Then q(x) = a;€ W, whence it follows
that ¢ maps W into itself. Thus ¢ [ W is a member of the set P,(C),
and must therefore be constant by (2.2), since it cannot be one of
the functions #;. By (2.8), ¢ is therefore constant, i.e., we have
2y, ay) = a; for all ye V.

For all y,ze V let p,(2) = p(y, 2). Then p,a,) = a;, and there-
fore p, maps W into itself. Using (2.2) we infer that each of the
functions p, | W is either equal to h;, or else is constant. If p, is
constant, then p(y, b)) = a;, while p(z, b)) = b;,. For ye V — V’ this
cannot be the case, for by (1.9) cong (x, ¥) does not identify a; and b;.
For such values of y we must therefore have p(y, z) = h;(z) for all
ze W. But by (2.5), if this holds for one value of y in V-V,
then it holds for all ye V.

(2.10) If » <k and pe P,(B), then there are only finitely many
indices 7 € I such that some unary translation of p agrees with &, on W.

Proof. Suppose z, ye "'V, and for ze V let
p'(Z) = p(x()y Ly * 0y Tpgy z) y
p"(2) = p(Yo, Y1, ** 5 Ynsy 2) -

Suppose each of the functions p’ and p” agrees on W with some
function %;. By (2.9) we may assume that z, ye*'K. Let

X:{<xlwyh‘>:l€:0) 19 ...’n—2}7

and let 0 = cony (X). It will be shown that ¢ identifies no two dis-
tinect members of W. Since p'(2)8p”(z) for all ze V, this implies that
p and p” agree on W. Thus by fixing all but the last coordinate,
and restricting the resulting function to W, we obtain at most one
function %;. The same is of course true of the other coordinates, and
the total number of functions %; obtainable in this manner is there-
fore finite, — in fact at most #.

Let 0’ be the smallest equivalence relation over V' with X & ¢'.
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Then z/6' = {z} for all ze W, and 6 = con,(6'). Observe that no two
distinet sequences in the domain of ¢’ are identified by ¢’. In fact,
such sequences have the form

el el + o, Gy @y, Kbl o oe, el YD

with 4, 7€ and », ye W. If © ++ y, then « and y are not identified
by 6', and if i - j, then the 2k — 2 distinct elements ¢i and ci cannot
all occur as coordinates of members of X, and therefore there is some
k£ <k — 1 such that 6’ does not identify ¢ and c¢i. We infer that ¢’
is a congruence relation over B’, so that by (1.6) 4 is an extension
of §’. Since ¢’ identifies no two distinct members of W, it follows
that the same is true of 4, as was to be shown.

(2.11) If pe P(B), and if there exists an equivalence relation ¢
over W such that the equivalence relation ¢ U %V — V') Uidy is not
preserved by p, then p | W = h; for some i¢ I.

Proof. Let 6 =9 UXV — V)Uidg. By (2.4) and (2.6), either
p(W)S Wor p(W)< V — V. In the latter case, however, p would
preserve ¢, because by (2.5), p also maps V — V’ into V — V’. Thus
we must have p(W) S W. Since every congruence relation over C
extends to a congruence relation over B, it follows that p | We P,(C).
Consequently, by (2.2), either p | W is constant, or else it is equal
to one of the functions h;. However, if p | W were constant, then
by (2.8), p would be constant, and would therefore preserve #. Thus
p } W = h; for some i€ I'. The case ¢ = 0 is easily ruled out, for if
p{w) = x for all ze W, then p preserves 4. Thus i¢e I.

To complete the proof of the lemma, suppose G is a subset of
P, (B) with Con (B) = Con(V, G), and let G’ be the set of all unary
translations of members of G. For each je I there exists by (2.3)
an equivalence relation ¢ over W that is not preserved by h;, but
is preserved by all the other operations h;. Since ¢ is not a con-
gruence relation over C, it does not extend to a congruence relation
over B and, in particular, the relation 0 = ¢ U %V — V') U idy is not
a congruence relation over B. Therefore, there must be an operation
p in G’ that does not preserve ¢, and by (2.11) we have p | W = I,
for some 1€ . We claim that, in fact, ¢ = 5. To see that, consider
two elements ¢, y € V such that xfy but not p(x)dn(y). Clearly » and
y are either both in W or both in V' — V’. In the latter case, how-
ever, p(z) and p(y) would also belong to V — V’ according to (2.5),
and would therefore be identified by 6. Thus, =, ye€ W and zgy, but
not 7;(x)shi(y). In other words, h; does not preserve ¢, and therefore

=17



516 B. JONSSON AND T. P. WHALEY

We have shown that for each je I there exists p; e G’ such that
p; | W= h;. By (2.10), only finitely many of these functions p; can
be translations of the same function in G. Since the cardinal m of
I is infinite, it follows that |G| = m.

The final condition in the lemma is obviously satisfied. In fact, a,

and b, do not belong to the range of g, and neither do the members
of K.

3. The proof of the theorem. Suppose ¢ and p/ are two
multiplicity types, k& is a positive integer, and

Sm> 3.
Let
N=3m,
and choose an infinite cardinal m such that
m > g,l .

Choose a set I of cardinality N, and for each ie I an algebra B, =
(V, 9;> that satisfies all the conditions of the lemma, i.e., the rank
of g; is &, there is no set G & P,_,(B;) such that Con (B;) = Con (V;, G)
and |G| < m, and there are two distinct elements in V, that do not
belong to the range of g;. Assuming that the sets V; are pairwise
disjoint, let V' be their union, and consider the partial algebra

B =(V', g(ieI)).

Finally, let A = (U, fi(ie I)) be a free closure of B’. Thus A is an
algebra with N k-ary operations, and there clearly exists an algebra
of the multiplicity type ¢t whose congruence lattice is equal to Con (A4).
To complete the proof it is therefore sufficient to show that there is
no algebra of the multiplicity type g whose congruence lattice is
equal to Con(4). We shall in fact prove the stronger statement
that if G is any subset of P(A) with Con (A) = Con (U, G), then either
|G| = m, or else G has at least N members of rank % or more. The
information about the functions in P(A4) that is needed for this pur-
pose is contained in (8.1)-(8.4) below.

(8.1) If peP,(4) and i€ I, then either p(*"V,) S V; or p(*"V,) N
V.i = @.

Proof. Observe that 0 =2V, U¥U — V) is a congruence relation
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over A. In fact, for j # ¢ the range of f; is contained in U — V;
by (1.5). If the sequences =, yc*U are identified by 6, then either
x, ye*V,, in which case f;(x) and fi(y) belong to V;, or else x,, y.€ U —
V, for some £ < k, and therefore f;(x) and fi(y) are both in U — V'
by (1.5). In either case, fi(x)df(y)-

Now suppose p(x)e V; for some ze"V;. For every ye"V; we
then have p(x)0p(y), hence p(y)e V;. Thus p("V,) S V..

8.2) If pe P(A), and if there exist teI and e U — V, such
that p(x)e V;, then p is constant.

Proof. It is easy to check that 6 =*U — Vi) Uid,, is a con-
gruence relation over A. Therefore, if ye U — V,, then p(x)dp(y),
hence p(y) = p(x). Thus p is constant on U — V;, say p(y) = d for
all ye U~ V,. To show that this equation also holds for ye V,,
observe that, for each ze U — V;, p(y) is in the relation Con, (y, 2)
to the element p(z) = d, and that by (1.10) the intersection of these
relations is id,.

The same observation applies here as was made concerning (2.5):
If pe P,(A), xe"U, and p(x)c V;, then those terms of x that do not
belong to V, can be replaced by arbitrary members of U without
changing the value of the function.

8.3) If peP,(A), 1,5, i+j, p("Vi))& V,, and p("V;) S V,,
then there exists £ < n such that p(x) = 2z, for all xe"V,Uu"V,.

Proof. First suppose n = 1. If ze V; and ye V;, then p(z) and
o(y) are identified by con, (z, ¥), and by (1.6) they are therefore also
identified by cony (z, ). It is easy to check that

cong (v, y) = (K=, v, <y, x>} Uidy. .

Therefore, p(x) = # and p(y) = y.

Now suppose » > 1, and assume that the statement holds when-
ever 7 is replaced by a smaller integer. Choose elements x ¢ V; and
ye V; that do not belong to the ranges of g; and g;, and therefore
do not belong to the range of any of the operations of A. The ele-

ments p(x, x, ---, ) and p(y, y, ---, y) belong to V; and V;, respec-
tively, and are identified by con,(z, ¥), whence it follows that
@,z -, x)=2 and p(y,y, ---,y) =y. Therefore, the element

p(x, z, ---, x, y) is identified with z by con, (z, ¥), and so by (1.3) is
equal to either z or y.

Case 1. p(z, z, ---, x,y) =y. By (3.2) this implies that »n(z,
2y +*, %0, y) =y for all ze"'U. Therefore, p(2, 2, -, Zus, ) is



518 B. JONSSON AND T. P. WHALEY

identified with y by con, (z, ¥), and is therefore equal to either x or y.
Suppose, for some ze"'U, p(z, 2, ***, #n_s, &) = y. Then, by
(3.2), p(zo, 2, =**, 24y, w) =y for all ue U. If 2.+ y, then by (1.2),
con, (z, 2,) does not identify y with any other element of U, and we
can therefore replace z. by x without changing the value of the func-
tion. Thus if we let 2, = ¢ when 2, # y and z, =y if 2z, =y, then
(25 21y + 20y w) = y. Consequently p(z, x, - -+, %, ) is identified with
y by con, (z, ¥), and must therefore be equal to either # or y. From
the fact that p(x, «, ---, %, y) = y, we infer that for u =+ z p(z, =, -- -,
¥, u) cannot be equal to z, because by (1.2) con, (y, #) does not iden-
tify « and y. Therefore, p(z, , -+, , ) = y whenever w +* &, while
o(x, , «++, z) = x. However, this is impossible because, by (1.10), the
intersection of all the congruence relations con, (v, ) with u = x is
equal to 4d,, and therefore does not identify z and y. We have
therefore shown that, for all ze "'U, p(z, 2, -, #n_s, ®) = 2. From
this and the fact that p(z, 2z, ---, 2._,, ¥) = y we infer by (3.1) that
the map uw— p(z, 2, **+, 2.y, w) takes V; into V; and V; into V;, and
by the case n = 1 it follows that p(z, 2, ---, Z,_s, ) = % for all ue
Vi:U V;. In particular, therefore, p(z) = z,_, for all ze"V, U "V;.

Case 2. p(x,x, -+, y¥) =x. By (3.1), the map z2— p(z, 2, - **>»
2,5, y) takes "'V, into V;, and since p(y,w, -+, ¥) =y, this map
also takes "™'V; into V;. By the inductive hypothesis it follows that
there exists £ <n — 1 such that p(z, 2, -+, 2., y) = 2, for all z¢
"V, U™V, For a fixed sequence ze"V,, the map v — p(z, 2, *+ -,
Z._s, %) is constant by (3.2), because it takes y into the element z, of
V.. Therefore,

D(2) = D(2o, 21, ***, By Y) = Ze -

For a sequence ze€™V;, the elements p(z, 2, -, Zu_s, ) and p(z,,
Ry, ***, %u_s, Y) = 2, are identified by con, (x, ¥). In the particular case
when z, is an element of V; that is different from y and is not in
the range of any one of the basic operations of A it follows by (1.2)
that p(z, 2, +« -, 2., ®) = 2.. Therefore, by (3.1), p(2o, 21, ***, Zy_s, T) €
V,; for every ze"V;, and by (38.2) we can therefore replace z by any
member of U without changing the value of the function. In par-
ticular, therefore,

2(2) = D(2o, 21, * ) Bns, Y) = % -

(3.4) Suppose pe P,(A), tel, and ¢ is an equivalence relation
over V. If ¢ U¥U — V;) is not preserved by p, then p("V;) & V;, and
p | "V, does not preserve ¢.

Proof. Let 6 =g UXU — V;). If »p does not map "V, into V,,
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then by (3.1), »("V;) S U — V,. It follows that the range of p is
contained in U — V,, for if there were a sequence z in "U with
p(x) e V;, then by (3.2) there would be such a sequence in "V,. But
this means that the whole range of p is contained in one 6#-class, and
therefore p preserves . Thus p("V;) & V..

Now suppose ¢ is preserved by p [ "V;. Considering any two
sequences z, y € "U with z/0 = y/0, we wish to show that p(z)0p(y).
This is certainly true if both p(x) and p(y) are in U — V;, and we
may therefore assume that p(x)e V,;. Observe that, for each £ <
n, ¢, and y, are either both in V; or both in U — V;; for notational
convenience assume that z,, y,€ V; for £ < 7 and z,, y.€¢ U — V, for
T< Kk <n Forze U let

p’(Z) = p(zO’ 21, Tty zf—ly Yoy *° %y y%—l) ’

and observe that p'(x, @, -+, x._,) = p(w) € V; by (3.2), hence p'("V;) &
V; by (3.1). In particular,

) =02Wo, ¥y **, Y1) €V, .

Let o, = #, and y, = y,. for £ < 7, and choose &, = y.e V,;fort < £k <
n. Then 2'/0 = ¥'/6 and, by (3.2), p(z’) = p(z) and p(y’) = p(y). Con-
sequently p(x)¢p(y), and therefore »(x)dp(y). Thus p preserves 6.
This contradiction completes the proof of (3.4).

To complete the proof of the theorem, suppose G & P(A), |G| <
m, and Con(4) = Con (U, G). For each 7¢I let G; be the set of all
functions p in G such that, for some equivalence relation ¢ over V,
p does not preserve ¢ UXU — V;). Also let G; be the set of all
restrictions of functions in G; to V,. By (3.4), the functions in G
are operations over V,, and Con (B;) = Con (V,, Gi). In fact, every
congruence relation ¢ over B; extends to a congruence relation 6
over A, and since the members of G; preserve 6, their restriction to
V; obviously preserve ¢. On the other hand, if the equivalence rela-
tion ¢ over V; is not a congruence relation over B;, then the relation
0 =¢U¥U— V;) is not a congruence relation over A. Hence there
is some member p of G; that does not preserve 6, and by (3.4) this
implies that the restriction of p to V, does not preserve ¢. Since
the algebras B; satisfy the conditions of the lemma, there exists for
each 7¢I an operation in G; whose rank is at least k. Finally, by
(3.3) and (3.4), the sets G; must be pairwise disjoint, and we conclude
that there must be at least N operations in G whose rank is %k or
more. This completes the proof.
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