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SOME PROPERTIES OF MODULAR CONJUGATION
OPERATOR OF VON NEUMANN ALGEBRAS AND

A NON-COMMUTATIVE RADON-NIKODYM
THEOREM WITH A CHAIN RULE

HUZIHIRO ARAKI

For a cyclic and separating vector Ψ of a von Neumann
algebra R, the corresponding modular conjugation operator JΨ

is characterized by the property that it is an antiunitary
involution satisfying JΨΨ = Ψ, JΨRJΨ = Rf and (W, QjΨ(QW) ^ 0
for all QeR where jΨ(Q) = JΨQJΨ.

The strong closure Vψ of the vectors Qjψ(QW is shown to
be a /^-invariant pointed closed convex cone which algebrai-
cally span the Hubert space H. Any Jsr-invariant φ e H has
a unique decomposition Φ = Φ1 — Φ2 such that φs e Vψ and
S*(Φί)±8*(Φ*).

There exists a unique bijective homeomorphism σΨ from
the set of all normal linear functionals on R onto Vψ such
that the expectation functional by the vector σΨ{p) is p. It
satisfies

^ {Iky (ft) + tfr(ft) 111 Iky (ft) - *r(ft) II
Any two σΨ and σψ» are related by a unitary uf in Rr by
u'σψ{ρ) — σψ'(ρ) for all p.

The relation lρx ^ p2 holds if and only if there exists
AipJpJeR such that A(ft/ft)σy(ft) = σΨ(ρ2). The smallest i is
given by 11 AipJpJ 11. It satisfies the chain rule A(pJρ2)A(ρ2/p1) =
A(p3lpi). It coincides with the positive square root of the
measure theoretical Radon-Nikodym derivative if R is com-
mutative.

As an application, it is shown that product of any two
modular conjugation jΨjφ is an inner automorphism of R.

For a product state ® ^ of a C * algebra generated by
finite W* tensor products {(8W iyΘIΘie/l/} of von Neumman
algebras Rjf it is shown that 0pj and ® p$ are equivalent
if and only if Σ\ \ a¥(Pj) - σψ(p£) 112 < oo where 11 σΨ{p) - σΨ{p') \ \
is independent of Ψ.

It is shown that there exists a unitary representation
Uψ{g) of the group of all * -automorphisms of R such that
Uψ(g)xUψ(g)* = g(x) for all xeR and Uψ(g)σΨ(g*p) = σΨ)p) for
all normal positive linear functionals p.

l Introduction* In the Tomita-Takesaki theory of modular
automorphisms [9], two operators Aψ and JΨ are associated with each
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cyclic and separating vector Ψ of a von Neumann algebra R on a
Hubert space H.

Δψ is a positive selfad joint operator such that

(1.1) AΨΨ = Ψ ,

(1.2) τ,(t)Q = {AvTQiAv)-" e R

for every Qe R and real t. It is called a modular operator and the
automorphisms τψ(t) of lϋ is called modular automorphisms.

J— JΨ is an antiunitary involution, namely

(1.3)

(1.4)

It satisfies

(1.5)

(1.6)

(Jx, Jy) = (y, x)

J% = 1 .

JΨ = Ψ ,

JRJ = R .

We shall call JΨ a modular conjugation operator.
Δv and Jψ are defined through the polar decomposition

(1.7) S = JΨΔT

of the closure of an antilinear operator S, which is defined on its
domain RΨ by

(1.8) SQΨ = Q*Ψ, QeR.

An important property is

(1.9) JΨAΨJΨ - Ai1 .

Our investigation centers around the following property of J = Jψ

observed in [2]. For any QeR, Q !Ξ> 0, Q Φ 0, the following strict
inequality holds:

(1.10) (Ψ, QJΛQW) > 0

where

(1.11)

The validity of (1.10) comes from the property Aψ > 0 and the
following identity obtained from (1.5), (1.7), and (1.8):

(1.12) (W, QJΛQW) = {Q*Ψ, AΨ

I2Q*W) .

Our first result is the characterization of the modular conjugation
Jψ for a given Ψ by (1.3), (1.4), (1.5), (1.6), and (1.10). It should be
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remarked that (1.3), (1.4), (1.5), and (1.6) without (1-10) are not suf-
ficient to characterize Jr. If (1.5) is dropped, then there exists a
unitary u in the center such that J = Juψ.

Our second result is concerned with the strong closure of the set
of all vectors Qj(Q)Ψ, Qε R. It is shown to be a pointed closed convex
cone which algebraically span H and is selfdual in the sense that any
Φ e H satisfying

(1.13) (Φ, x) ^ 0

for all xe VΨ must be in VΨ. Any Φe VΨ is shown to have a unique
decomposition Φ = Φγ — Φ2, satisfying Φxe VΨ, Φ2e VΨ and sR{Φ^)LsE{Φ2).

Our third result is concerned with a possibility of having some
Φe V¥ for a given normal positive linear functional p such that ωφ = p
where ωφ denotes the expectation functional on R by the vector Φ.
This turns out to be possible for all p in a unique and nice manner.
It is shown that there exists one and only one element in VΨ—denoted
as σψp—for any given normal positive linear functional p on R, such
that the expectation functional ωσψP by the vector σψp e Vw is p. The
mapping σΨ is bicontinuous due to the following inequality:

2 ^ lift " f t II
^ ίll^(ft) + tfr(ft) II) II Mft) - Mft) II

Any two σv and σr, are equivalent up to a unitary equivalence, namely
there exists a unitary u' e R' satisfying

u'σ9(p) = σψ(ρ)

for all p.
The fourth result is concerned with the Radon-Nikodym derivative

satisfying a chain rule. The relation lpt ^ p2 for two normal positive
linear functional px and p2 holds if and only if there exists A{p2jp^) e R
such that A(ft/ft)^(ft) = 0V(ft) It satisfies the chain rule

-A(ft/ftM(ft/ft) = ^(ft/ft)

If R is commutative, A{p2jp^) is the positive square root of the
measure theoretical Radon-Nikodym derivative. For a general R,
A(ρ2lpD is different from the noncommutative Radon-Nikodym deriva-
tive found by Sakai [8].

As a corollary to our investigation, we find that product of any
two modular conjugation jΨjφ is an inner * automorphism of R.

Another application is made in connection with an infinite tensor
product of von Neumann algebras R3. We define

d'(ft, ft) = IIMft) ~ ^(ft)ll
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which is independent of the choice of cyclic and separating vector Ψ.
For normal states ft- and p) of each R3, we consider product states
0 Pj and (g) p] on the C* algebra A generated (as an inductive limit)
by finite W* tensor products {®/β/ Bi} Ξ R{I) where I is any finite
index set. The representations of A canonically associated with (x) p
and (x) p'j are quasi-equivalent if and only if

Σd'(ps, Pd2 < ~

and the central supports of ρ3- and p] are the same. The distance d'
is in general larger than Bures distance [5]. They coincides if ρλ and
p2 commute.

As a further application, we show that there exists a unitary
representation UΨ(g) of the group of all ^-automorphisms of R such
t h a t Uφ{g)xUΨ{g)* = g(x) f o r a l l xeR a n d UΨ{g)σΨ{g*ρ) = αy(<o) f o r a l l
normal positive linear functionals p.

We also give a simple proof of the continuity of the modular
automorphism τp(t)x in p for a fixed α? e R and bounded £.

2* A characterization of the modular conjugation operator*

THEOREM 1. Let Ψ be a cyclic and separating vector for a von
Neumann algebra R on H. An operator J is the modular conjugation
for Ψ if and only if the following 5 conditions are fulfilled.

( i ) {Jx, Jy) = (y, x) for all x, y e H.
(ii) J2 = l.
(iii) JRJ = R'.
(iv) JΨ = Ψ.
(v) (Ψ, Qj(Q)Ψ) ̂  0 for allQeR where j(Q) = JQJ. The equality

in (v) holds if and only if Q = 0.

Proof. It is known [9] that the modular conjugation J¥ for the
vector Ψ satisfies (i), (ii), (iii), and (iv). (v) with the strict inequality for
Q Φ 0 is already proved in § 1.

We now prove that J satisfying the 5 conditions must by JΨ.
From (i), it follows that J is antilinear. From (ii), it follows that /
is bijective. Hence J is antiunitary.

Let T be defined on RΨ by

(2.1) TQΨ = JQ*Ψ , Q e R .

Since Ψ is separating for R9 QJF = Q2Ψ implies Q, = Q2 and hence
JQ*Ψ = JQ*Ψ. Therefore, T is well-defined and is linear. Since Ψ is
cyclic for R9 T has a dense domain. By (iv) and (v),

(2.2) (QW9 TQΨ) = (Ψ, Q*j(Q*)Ψ) ̂  0 , Q e R .
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Thus T is positive on its domain and hence is symmetric.
By (1.8) and (2.1), we have

(2.3) T = JS.

Since J preserves norm, we have T = JS and

(2.4) D(T) = D(S) = D(Δψ) .

Define

(2.5) u = JJΨ.

Both J and JΨ are antiunitary. Hence u is unitary. We have

(2.6) T = uΔψ ,

where (1.7) is used. We shall now show that T is selfadjoint. Then
(2.2) implies that T is positive and hence (2.6) implies T — Δψ and
u = 1, which proves J = JΨ by (2.5).

From (2.3), we have1

(2.7) T* = S*J .

It is known [9] that R'Ψ is a core of S*. (Namely, the closure
of restriction of S* to R'Ψ is S*.) By (iii), JRΨ = RΨ. Hence RT
is a core of T*. Since RΨ is the domain of T and T* z> T, we have
Γ* = T.

The condition (iv) of Theorem 1 is not essential as is seen in the
next result.

THEOREM 2. Let Ψ be cyclic and separating for R in H. An
operator J satisfies conditions (i), (ii), (iii), and (v) of Theorem 1 if and
only if there exists a unitary u in the center of R such that

(2.8) J = JUΨ( - uJru*) .

The condition (2.8) is equivalent to JJ¥ being in R Π 22'.
For the proof we need preliminary lemmas.

LEMMA 1. The weakly closed linear hull of the set of all operators
Qj(Q),QeR is {R u RT

Proof. For arbitrary Q^R and Q2 e R', we have

n = Ox + e ί M / 2 i(Q 2) e R ,

This part of proof has been simplified by a suggestion of Dr. G. Elliott.
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where j(Q2) = JQ2JeR, j(Xn) = JXJ.

LEMMA 2. Let W be a von Neumann algebra on H such that W
is commutative. If Ψ = Ψ+ + Ψ- is a cyclic vector for W in H,
and

(2.9) (Ψ+, QΨJ) + (Ψ_, QW+) = 0

for all Qe W, then there exists a self adjoint operator A such that its
spectral projections are in the center W of W and

(2.10) sw\Ψ+)Ψ_ = iAsw'(ΨJ)Ψ+

where sw'(Ψ±) are projections onto the closures of WΨ±.

Proof. sw\Ψ±) belong to W which is commutative and hence is
the center of W. Let

E = sw'(Ψ+)sw'(WJ) .

Then

(2.11) EΨT = 8w\Ψ±)Ψτ .

We define A to be 0 on (1 - E)H. If E = 0, (2.10) is trivially satisfied.
Hence we consider the case E Φ 0.

We are going to define a selfadjoint operator Aγ = AΈ on EH
satisfying

(2.12) EΨ_ = iAxEΨ+

which implies (2.10) in view of (2.11).
Since WEΨ± = EWΨ± are dense in Esw\Ψ±)H= EH, EΨ± are

both cyclic for WE on EH. Define an operator A2 by

(2.13) A2QEΨ+ = -iQEΨ_ , Qe W

on a dense subset WEΨ+ of EH.
If QEΨ+ = 0, then (2.9), where Q is replaced by EQ*QE, implies

(Q.EΨ^ QEWJ) = (Ψ+, EQ*QEΨ_)

= -(Ψ-,EQ?QEΨ+)

= 0

for all Q,eW. Therefore QEΨ_ = 0. Hence QEΨ+= QΈΨ+ for
Q, Qf e W implies QEΨ_ = QΈΨ_, which shows that A2 is well-defined.
A2 is obviously linear.

From (2.9), we have for Ql9 Q2eW
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(Q1EW+9 A2Q2EW+) = (Ψ+9 -iEQf

+9 Q2EΨ+) .

Therefore A2 is symmetric. A2 obviously commutes with Q e W on
its domain.

Since Ψ is cyclic for W, WEΨ = EWΨ is dense in EH. Hence
EΨ+ + EΨ- = EΨ is cyclic for EW on EH. It is therefore separating
for the commutant of EW on EH, which is EW.

From (2.9), we have

(EΨ+ - EΨ-, Q(EΨ+ - EΨ_)) = (EW+ + EΨ-, Q(EW, +EΨJ)) .

Hence || Q(EΨ+ - E¥_) ||2 = 0 implies || QEΨ ||2 = 0 for any QeW. As
we have seen, EΨ is separating for EW and hence EΨ+ — EΨ_ is also
separating for EW. It is therefore cyclic on EHίoτ the commutant
of EW on £77 which is EW.

Since

(A2 + Ϊ)QEΨ+ = iQ(EΨ+ - EΨJ) ,

= -ίQ(EΨ+

for all Q e W, A2 + i and A2 — ί have both dense ranges in EH by
cyclicity of EΨ+ - E'F, and EΨ+ + Jξ/^ for ί/TF. Therefore, the
closure Ax = A2 of A2 is self ad joint. By (2.13) with Q = 1, we have
(2.12).

REMARK. The assumption that Ψ is cyclic for W can be omitted.
Let e = sw\W). Then (1 - e)Ψ+ = - (1 - β)?τ_. Substituting Q = (1 - e)
into (2.9), we obtain

Hence we may restrict our attention to e W on eJ? with W, ¥+9 Ψ_ all
in eH and apply proof of Lemma 2.

LEMMA 3. If QeRn R\ then

(2.14) J^e/r = Q*

where JΨ is the modular conjugation operator for a cyclic and separat-
ing vector Ψ of R.

Proof. It is known ([1], [9]) that the center of R is elementwise
invariant under any KMS automorphisms. Hence Qe R Π Rr commutes
with Aψ. We have
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(JΨQJΨ)Ψ = JΨQΨ = ΔψQ*Ψ

= Q*ΔψΨ = Q*Ψ .

By (iii) of Theorem 1, JΨ{R Π R')Jv = 22 n 22'. Since Ψ is separating
for R -Ώ R Π 22', we have (2.14).

Proof of Theorem 2. Assume that J satisfies (i), (ii), (iii), and (v)
of Theorem 1. From (i) and (ii), J is an antiunitary operator. Set

(2.15) Ψ± = 2~1{Ψ ± JΨ) .

We have

(2.16) JΨ± = ±Ψ±,

(2.17) Ψ = Ψ+ + Ψ_ .

By (2.16), we have for QeR

(v±, QΛQWJ = (JV±, Qj{Q)JΨ±)

, JQj(QW±)

= (V±9 QJ(QW±)

where the second equality is due to Qj(Q) = j(Q)Q and the last equality
is due to (i). Similarly,

Hence

i Im (Ψ, Qj(Q)Ψ) = (Ψ+, QKQW-) + (Ψ-, Qj(Q)Ψ+) .

By (v), this must vanish. By Lemma 1, the weakly closed linear
hull of Qj(Q), Q e R is (R U R')". Setting W = (22 U 22')", the premises
of Lemma 2 are satisfied. Note that W = 22 ΓΊ 22' is the center of 22
and is commutative.

Hence there exists a selfadjoint operator A affiliated with 22 Π 22'
such that (2.10) is satisfied. We define a unitary operator u in 22 Π 22'
by

u = sw'(Ψ+)(l - sw'{Ψ_))

(2.18) + (1 - iA)(l + AT^sw\Ψ+)sw\Ψ_)

+ isw\ΨJ){l - sw\Ψ+)) .

Because Ψ is cyclic for 22, it is cyclic for W. Hence sw'(Ψ+) V sw'(ΨJ) ^
8W'(Ψ) = 1. Thus

( ( ) ) ( swX?F+)) = 0

and u is unitary.
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From (2.10) and (2.18), we have

uΨ = (1 - sw'(Ψ_))Ψ+

(2.19) + (1 + Aψ2sw'(W_)Ψ+

+ i(l - sw'(Ψ+))Ψ_ .

Since JWJ = W, both WΨ+ and WΨ~ are invariant under J.
Therefore sw'(Ψ±) both commute with J. We shall next prove that
A commutes with J.

As we have seen, E — sw'(Ψ+)sw'(WJ) commutes with / . From
(2.16) and JWJ = W, the domain WEΨ+ of A2 is invariant under J
and A2 commutes with J . Hence the closure Aλ of A2 commutes with
/, because J preserves norm. From the uniqueness of the spectral
projections and

XdEλ = A, = JAJ = ί \d{JEλJ) ,

we have Eλ = JEλJ for all spectral projections Eλ of Aγ. Hence /
commutes with (1 + A2)1/2.

From (2.19) and (2.16), we have

JuΨ - nΨ .

Since u is in the center of R, it commutes with Qj(Q), Q e R. Since
u is unitary, we have

, Qj{Q)uΨ) = {Ψ, Qj(Q)Ψ) ^ 0 .

By Theorem 1,

J — JUΨ

Since the unitary mapping H —> uH = H, Ψ —> uΨ, R —> uRu* = R
brings SΨ to uSΨu* — Su¥, we have

Hence we have (2.8).
By Lemma 3, we have

which is a unitary operator in the center of R.
Conversely, let w be a unitary operator in R Γ) R' and JJΨ — w.

Then J — wJΨ satisfies (i), (ii), (iii), and (v) of Theorem 1, where (ii) is
due to Lemma 3:

(wJψy — wJwwJw = ww* = 1 .

The following example shows the case where (i), (ii), (iii), and (iv)
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are satisfied but J Φ JΨ. The center in this example is trivial and
J φ uJΨu* for any unitary u in the center.

EXAMPLE. Let Hn be n dimensional Hubert space and R = B(H2) (x)l
be the algebra of 2 x 2 matrices on H4 = H2® H2. Let el9 e2 be an
orthonormal basis of H2 and ei3- = e< ®e5 e iί 4. Let Ψ = 2~1/2(βn + e22),
0 = 2"1/2(β12 + e2l). Then JV% = eόi while J > i y = e4i for iΦ j and
«/*β« = βϋ for i ^ j . Hence Λ ^ J*. However, J — Jφ satisfies (i), (ii),
and (iii) because it is a modular conjugation operator for Φ and
satisfies (iv).

REMARK. The condition (iii) is used only in the proof of the essential
selfadjointness in Theorem 1. If J? is a finite matrix algebra then (i),
(ii), (iv), and (v) are sufficient to prove J = J¥. Whether (iii) is necessary
for more general case is an open question.

3* Technical lemmas concerning Δz

ΨQΔψ\ We denote by %Ψ the
set of all operators Q such that there exists a family of bounded linear
operators τ¥(z)Q depending on a complex parameter z, which is holo-
morphic in z for all z and satisfies

(3.1) τΨ(t)Q = ΔΪQΔV*

for real t.
For real z, we have

(3.2) τΨ(z)QΔΨ

zΦ = ΔizQΦ , Φ e D{Δ\Z) .

If φ is an entire vector of log ΔΨ, then the left hand side is an entire
function of z and hence QΦ must be an entire vector of logΔw and
(3.2) holds for all z. Since vectors, on which log Δw is bounded, are
entire vector of log ΔΨ and form a dense set of analytic vectors for
Δ$ for any real a, (3.2) holds for any z and ΦeD(Δψ) by Nelson's
theorem.

If Qx and Q2 are in Sty, then (τΨ(z)Q1)τψ(z)Q2 is an entire function
of z and satisfies (3.1) for Q = QXQ2. Hence Q1Q2e%Ψ and

(3.3) τr

Similarly, Q e 2tΓ implies Q* e %ψ and

(3.4) τr(z)(Q*) = {τΨ{z)QY

We define

(3.5) StΓl = Str Π R , Z>n = St1Γ

(3.6) Sί^2 = %Ψ n 22' , 2 ) r a - § I r 2
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If Q e Stn, then [τψ(z)Qf Q,] = 0 for any Q1 e R' and real z, hence
for all z by an analytic continuation. Therefore τ¥(z)Q e 5W Similarly,
if Q e %Ψ2, then τψ(z)Q e %Ψ2 for all z.

For any L1 function /, we define

(3.7) Q(f) = j Δ¥QΔτ«f(t)&t .

It is bounded (\\ Q(f) || ^ || Q|| ( \f(t)| dί), Q(/) e Λ if Q e Λand Q(/) e 12'

if Q e R'. If / is a C°° function such that eaλf{\) is bounded for any
real a, and

(3.8) f(t) = (2π)

then Q(f) e %Ψ and

(3.9) Mz)Q(f) =

(3.10) /,(ί) = (2τrr J e-^^-^

We shall use the following specific function later:

(3.11) ff(t) = (βπ)-w exp {- f/β} , β > 0 .

It has the property that Q(/js) is in the weak closure of convex hull
of A^QAψ11 and

(3.12) \imQ{β) = Q.

If / has a compact support, then Q(f)Ψ is an analytic vector of
Δψ for any real α. Since

and i2?P* is dense, such vectors Q(f)Ψ are dense and hence DΨ1 is a
core of Aψ for arbitrary z. Similarly, DΨ2 is also a core of ΔZ

Ψ for
arbitrary z.

LEMMA 4. Lβί F — \ λd^^ be a positive self adjoint operator and

D be a core of Y. Then D is a core of Ya for 0 <£ a ^ 1.

Proof. Any vector in the domain of Y is in the domain of Ya,
0 ^ α ^ 1. Then

(3.i3)
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ΊlxneDfx%-*xeD(Y) and Yxn-> Yx, then Yaxn is Cauchy by (3.13)
and hence x e D((Y« | D)~). Since D(Γ) is a core of Γα, 0 ^ a: ^ 1, £>
is also a core of Ya.

LEMMA 5. For Qe R, the following two conditions are equivalent.

(3.14) QΨ e D(Δ^ll2)+a) .

(3.15) Q*¥eD(^a)

If these conditions are satisfied for an a > 0, then there exists
a family of closahle operators τψ(z)Q for Im z e [—a, 0] with a common
domain DΨ2 such that

(1) τΨ(z)Q is affiliated with R,
(2) τΨ(z)Qx is continuous in z for Imze[ — a,0] and analytic

in z for z e [ — a, 0) if x e DΨ2J

(3) TΨ{z)Qx = Δ^QΔγzx, x e DΨ2,
( 4 ) {τΨ{z)QYx = Δ\zQ*Δ^*x, x e DΨ2.

Proof. Due to JΨΔψ = ΔψaJΨJ we have

(3.16) D{Δr) = J*D(Δ$) .

Hence (3.15) is equivalent to

ΔψQΨ = JΨQ*Ψ e D(Δa

Ψ)

which is equivalent to (3.14).
Assume that Q satisfies (3.14) and (3.15). Define an operator Az

on DΨ2 by

(3.17) A.QΨ = Q'ΔΐiQΨ , Q' e %Ψ2 ,

where Imzef — α, 0]. By (3.14), QΨ is in the domain of A% for
Imze [-a, 0]. Since Ψ is separating for i2'z>Sty2, Az is well-defined
and linear.

To show that Az is closable, we show that its adjoint has a dense
domain. For Q[ and Q2 in %Ψ2, we have

(Q[Ψ, AZQ'2Ψ) = (Q'SQIV,

= (Δv1!2{τ(-z - i/2)(Qί*Q[)}8r, QΨ)

(3.18) = (JΨΔΓ*-1I2Q[*Q'2Ψ, JΨΔψQ*Ψ)

= (Q[ΔfQ*Ψ, Q[Ψ)

where Q*?Γ is in the domain of Δψ by (3.15). This proves that D{Af)
contains a dense set DΨ2 and Az is closable. We denote Az = τΨ(z)Q.
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( 1 ) By (3.17), we have

Q[AZQW = Q[Q'Λ*QΨ =

for any Q[ and Q[ in %Vz. Hence Az commutes with Q[ e 2tr2 and is
affiliated with (&„)' = R.

( 2 ) By (3.17), we have

(tw(z)Q)Q'Ψ = Q'AVQΨ

which has the stated continuity and analyticity due to (3.14).
( 3 ) This follows from the following computation:

Δ^QΔ^'Q'Ψ = ΔpQ{τΨ(-z)Q'}Ψ

= Q'ΔψQΨ = AZQ'Ψ .

( 4 ) This follows from the following computation where (3.18) is
used.

(Q[Ψ, (?MQ)QW) = (Q[ΔψQ*¥, QW)

= (Δψ{τΨ(-z)Q[}Q*W, Q[Ψ)

= (ΔVQ*{τΨ(-z)Q[}Ψ,

COROLLARY. For Q e R, the following two conditions are equiva-
lent.

(3.19)

(3.20) Q*Ψ e

If these conditions are satisfied for an a > 0, then there exists a
family of closable operators τ¥(z)Q for Im z e [0, a] with a common
domain DW2 such that

( 1 ) τ(z)Q is affiliated with R,
( 2 ) fΨ(z)Qx is continuous in z for Imze [0, a] and analytic in

z for Imze(0, a) if xeDΨ2J

( 3 ) τΨ(z)Qx = ΔΪQΔ^x, x e DΨ2,
( 4 ) {τΨ{z)Q)*x = AψQ*AviΈx, x e DΨ2.

Proof. Interchange roles of Q and Q* in Lemma 5 and denote the
restriction of {τ¥(z)(Q*)}* to DW2 by tΨ(z)Q. The only change is in the
analyticity at the boundary Imz = a.

LEMMA 6. Assume that Qe R and

(3.21) A«QΨ = QJF
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for some QxeR and a real a Φ 0. Then there exists a family of
operators τψ(z)QeR for Imz between 0 and —a (i.e., in [0, — a] if
a < 0 and [—a, 0] if a> 0) such that

( 1 ) τψ(z)Q is strongly continuous in z for Im z e [0, — a] or [—α, 0]
and analytic in z for Im2e(0, —a) or ( — a, 0).

( 2 ) τw(z)Qx = Δ%QΔyίzx, x e D(Δrz).
( 3 ) {τΨ{z)QYx = ΔψQ*Δr*x, x e D(Δp).
( 4 ) \\τΨ(z)Q\\ £ m a x {\\Q l l W Q ^ l } .
( 5 ) τw(0)Q = Q, τvi-icήQ^Q,.

Proof. First assume a > 0. Since Qi¥eD(Δ\ί2) for any Q xei2,
(3.21) implies (3.14). Consider

f(z) = (a?, ?r

for α>, 2/ e £V2. If a? = QISP", y = QJ^, then

for lmze[ — a,0] due to (3.13). Since f{z) is continuous for I m z e
[—a, 0] and is holomorphic for Imze( — a,0), the three line theorem
is applicable.

On the boundary Im z = 0, we have

I M I I M I H Q | | , ί real.

For z = s — ia, we have

{ΐw(z)Q}Q'W = Q'Δϊί

Hence

\f(s-ia)\ ^ 11̂ 11117/11110,11 , s real.

Therefore,

This implies that τ(z)Q, Imze [ — a, 0] is bounded. We denote its
closure by τ(z)Q. It satisfies (4) due to the above estimate. (5) follows
from definition. From (1) of Lemma 5, τ(z)Q e R. Since DΨ2 is a core
of Δ{ψ for any z, we have (2) and (3) from (3) and (4) of Lemma 5.

(1) holds on a dense set DΨ2 by (2) of Lemma 5. Due to the
uniform boundedness (4), the continuity statement holds on any vector.
Then analyticity statement also holds on any vector by Cauchy integral
theorem.
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The proof for the case a < 0 is the same as the case a > 0.

4* The cone Vf. Let Vψ be the weak closure of the set of

vectors

(4.1) {ΔΨQ¥; Q e R, Q ^ 0}

where a e [0, 1/2]. V? is ^ of Takesaki [9]. Since ΔψQΨ = JΨQΨ =

ir(Q)^ for Qe #, Q ^ 0, VT is ^ δ of Takesaki.

THEOREM 3.

( 1 ) Vψ is a pointed weakly closed convex cone invariant under

( 2 ) ΦeVψ is in the domain of AΨ

l2~2a and

(4.2) JΨΦ = Δψ-laΦ .

( 3 ) ΔψVψ is a dense subset of Vψ.

( 4 ) JrVϊ= Vψl2~a.

( 5 ) The dual of V$ is V¥

!2-\

( 6 ) V} = Aa

ψ-
v"{V^ Π JD(Z/Γ 1 / 4 )} .

( 7 ) If QeR and QΨe Vf, then Δ^QΔψiz is bounded by \\Q\\for

I m z e [0, 2a] and satisfies

(4.3) (Δψ2aQΔ2

ΨT = Q* ,

(4.4) (ΔψaQΔa

¥y ^ 0 ,

where the bar indicates the closure.

Conversely, if ΔψaQΔψ is a positive bounded operator with a dense

domain affiliated with R, then QΨ e Vψ.

( 8 ) If Φ e Vξ, a ^ 1/4 and ωφ <lωψ for some I > 0, then there

exists QeR such that

(4.5) Φ = QΨ, WQW^l1'2,

(Δ\zQΔψiz)- is bounded by I1'2 for Imze [2a - 1/2, 1/2].

( 9 ) If QΨeVlQeR, then {\\Q\\ -Q)ΨeV$.

Proof. Vί is obviously a weakly closed convex cone. Since

ΔΨ\ΔΨQΨ) = Δ?FQtΨ , Qt = Δ%QΔψu ,

and Qt e R, Qt^ 0, Vψ is invariant under Δψ.

We shall prove that Vψ is pointed after (6).

( 2 ) If QeR, Q ^ 0 , we have

JΨ(ΔΪQW) = ΔψaJψQΨ = ΔΨ

l2-aQΨ

- Δψll2-2a)(ΔψQΨ) .
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Hence Δa

ΨQΨ satisfies (4.2).
Since JΨ is bounded and Δ$l2~2a) is closed, (4.2) holds for any Φ in

the strong closure of the set (4.1). Since the set (4.1) is convex, its
strong and weak closures coincide.

( 3 ) Since (4.1) is convex, Vψ is the strong closure of (4.1). If
Φ e V}, there exists Qn e R, Qn ^ 0 satisfying lim QnΨ = Φ. By (3.13),

II ΔHQJF - Φ)||2 £ || ΔT{QnΨ - Φ) ||a + WQJF-Φ ||2

= WMQJP - Φ)\\2 + WQnΨ — ΦII2 — o .

This proves Δψ^% c Vψ. By definition, Δψέ?** contains a dense subset
of Vh

(4 ) This follows from J\ = 1 and

tor QeR,Q^ 0.
( 5 ) L e t QL, Q2 e JE2, Qx ^ 0, Q2 ^ 0. T h e n

{ΔϊQJF, Δφ-"QJF) = (QJF, ΔF

due to Q, ^ 0, >(Q2) ^ 0 and [Qlf jΨ(Q2)] = 0. Hence

(4.6) (Vί)'z> Vι

Ψ

]2~a

where (Vϊ)' denotes the set of all Φ such that (Φ, x) ^ 0 for every
xe Vϊ.

Next let Φ e (Δί^J. Let /^ be given by (3.11) and let

(4.7) Φβ = J ΔpΦfG

β(t)dt .

Since J ^ ^ # is invariant under ΔΨ\ we have Φβ e (Δψ&**)'. Furthermore,

(4.8) ΔϊΦβ = [ Δ%ΦfG

β{t - z)dt

for real z and the right hand side has an analytic continuation to all
z. Hence Φβ is an entire vector of log ΔΨ and is in domain of Δ? for
arbitrary z. Hence

where the last equality is due to (2) and (4), for example, and the
first equality is due to [9]. Hence Φβe Δm~"&**. By (3), Φβe V

ίi2~a.
Since Φ = limβ^0Φβf we have Φe Vψί2'a.

By (3), we now have

(4.9) (VίY c (ΔΪ&**)' c Vι

Ψ

ί2~a .
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By (4.6) and (4.9) we have (5).
( 6) First consider the case a < 1/4.
For Φ e Vi, there exists Qn e R, Qn ^ 0 such that Φ = lim AiQnΨ.

We use (3.13), in which we replace x by A$(Qn - Qm)Ψ, Y by A$l2~2a)

and a by 1/2. We have

\\Δ$«-«{Δϊ(Q% -Qm)Ψ}\\2

^ II MQn - Qm)Ψ II2 + II AT~a(Qn - Q«W II2

= II ΔϋQn - Qm)Ψ ||2 + \\JrΔϋQn ~ Q.W II2

Hence ΔψQJF is Cauchy and has a strong limit Aψ~aΦ, which must
be in Vψ1* by definition. Hence

Let xe V1^ Π D{Arm) and ye VI Then

(A^-ay, Arllix) = {Δψy, x) ^ 0

due to A^ye V}" a (V}1')'. By (3),

(Vi!*-ay =) Ar^iVw" n

By (5), (VP2~a)' = Va

Ψ and hence we have (6).
The case a > 1/4 follows from the case a < 1/4 by (4).
( 1 ) Let Φ e V£ and -ΦeV£. By (5), Φ J_ V^~a. The linear span

of V£l2~a contains AlJ2~aWi¥lW = SWP", which is dense. Hence Φ = 0 and
Fy is pointed.

( 7) If Qf G V?, then QΨ e D{Δ\!2-2a) and

due to (4.2). Hence Q^ e D(z/^2α) and

By Lemma 6, we obtain the first half of (7) except for (4.4).
By (3) and (4), F^/2"α=) A^^K By (5),

0 :£ (ΔΪ'X, QΨ) = (x, τΨ(m)QΨ)

for all xe^b. Hence τψ(ia)Q ^ 0 which shows (4.4).
Let Q, = (AϊaQA$)~. Then QAa

ΨΦ = A^Q.Φ holds for a dense set
of vectors Φ. Hence A$Q*Ψ = Q*Ψ, which implies Aψ~aQΨ = JΨA%Q*Ψ =
^ ' W . Therefore Q?" = J j Q ^ . Since Q ^ O b y (4.4), Q?f e VJ.

( 8 ) If ωφ ^ lωw, there exists Q' e Rr such that ωφ = ωQ,rf and
JIQ'II ^ ϊ1/2. Then there exists a partial isometry v! in i2' such that

Φ = M ' Q T
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By (4.2) we have

Δlyj2~2aΦ = JψΦ = jψ(

By (4), J¥Φ e VΨ'2~a and hence by (7), Qλ = jΨ{ufQ') e R has bounded
τΨ{z)Qι for I m z e [0, 1 - 2a]. Setting Q = z>(ΐ/2 - 2ia)Q19 we have
Φ = QW,QeR and \\Q\\ S \\QL\\ ̂  I1'2. (ΛpQΔpT = τv(z')Qi wi th
2' = z + (1/2 - 2α)i and hence is bounded by I112 for Imze [2a - 1/2,
1/2] and is positive for Imz = a.

( 9 ) If QΨ e Vf, Q 6 R, then Δ%QΔ¥

a is bounded by 11Q\\, symmetric
and affiliated with R due to (7). Hence

ΛffllQII ~Q)Aψa = | | Q | | - Λ ? Q Λ F *

is bounded, positive and affiliated with i2. By the last half of (7),

(\\Q\\-Q)ΨeVΐ.

5* The cone VΨ* We denote VΨ — F^ 4 due to an importance of

THEOREM 4. Let Ψ be a cyclic and separating vector for R on H.
( 1 ) VΨ is a pointed closed selfdual convex cone.
( 2 ) VΨ satisfies

(5.1) 4*Fr = Vψ , - oo < ί < co .

(5.2) JΨx — x , x e VΨ .

(5.3) QJV(Q)VψCVψ , QeR .

(5.4) (a?, Qjr(Q)y) ^ 0 , a?, y e F Γ , Q e iί .

( 3 ) VΨ is the strong closure of the set of

(5.5) QJwiQW > Q e R .

( 4 ) If Φ e V and Φ is separating or cyclic for R, then Φ is
separating and cyclic for R and VΦ = Fy.

( 5 ) If Φ is a cyclic and separating vector for R, then Φ e Vw

if and only if Jφ = J¥ and

(5.6) (Φ, zΨ) ̂  0

for all zeRΓ\ R\ z^ 0.

( 6 ) Any Φ e H has a unique decomposition

(5.7) Φ — Φt — Φ2 + i(Φ3 — Φ4)

such that Φ{ e VΨf i = 1, 2, 3, 4, cmd

(5.8) Φi 1 Φ2 , Φ 3 1 Φ4 .
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( 7 ) If Φx G Vψ, Φ2 G VΨ and Φ, _L Φ2, then

(5.9) s*(<Z\) 1 sβ(Φ2) , 8^(0,) ± sfi'(

Q(fG

β)JλQ(fGβ)W =

= WQ&W e Vr

sR(Φ) and sR'(Φ) denote projections onto closures of R'Φ and RΦ,
respectively.

( 8 ) If Φ^Vψ and Φ2 e VΨ, then

(5.10) \\ωSι-ωSi\\^\\Φι-Φi\\2

where ωR is the expectation functional on R by a vector Φ.

Proof. (1), (5.1) and (5.2) follows from Theorem 3. Because

{QjΛQ)){QMQd) = (QQdMQQi) >

(5.3) follows from (3). (5.4) then follows by Vψ = VΨ.
( 3 ) Let Q{ff) be given by (3.7) and (3.11) for QeR. Then

where

Hence

QJΛQW - limQ(/?)ir(Q(/?)F e VΨ .
β-+0

On the other hand, if we set

Q2β^τψ(-i/AW\fG

β)}f QeR, Q^O,

then

We have

lim Qll2(fG

β)Ψ -

2-+ o .

Hence Δ9

S*&% is in the strong closure of the set (5.5) and we have (3).
( 4 ) If R'Φ or i2Φ is dense, then RΦ = JΨR'JΨΦ = JVi2'Φ or i2'Φ =

JψRJψΦ — JψRΦ is dense. Hence if Φ in PV is separating or cyclic,
then Φ is cyclic and separating. If Φ e VΨ, then JΨ satisfies
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JΨΦ = Φ, (Φ, QMQ)Φ) ^ 0

due to (5.2) and (5.4). Hence Jφ = Jw by Theorem 1. Since VΦ is
the strong closure of QjΦ(Q)Φ, we have VΦ c VΨ due to (5.3) and
JΨ = JΦ. Since VΦ and VΨ are selfdual, we have VΦ= VΦnVψ= Vw

and hence VΦ = VΨ.
( 5 ) If Φ e VΨ, then JΦ = JV as we have seen and (5.6) holds

because z — zll2jΨ(ziμ) due to Lemma 3. Conversely, assume Jφ = JΨ.
By (6) and (7), which we shall prove below, we have

(5.11) Φ = Φί-Φ2, Φ,eVΨ, Φ2eVΨ,

(5.12) 8R(Φι) ± sR(Φ2) .

Assume that (Φlf QjΨ{Q)Φ2) > 0 for some QeR. Let Q, = sB(Φ1)QsΛ(Φ2).
We then have by (5.12)

(Φ,

0 ,

where we have used sR(Φk)Φk = Φk, jψ{sR(Φk)} = sR\Φk) (because of
JΨR'Φk = 3Ψ{R')JψΦk — RΦk) and sRr(Φk)Φk = Φk, in the second equality.
This contradicts with JΨ = Jφ and (5.4) for the cone VΦ. Hence

(5.13) (Φlf QjΨ{Q)Φ2) = 0

due to (5.4) and (5.11).
From (5.13), we have

sw'(Φx) j _ sw'(Φ2)

where W is the von Neumann algebra generated by Qj¥(Q). By
Lemma 1, W = R Π R'. Hence z = sw'{Φ2)eROR' and

(Ψ, zΦ) = -(¥, Φ 2 ) ^ 0

by (5.6). Since Φ2 e VΓ, we have (Ψ, Φ2) ̂  0 by Vψ = VΨ and hence
(ψf φ2) = o. We shall see that this implies Φ2 = 0 in the proof of (7)
and hence Φ = Φ1 e VΨ.

( 6 ) Let Φ G H. Define

(5.14) Φr = 2~\Φ + ΛΦ) , Φ, = (2ί)~1(Φ - JΦ^) .

Then

(5.15) Φ = Φr + iΦi , JΨΦr = Φr > JψΦi = Φι .

Conversely, if (5.15) is satisfied, Φr and Φ̂  are uniquely given by
(5.14).

We now show that any ΦeH satisfying JΨΦ = Φ has a unique
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decomposition

(5.16) Φ = Φt - Φ2, Φ1eV¥ , Φ2 e VΨ , Φ.lΦ,.

Let

(5.17) d = m£{\\Φ-Φ'\\;ΦfeVr}

(5.18) l i m | | Φ ; - Φ | | = d , Φ'neVΨ.

Since (5.18) implies that the sequence Φ'n is uniformly bounded, there
exists a weakly converging subsequence Φ'n(k):

k
w - l im Φ'n{k) = Φ, .

k

Then

By (5.17) and || Φx ||
2 ^ Hm| |Φ; ( W ||2, we have

(5.19) || Φ - ΦJI 2 = d2 .

Let Φ2 = Φ,- Φ and x e Vw. Then Φ, + Xx e VΨ for λ ^ 0. We
have from (5.17) and (5.19)

\Φ - (Φ.

χ ) + \\x\\*X}

where (Φ2, x) is real due to JΨΦ2 = Φ2 and JΨx = x. We then have

which implies Φ2e Vψ = VΨ.
Since Φγ and Φ2 are in Vr, (Φu Φ2) ̂  0. For λ > 0,

d2 ^ || Φ - (1 - λ)Φ, ||2 = || Φ21|2 - λ(2(Φx, Φ2) - λ || φι

which implies (Φl9 Φ2) = 0.
To prove the uniqueness of the decomposition (5.16), let Φ = Φ1-

φ2 = φ[ — φ[ be two such decompositions. For any vectors xl9 x2, x3,
we have

(5.20) G(xu x2y a?8) = det ((a?<f α?y))( = dex X*X) ^ 0 .

Since (Φfc, Φ!) are all real, we have

0^G(Φ,Φί, -Φ 2 )

(5.2i)
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0 ^ G(Φ,Φί} -Φ'2)

(5.22) - ( H Φ ί l l 2 - \\ΦΛ\2)\\ΦΛn\Φ'Λ\*

Since (Φk, Φ[) ̂  0 by Vί = Vr, either all terms in (5.21) are
negative or all terms in (5.22) are negative. In the first case, all
terms in (5.21) vanish and we have the following three alternatives:

Case (i). Φ[ = 0, Φ = -Φ'2. Then

and hence Φx = 0 = Φ[ and Φ2 = —Φ = Φ'2.
Case (ii). Φ2 = 0, Φ = Φx. Then

and hence Φf

2 = 0 = Φ2, Φ[ = Φ = Φx.
Case (iii). (Φί, Φ2) = 0 and || Φx ||

2 - || Φ[ \\2. Then

which implies ||Φi — Φ[ ||2 = 0. Hence Φx = Φί, Φ2 = Φ2. If all terms
in (5.22) vanish, we have the same argument.

( 7 ) First we prove that any nonzero Φ e VΨ is never orthogonal
to Ψ. By (3), there exists Qne R such that

Φ = lim QJΨ(Qn)Ψ .
n

Assume that (Ψ, Φ) = 0. Then

0 = lim(Ψ,QJΨ(QnW)

Let x = Qj(Q)Ψ, Q'eR,Q = Q'(ff). Then

(a;,Φ) = lim(ίc fQJ f<Q.)3

= lim (j¥(QiQW,Q*QJr)

= 0 .

By (3.12) and Lemma 1 (or (3) and (6)), such x is total in H and
hence Φ — 0.

Since FΦl = VΨ for any separating Φx in F*-, we have

(5.23) (Φlt Φ2) > 0

if Φ1 e Fir, $2 e F r , ̂  is separating for ϋJ and Φ2 ^ 0.
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We now assume that Φx e Vr, Φ2 e VΨ and Φ1 j_ Φ2. Let s and s'
denote sR(Φ1) and 8Rt(Φ^, respectively. Since JΨRfΦx = jψ(R')Φ1 = RΦ19

we have j¥(s) = s'. Hence JΨ commutes with ssr.
Consider the space H = ss'H and a von Neumann algebra R = sRss'

on H. Φ1 is in H and is cyclic and separating for R by definition of
s and s'. Since JΨ commutes with ss'9 the restriction of JΨ to i ϊ is
the modular conjugation operator JΦl for Φ1 on Jϊ due to Theorem 1.
We also have

ssfQjΨ{Q)Φί = ssrQjw(Q)ss'Φ1 = QjΦι(Q)Φ,

where Q — sQs. Hence ss'Vψ = VΦl.

Let Φ2 = ss'Φ2. Φ2 e VΦl because Φ2e VΨ. We also have

(Φ2, Φλ) = (Φif Φ,) = 0.

By (5.23), we have Φ2 = 0.

Denoting ψ = (1 - s)(l - s')^2, ^i = s(l-s')Φ2, and «̂ 2 = (1 - s)s'Φ2,
we have

Since JΨΦ2 = Φ2, and yr(s) = s', we have J^^! = <p2. We now prove
φ1 = φ2 = 0.

Assume ^ ^ 0 and let sk = sΛ(^Λ), si = sΛ'(^A), & = 1, 2. Then
ir(si) = 8'2, JΨ(S2) = s[, Si <* s, s2 ^ 1 — s. Let ^(£7) denote the central
support of Ee (R U i2')". Then jΨ(c(E)) - c(JS7)* = C(JK) by Lemma 3.
Hence c(jΨ(E)) = c(E). Setting E — s^J, we have c(sxs[) = c(s2s2). Since
sιs[φ1 = φ1 Φ 0, c(SiSi) ^ 0. We have c(sθ ^ φ ^ ί ) = φ 2 s 2 ) and c(s2) ^
φ 2 s 2 ) . Therefore, there exists a partial isometry ueR such that
U*U ^ Si, t6t6* ^ S2, C(UU*) = C(U*U) = c(s2S2).

Since Si is the support of 9>i, u^uφ1 Φ 0. Then s" = s22'^*^^!) ^ s[
is nonzero and φ " ) ^ c(s2s2) ^ φ ί ) . Hence there exists a partial
isometry ve R' such that I?*?; <£ s", ^^* ^ s5, v ^ 0. Again v*vu*uφ1 Φ 0.

Since

i € UH £ S2iϊ , t6^i G VJΪ £

there exists A e s2i2s2 such that

(5.24) Re (%v î, Aφ2) > 0 .

Let Q = A*u — jψ(v). A*u vanishes on (1 — s)H and its range is
in (1 — s)H. jΨ{v) vanishes on sH and its range is in sH. v vanishes
on s'H and its range is in s'H. jv(A*u) vanishes on (1 — s')H and its
range is in (1 — s')H. Therefore,
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0 ^ (Φ2, Q

= -{Φu Jw(A*u)jΨ(v)φ2) - (φ2f A^

= -2Re(<p2,

where we have used Jψφ1 = φ2, φγ —Jψφ2. This contradicts with (5.24).
Therefore φ1 = φ2 = 0 and Φ2 — φ.

We now have

sR(Φ2) = sR(φ) ^ 1 - s ,

sR\Φ2) = sR\φ) ^ 1 - s' .

Hence (5.9) is satisfied.

( 8 ) For ΦiG VΨ and Φ2e VΨf we have a decomposition

φx — φ2 = φ+ - φ_

satisfying Φ± e VΨ, Φ+ 1 Φ_, due to (6). By (7), we have sR(Φ+) l sR(ΦJ).
Let E = sR(Φ+) - sβ(Φ_). Then \\E\\£ 1. We have

\\ωΦl - ωφ2\\ ^ \\ωΦl(E) - ωφ2(E)\\

= 2- | {Φx - Φ2, E(φl + Φ2)) + (Φ, + Φ2, E(Φ, - Φ2)) I

= (Φ+ + Φ-, Φ, + Φ2)

^ (Φ+ - Φ_, Φx - Φ2) - H Φ . - Φ . I I 2 ,

where we have used (Φ19 Φ_) ̂  0 and (Φ2, Φ+) ̂  0 due to Φ19 Φ2, Φ_, Φ+ e Vy.

6* Some Radon-Nikodym theorems*

THEOREM 5. Let μ be a normal positive linear functional on a
von Neumann algebra R with a cyclic and separating vector Ψ such
that μ ^ ωΨ. Then there exists ha e R, 11 ha \ \ ̂  1, ha ^ 0 for each a e [0,1]
such that

(6.1) 2/ι(Q) = (z/?/2Q*?Γ, ^ a

Proof. Let heR,h* = h and

(6.2) /ί(Q)

If α ^ 1/2, then

(6.3) /;(Q) - (l/2){(Sr, QtfhΨ) + ( ^ ^ , QΨ)}.

If α ^ 1/2, then

/ί(Q)
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Hence f% is a normal linear functional on R. If Q* = Q, then

(6.5) fa

k(Q) = Re (Δa

Ψ

l2Q*Ψ, A^hΨ)

and hence f% is selfadjoint. Since

fl{Q) = {(ΔiQ*Ψ, hΨ) + (h¥,

for a ^ 1/2 and /J(Q) = /jΓα(Q), / ϊ is weakly continuous in Λ.
Let ί7 be the set oϊ fa

h, heR, h* = h, 1 ^ h ^ 0. Then as an
image of a compact, convex set under continuous real linear map, F
is weakly compact and convex. F contains 0. Let F° be the polar
of F, namely the set otQeR,Q* = Q and f(Q) ^ 1 for all fe F. Then
(F°)° = F, where (F°)° is the set of all normal linear selfadjoint func-
tionals / satisfying f(Q) ^ 1 for all Q e F°.

For each real a e [0, 1], consider

m%(Q) = sup Refh(a + it) ,
t

fh(a + it) = (/U*-it)i*Q*¥, Δ{

v

a+it)l%hΨ) .

fh(z) is obviously an analytic function of z for Re z e (0, 1). It is
continuous for Reze[0, 1]. Furthermore,

\fh(a + it) I ^ || ΔΪ

By the three line theorem,

sup Refh(a + it) = log sup | e
fh(a+it) \

t t

is a convex function of a. Hence

g*(Q) = sup {ma

h(Q); h e R, h* = h, 1 ^ h ^ 0}

is also a convex function of a.

Since /A(α: + it) = fh>(a), h! = ΔphΔ?*, we have for Q* - Q

^α(Q) - sup {/ί(Q); fc G 12, fc* - h, 1 ^ Λ ̂  0} .

By (6.4) we have

g"(Q) = gι~a(Q)
Due to convexity,

(6.6) g%Q) ̂  g*i%Q) .

We have

= (Φ, Jr{h)QΨ)
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φ = jψ(hY'Ψ .

The set of such ωφ for he R, h* = h, 1 ^ h ^ 0 is exactly the set of
all normal positive linear functionals μ of R satisfying μ ^ ωΨ. Hence
gll2(Q) ^ μ(Q) and by (6.6)

ga(Q) ^ μ(Q)

for any Q* = Q, Q e R, a e [0, 1]. Hence μ e (F°)° = F.

REMARK. h^a — ha. ha is unique. (If μ = 0, set Q = ha.)

COROLLARY. If Φ e V?, IΨ — ΦeVψ and a ^ 1/4, then there exists
he R such that 0 ^ h ^ I and

(6.7) 2Φ = hΨ + ΔψW .

Such h is unique. If ΦeVψ,lΨ — ΦeVψ and a ^ 1/4, then there
exists hf e Rf such that 0 ^ hf ^ I and

(6.8) 2Φ = hΨ + Δ%a-ιh'Ψ .

Such h' is unique.

Proof. Let a ^ 1/4, β = 1/2 - a and

KQ) = (Φ

Since 4Q?P"e F/ - (Vf)' for Q ^ 0, we have μ^O. By IΨ-Φe VΨ

a,
we also have μ ^ ωψ. By applying Theorem 5 to μ and setting A = lhβ,
we have

- (hΨ, Aβ

ΨQΨ) + ( 4 0 * ^ , hW) .

Since

= (J¥hΨ, JΨAβ

ψQ*Ψ)

we have (6.7).
If hγ and h2 yield the same Φ, then we have for h = hx — h2

0 = (hΨ + Δ2/hΨ, hΨ) = || hΨ ||2 + || ^ λ f ||2 .

Hence hΨ = 0 and hx = h29 which proves the uniqueness of h.
If a ^ 1/4, then we interchange the role of R and R'. Then z t 1

replaces Δψ and 1/2 — a replaces a. We then obtain the latter half
of corollary.
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REMARK. If α = 1/4, then ΔfhΨ = JrhΨ, Δψ'ΨΨ = JτhΨ and
hence hf = jΨ(h).

THEOREM 6. For any normal state μ of a von Neumann algebra
R with a cyclic and separating vector Ψ, there exists Φe VΨ such that
ωφ = μ.

We first prove a technical lemma.

LEMMA 7. Let Ψ be a cyclic and separating vector for R and
S be an operator in R with a bounded inverse S"1 e R such that
SΨe Vr. If ΔψQΨ = QXΨ for some QeR and Q,eR, then

(6.9) Δ^Q(SΨ) = QISΨ) , Q2 = SQ.S"1

Proof. By using J¥ = JSΨ due to SW e VΨ, we have

Δ^QSΨ = JsvQ*SΨ = JsΛQ*)SΨ

= SjSΨ(Q*W = SMQ*)Ψ

= SJwQ*Ψ - S

= SQJF - SQS

Proof of Theorem 6.

Step (i). Let 0 < δ ^ 2~4. We prove that if Ψx is cyclic and
separating vector belonging to VΨ, ίi e R, t[e R and

(6.10) Φ, = ^ + ί ^ ,

(6.11) P i l l ^ δ , H ί ί l l ^ δ ,

(6.12) ΔT^Ψ, = t[Ψx ,

then there exists ΦeVΨ such that

(6.13) ωφ = ωΦl .

We first note that by Theorem 4 (4) and (5), JΨχ — JΨ and VΨ = VΨl.
Let

(6.14) ί1± ^ (1/2)^ ± ίί} .

Then

JwfeΨ, = ±tι±Ψ1 .

By Theorem 4 (6) and (7), there exists ¥ne V¥χ and Ψ12e VΨl such
that
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COi—Ύ i — Y n Y 1 2

Let

Then

By Theorem 3 (9), (δ - tJF, e VFιf (δ - t^Ψ, e 7F l. Hence by
corollary to Theorem 5, there exists hγ 6 R and h2e R such that

From Λ ^ y , = AH*hiΨt = 4%hhΨιt we obtain

λί = τ^i-i^K = 2tn - h, ,

hi = τ¥i(-i/2)h2 = 2ί12 - fe2 .

Thus

|| λί - λί || ^ 2 ||«!_ || + || Λx - λ, || ^ 3δ .

We set

Φ2 = w'Φi , %' Ξ exp {-ίjψjih, — h2)} ,

Ψt = SJF, , S ^ l + t , - ί(Aί - AD ,

t[ = (1 + ί j ( _ l + i(ft - Λ3 + exp{-t(^ - hi)}) - itiK - Aί) ,

ί 2 — ^2^1

Since vf commutes with tι and uΨι = exp { — i(AJ — ΛJ)}?PΊ due to
yri(Ai - ^2)^1 = (h[ - K)Ψ19 we obtain

We have

Hence τTl( — i/2)S? = Sλ and (rΓl(i/4)Si) is symmetric. Furthermore,
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(6.15) || ί1+ +

Hence || τΨi(-i/4:)(S1 - 1)* || ^ Zδ and τφ/^S, ^ 0. Therefore F,e

vVl = vr.
Since Ŝ  is invertible, Ψ2 is again cyclic and separating.
We have

IK. II ^ ( 1 + δ)(eu - 1 - 3δ) + 3δ2,

Hence

H ί . l l ^ o ^

with

a, = (1 - SδJ-'ίβ + (1 + £)(e3S - 1 -

^ (1 - 3δ)-'(3 + (9/2)(l + δ)e85) < 16

for 3 ^ 2-4. Hence

with a = ag-4 < 1.
By Lemma 7,

Since τTι(-i/2)S? = Sιt

rrt(-i/2)(ί?) = {τri(-ί/2)(ί^)}Srι

= {(-1 - i (^ - λ.) + exp {i(^ - h2)})(l + rri(-i/2)(ίf))

+ ί^, - A,)rri(-i/2)(tf)}Srl

Therefore,

II τΨt(-il2WS) II ^ {(1 + δ)(e° - 1 - δ) + δ2}(l - 35)"1

From (6.15), we also have

^ 3.5(1 -

We can now repeat the process and obtain a sequence of vectors
Φn, Ψn and operators tn e R such that Ψn is cyclic and separating,
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| | t JI ^ a~-ιδ , 11 τΨn{ - i/

y» is a Cauchy sequence and has a limit

Φ = lim i ί M e F y .

Since lim || ίn?Γn || = 0 , we have

Φ = lim Φn ,

ωφ = lim α>φM = ωΦi .

Step (ii). We prove that if ί* = ί e i? and ry(^)ί 6 i? for Im^G
[—1, 1], then there exists Φ e Vw such that ωφ = ω^vt)Ψ.

Let α (λ) Ξ (exipXt)Ψ, 0 ^ λ ^ 1. It is cyclic and separating because
Ψ is cyclic and separating and eλt is invertible. We have

JxUAtx(X) = tx(X) = exttΨ

= eλtJΨ{τψ(-ίl2)t}Ψ = t'eW

where V = jΨ{τΨ(-ί/2)t} e R'. Then

= extJΨΔ?ι*t'Ψ = eιtΔΨtΨ = ί"α?(λ)

where £" = e;>ί{τr( — ΐ)ί}e~;ί. Combining two computations, we have

By Lemma 6, τx{λ)(z)teR for Imze[ — 1, 0]. Since (τx(λ)(z)t)* is holo-
morphic for Im z e (0, 1) and coincides with τxU)(z)t at Im z — 0, it is an
analytic continuation of τxU)(z)t. We have τxa)(z) e R for Im ze [—1,1]
and H W s ) * ! ! ^ | | ί " | | . We note that | | ί | | = || τβU)(0)ί || ^ | | ί " | | .

For y e DxU) we have convergence of

Σ {n\Γ{XftγA-^y - e^A^y ,
%=0

and

Σ (nir^ϊaWtyA- ty = exv{X'τxU}(z)t}y

for Im^G [ —1, 1]. Hence

Δi'a^Δ-fay - exp {X'τx[λ)(z)t}y .
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In particular, for λ' > 0,

II r ( -i/PW* 1 II < Λ^'llί'ΊI 1

II τx{λ)\ — y&)e — 11 | ^ e — I .

Let N be a natural number satisfying

N^VCec , C= e2m\\τψ(-ί)t\\ ^ \\t"\\ .

Let Xn = n/N. We have

^ gW'ii - 1 g λiHί'Ί

Similarly, for 0 <Ξ λ ^ 1,

In other words, ί'" = e7^ - 1 satisfies | | ί " ' | | ^ 2~4 and

for 0 ^ λ ^ 1, and e1^ = 1 + ί'".
Let 2/(π) = exp (t/N)Φ(n — 1), where Φ(0) = f* and Φ(n) is to be

determined inductively such that Φ(n) e FΓ, Φ(^) is cyclic and sepa-
rating, ωφ(n) = ωxUn) and n S N. Φ(0) = Ψ obviously satisfies require-
ments for Φ(n), n = 0.

If <^ u _ 1 } = ^ ( ^ _ l } , then ωy(n) = ω^v{tN)x{λn_ΰ = ωx{λn). Since y(n) =
(1 + £'")Φ(w - 1), we can apply Step (i) if Φ(n ~l)eVΨ and Φ(n - 1)
is cyclic and separating. There exists Φ(n) e VΨ such that ωφ{n) = ωj,(Λ) =
coxan). Since α (λ) is separating, sR(ωφ{n)) = 1. Hence sR\Φ{n)) =
jV{sβ(Φ(π))} = 1 due to Φ(w) e Fy. Thus, by induction, we have desired
Φ(n), n ^ N. In particular, Φ(N)e VΨ satisfies ωφ{N) = ω(exvf}¥.

Step (iii). Let S¥ be the set of all ωxy xe VΨ. SΨ is a norm closed
subset of R% by (5.10). We prove that any peRt is in SΨ.

Since Ψ is cyclic and separating, there exists a positive selfadjoint
operator A2 affiliated with R such that Ψ is in the domain of A2 and

P = ^ 8 Γ [ 3 ] . Let Λ = j λd^,, Af - A2(£?L - ^ 1 / L) + {1 - EL + (l/h)EllL)9

t = (log -AgX/ )̂, ^,3 = o)(eχpί)F. Then ί is a selfadjoint element of Str i.

By Step (ii), ρLβeSΨ. Since limL^+ o olim^+ 0 II PLβ — P\\ = 0, we have

7 Representation of iϋj by Fy We denote the set of all
normal positive linear functionals on R by Rt and the set of all
normal states on R by Rtn. As before ωx denotes the expectation
functional by a vector x.
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THEOREM 7. Assume that R and Ra have cyclic and separating
vectors Ψ and Ψa, respectively.

( 1 ) The mapping σΨ from ωx e R% to σΨ(ωx) = xe VΨ is a bijec-
tive homeomorphism from R% onto VΨ relative to the norm topologies.

( 2 ) If p = ΣmPn, pε R%, Pn e Rt and s(ρn) are mutually orthogo-
nal, then σ¥p = Σ <?wPn-

( 3 ) If R = ®nRn,Ψ = ®Ψn, then σΨ{® pn) = 0 pΨn{pn) for any

pne(Rn)i,®ρneRi
(4 ) // R = ® (Ra, Ψa) on H = ® {Ha, Ψa) {the incomplete infinite

tensor product containing Ψ = ® Ψa), then <7Γ(® pa) = ® <7wa(Pa) if
ρa€(Ra)iι and ® σΨ(ρa) e φ (Ha, Ψa). The last condition is equivalent
to existence of pe R* such that

P(Q<g>(®la)) = (®pa)(Q) , Qe®Ra

for every finite index set J. {Symbolically ®pa^R%-)
( 5 ) For any Φ e H, there exists a unique \Φ\Ψe VΨ and a partial

isometry u' e Rf such that

(7.1) Φ = u'\Φ\r,

(7.2) itV* = sR\Φ) , u'*u' = sR'{\ Φ \r) .

There also exist a unique \ Φ \ψe V¥ and a partial isometry ue R such
that

(7.3) Φ = u\Φ\'¥,

(7.4) uu* = sR{Φ) , u*u - sR{\ Φ \Ψ) .

They are related by

(7.5) u - Mu')* ,

( 6 ) If Φ is any cyclic and separating vector for R, there exists
a unitary we Rr such that

(7.6) σΨ{p) = wσΦ{ρ)

for all ρeR%.

Proof. {1) follows from Theorem 6, (5.10) and

I ω , ( Q ) - ω y { Q ) \ = \{x + y , Q { x - y)) + {x - y , Q{x + y ) ) \ β

S \\χ + v\\ \ \ χ - y \ \ \ \ Q \ \ ,

which implies

(7.7) \\ωx -ωy\\^\\x + y \ \ \ \ x - y \ \ .
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(2) By (1), there exists Φne VΨ such that ωΦn = pn. Since s(ρj
are mutually orthogonal, sR(Φn) = s(pn) are mutually orthogonal and

Hence we have convergence of

Since Φn e V¥, sR\Φn) = jΨ(sπ(Φn)) are also mutually orthogonal.
Hence

(Φn, QΦm) = {Φn, QsR\Φm)Φm)

= (sR'(Φm)Φn, QΦJ = o

for Qe R and m Φ n. Therefore,

(Φ, QΦ) = Σ (Φ«, QΦn) = Σ Pn(Q) = P(Q) .

Hence Φ = σψp = Σ σψpn.
( 3 ) This follows from (2).
( 4 ) If Ψ = ® Ψa, then JΨ = ® Λ α and zί̂  = ® ΔΨa which is seen

as follows: Let J = ® JF β, J ί έ = ® 4 { Then JΔ^QΨ = Q*Ψ if Q =
® Qα and Qα = 1 except for a finite number of α. Since such Q is *
strongly total in R, JAιl2QΨ = Q*Ψ for any Q e R and hence JA112 3
JΨAH2. J satisfies (i)-(iv) of Theorem 1. It also satisfies (v) due to
JQ*Ψ = A1I2QΨ and A ^ 0. Hence J = JΨ. Hence A = AΨ.

If <g) σrβ(/θβ) e ® (fl"β, Wa) and ^ are faithful, then

Let Zα be the center of flβ. Then {® (Λβ, Fα)}' = ® (i2;

α, yβ) and hence
the center Z of ® (ί?α, fα) is given by ® (Zα, f«). If «α is a projection
in Zα and za = 1 except for a finite number of a, then ^ = ® ^ α e Z
satisfies

(^, s{® *rβGo«)}) - Π (y«, zσ¥a(pa)) ^ 0 .

Zα and Z can be viewed as L°°(Ξa9 μa) and L°°(Π Ξa, ® ^α) where
projections are characteristic functions. Hence any projection in Z
can be weakly approximated by a finite sum of projections z = ® za.
This implies

for all projections in Z and hence for all ze Z, z ^ 0.
By Theorem 4 (5), we have ® 0τa(pa) € F®yα. The same conclusion

holds for nonfaithful |0α, by taking a limit of faithful pa + Xaω¥a9

Xa ^ 0 as Σ λ α - > 0 . (® σy(|0α) e ® (fl"α, ?Fα) implies σ ^ ) = ψa except
for a countable number of a.) We also have
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a

Hence

σ¥(® Pa) = ® σΨa{pa) .

Next assume ®paeR%. Without loss of generality we may as-
sume || Ψa || = 1. Let R(I) = ® α 6 I Ra, Ψ(I) = ®aeI Ψaj Φa = σΨa(pa),
Φ = #v(® Pa), Po(I) = ωΨd) for an arbitrary index set I and p(J) =
®«ej /°«, #(«/") = ®αe/Φ« for a finite index set J . J c denotes the comple-
ment of J in the index set. ρa 6 iu£L implies

\\Φa\\ = I | Φ ( J ) I I - I I Φ I I = 1 .

Since ^(J^7) (g) z is total when / runs over finite index sets and z
runs over ® α e J Ha, there exists a finite index set J and a ze ®aej Ha

such that (Φ, Ψ(JC) (x) 2) ^ 0, || z \\ = 1. Then for any i Γ c J σ , we have

II rtίΓ) - A (Z) II = II ωf^ - < $ ) β , ||< 2 .

(If (.τ, y) ^ 0, then (7.7) implies || ωx - ωr ||2 ^ (|| α? ||2 + || y' \\J - 4(x,y')*
for y' = βw2/ where 0 is a real number such t h a t (x, yr) > 0. Hence

Hω.-ωJ<|M|«+||y|r.)
By the first part of the proof of (4), we have σWiK)(ρ(K)) =

G$aeκ<7ψa(pa) = Φ(K) for a finite index set K where the condition
®aeκσwa(P«)e®*eκHa is trivially satisfied. By (5.10)

\\¥(K) - Φ(K)\\^ \\p(K) - po(K)\\

and hence

{Ψ{K\ Φ{K)) ^ 2-(2 - i| p(K) - po(K) ||) = δ > 0 ,

where we have used (Ψ(K), Φ(K)) ^ 0 due to Φ(K)eVW{K). Since
II ?rα II = II Φα II = 1, we have 1 ^ (Wa, Φa) > 0 and hence

1 ^ Π ( ^ , Φa) ^ S > 0
aeK

for any finite index set KaJc. Hence

which implies ® Φ« e ® (iϊ«, ?Γα).
Therefore, ®iθ α 6i2ί implies ® σΨa(ρa)e ® (iία, Ψa).
( 5 ) For any Φe H, there exists a unique \Φ\we VΨ satisfying

ωφ = ft)^^ by (1). Then there exists a unique partial isometry v! e Rr

satisfying (7.1) and (7.2).
Next set
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Then \Φ\ψ= jψ(v/)Φ. Since sR(\ Φ \τ) = j¥(sR'(\ Φ | r)) = jΨ(u'*u'), we have

We also have

Mu')Mu')* = MsR'(Φ)) = jr{8(ωgf)} = M

where the last equality is due to | Φ \'Ψ e VΨ and ωRf denotes the expec-
tation functional on Rr by a vector x.

Thus (7.5) satisfies (7.3) and (7.4).
To see the uniqueness of \Φ\Ψ and u, we note ωf ~ ω$\^. If we

interchange the role of R and Rr in the definition of VΨ, we obtain
the same set Vw. Hence by (1), a vector xe V¥ satisfying ωf = p for
any given pe(R% is unique. Hence the uniqueness of \Φ\'Ψ. The
unitary operator ueR satisfying (7.3) and (7.4) is unique because
uQ I Φ \ψ = QΦ for Q e Rr determines u on sR(\ Φ \'w).

( 6 ) Since Φ is separating sR(σΨωφ) = s(ωφ) = 1. Hence sR'(σψωφ) =
jψ{sR(σψωφ)} = 1 and σψωφ is cyclic and separating. By Corollary 2 of
§ 4 , Jσψωφ = JΨ a n d Vσψ(Oφ = VΨ.

Since ωφ — ωoψωφ, there exists a partial isometry we R' such that
σΨcύφ — wΦ. Since both Φ and σΨωφ are cyclic, w is unitary.

Since w e R', we have for S = JwΦΔιH and SΦ = JΦΔ\]\

SwQΦ = SQwΦ = Q*wΦ = wQ*Φ - wSΦQΦ , QeR .

Hence S — wSφw* and JΨ = JwΦ = wjφw*. Hence

(wσφp, Qjw{Q)wΦ) = (σφp, QjΦ(Q)Φ) ̂  0 .

By Theorem 4 (1) and (4),

wσφρ e VwΦ = Vw .

By the uniqueness in (1), wσφp = σψp.

8* Applications of σ¥. The following theorems are examples of
applications of Theorem 7.

THEOREM 8. Let Ψ and Φ be cyclic and separating vectors for R.
Then the * automorphism

of R is inner.1

1 The author is informed by Professor Takesaki that Dr. Connes has a simple proof
of this.
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Proof. By the proof of Theorem 7 (6),

JΨ = wJ0w*

for a unitary we Rf. Setting u = jΦ(w*), we have

JAJΦ(Q)} = uQu*

where u is unitary and ue R.

THEOREM 9. Let §1 be the C* algebra inductive limit of finite W*
tensor products {($$aejRa} = R(J)> where J is any finite subset of given
index set {a}. Let pa, ρf

ae (Ra)iι Assume that central supports of pa

and p'a are the same. The representations of % canonically associated
with ® pa and ® p'a are quasi-equivalent, if and only if Σ d\pa, paf < °° »
where

(8.1) d'(pa, fQ = \\σra(pβ)-σra(f/a)\\

does not depend on Ψa.

Proof. By Theorem 7 (6), d'(plf p2) does not depend on Ψ.
First assume Σ d'(ρa, paf < °° Then there exists a countable

index set I such that d'{ρa, Pa) = 0 for ail. Then ρa — p'a for a £ I.
By assumption

Σ I 1 - {OvaPa, σWaPa) | < oo .
a

Hence Φ = 0 f f σΨapa and Φ' = ® α σΨap
f

a belong to the same incomplete
infinite tensor product H = ® (iία, σΨapa). The C* algebra 2t has a
natural representation π on H and ® ^α = ωφ, ®/θ'α = ωφ,. Let £/« be
the central support of ρa, which is the same as the central support
of p'a. Then (Ra U Rr

a)σΨapa = EaHa. Since ( ® Ra)
f = ® Λ'β in an

incomplete infinite tensor product, the central support E of ®σΨapa

satisfies EH = limJT (®aίJ θψapa) (x) (®«6j EaHa). By the same calcula-
tion the central support of ®σΨapa coincides with E. Hence ® ρa

and ® p'a produce quasi-equivalent representations of St.
Next assume that representations of 31 associated with ® pa and

® jθ« are quasi-equivalent. Let Haj πa, Φa be canonically associated
with pa. We have ωφ = ® pa for Φ = ® Φα.

By assumption of quasi-equivalence, there exists α?» e ® (iϊα, 0«),
a ̂ O such that ® ρ'a = Σn Λ>*W Since ( ® α 0 j Φ«) (x) 2 is total when J
runs over all finite index sets and z runs over ® α 6 J iΓα, there exists
a finite index set J and ZG ® α e j fl« such that (xlf ( ® α ί J Φ α ) ® z) Φ 0.
Denote p' = ® ρ'a and <o" = ω ( ( 8 ) α l ί J # β ) g ) l l. Then || pf - p" \\ < 2.

Let jOjs- = ® α 6 * |0α, ^ = ® α e j f f pa. Restrictions of p" and p' to
®« 6χi2α is ^ and p'κ for any finite index set Kin Jc. By Theorem 7
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(4) and (3.10), we have

Π (σΨapat σΨap'a) = {2 - \\σΨ{K)pκ - σΨ{K)p'κ ||2}/2
aeK

^ { 2 - \\p»-p'\\}/2>0

where Ψ{K) = ®aeK Ψa. Since 0 ^ (σΨj>a, σΨ(χp'a) ^ 1, we have

2 Σ 11 - (σΨaρa, σΨap
f

a) | = Σ II °w*Pa - °vap'« IΓ < - .

REMARK 1. The distance d\ρ, p') satisfies

(8.2) d'{p, p>) ^ d(p, p')

where d{p, pf) is the Bures distance [5]. Since Σ d(Pa, Paf < °° is
another necessary and sufficient condition for quasi-equivalence, it must
be equivalent to Σ df(pa, ρ'a)

2 < °°. Hence there must be a constant
λ > 1, such that

(8.3) \d{p, p') ^ d\p, p') .

REMARK 2. If R is semifinite, φ if a σ-finite faithful normal
trace on R, H is the Hubert space of Hilbert-Schmidt operator affiliated
with R, Hilbert-Schmidt relative to φ, and R is left multiplication,
then an example of VΨ is the set of vector corresponding to positive
Hilbert-Schmidt operators. The inequality (5.10) correspond to the
inequality \\σ - p\\tx ^ \\σ^ - ^ 2 | | L s [7].

THEOREM 10 [6]. τp(t)x —• τΨ(t)x strongly as \ \ p — ψ \ \ —• 0 where
p and ψ are faithful positive linear functionals of R, both xe R and
ψ are fixed.

Proof. Let ζp = σψ(ρ) and ζψ = σψ(ψ) for some cyclic and sepa-
rating Ψ. Then for xeR,

= \\x*(ξ+ - ξ p ) \ \ ^ \ \ x \ \ \ \ 1 r - P\\1IΛ

where we have used Theorem 4 (5) and (8). Hence

|| {Δ\% + l ) x ξ Ψ - ( J £ + l ) x ξ p \ \ £ 2 II x\\ \\ψ -

Since \\(J)$ + I ) " 1 ! ! S 1, we have

II {{Aψp + l)-1 - {Δ% + I Γ K J J ' J +

Since A\1^ is essentially self-adjoint on Rζψ, (Δ\1^ + l)Rξψ is dense.
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Hence by uniform boundedness || (Δ\ι* + 1)-1|1 ^ 1>\

( 4 + 1 ) _ ( 4 + 1 )

strongly as || ξp - ξΨ || — 0. Let ft((u + I)"1) = u2it. ft is a family of
continuous functions on (0, 1), equicontinuous on compact subsets of
(0, 1) for bounded t and uniformly bounded. Hence by [4]

4γp —> z/|V strongly as || p - ψ \\ —> 0

uniformly in t in a compact set. This implies τp(t)x —> ?>(£)# strongly
as || p — α/r 11 —>0, uniformly in t in a compact set.

REMARK 3. A similar application yields an alternative proof of
Theorem 3 of [6]:

In Theorem 3 of [6], let

φ^x) = (1 - λ ) " 1 ^ ^ ^ * ) + (1 - X)φ(uu*xuu*)} .

Then φ1 :> 0, φx is faithful if φ is faithful and

|| 9>i(l) - 1 || = λ(l - xyWuu*) - φ(u*u)

^ (1 - λ)-^ .

We also have

- <P(x)\\ ^ (1 - λ)"11 *φ(uxu*) - (1 - x)φ(xu*u) \

+ λ"11 xφ{uu*xuu*) — (1 — x)φ(u*xuu*u)

+ λ"11 (1 — X)φ(ΰ*xu) — Xφ(xuu*) I

Hence

\\9>i - Φ \ \ ^ ( 2

It is easily seen that Xφ^xu*) = (1 — X)φ(u*x) and hence

{Δ^l - X^(l - λ)"1/2)^*?^ - 0 .

Since || u*ζΨί ||
2 = ψ(uu%) ^ 1 — λ — ε, we have

This proves Theorem 3 of [6].
Let Aut(J?) denote the set of all * -automorphisms of R. Each

geAut(R) induces an adjoint mapping on R%:

(g*φ)(%) = <p(g(χ)).

THEOREM 11. There exists a unitary representation UΨ(g) of



VON NEUMANN ALGEBRAS AND RADON-NIKODYM THEOREM 347

Aut(R) such that

(8.4) UwigyxUwig)* = g(x) , x e R ,

(8.5) Uτ(g)σr(g*ρ) = σΨ(p) , peR+.

Each UΨ{g), ge Aut(R), commutes with JΨ. For two cyclic and sepa-
rating vectors Ψ and Φ, Uw and UΦ are unitarily equivalent through
a unitary operator u' e RΊ

(8.6) u'UΨ(g) = ΌΦ(g)u' .

Proof. Let ξ{g) — σΨ(g*ωψ) where ωΨ is the expectation functional
by Ψ. We define

(8.7) Uo(g)xΨ = gix^g-1) , x e B .

We have

g-1)) = (g-lYcow{g{x*y)) = (xψ, yw).

Hence U0(g) is well-defined and its closure UΨ{g) is isometric. Since
g*ω¥ is faithful because Ψ is separating and g is an automorphism,
σΨ(g*ωΨ) = ξ(g) is separating. Since ζ(g) e VΨ9 it is cyclic if it is
separating. Hence UΨ{g) is unitary.

From the definition (8.7), U0(g)x = g(x)U0(g) and hence (8.4) holds.
Let S, = JΨΔψ and S2 = JξΔf for ζ = ζig"1). We have

U(g)S1xΨ = U(g)x*W = g(x*)ζ

for x e R. Since RΨ is a core of S1 and Rξ is a core of S2, we have
U(g)S1U(g)^ = S2. By the uniqueness of polar decomposition, we have
U{g)JΨU{g)* = Jξ. Since ^ G F , , we have Jς = Jψ. Hence U(g)
commutes with JΨ.

Let x e R and ψ e VΨ. Then

, xjξ{x)ξ) = (U(g)ψ, {U(g)yU(g)*}Jf{U(g)yU(g)*}ξ)

= (Ψ, vMvW) ^ 0

where y = flr"^), J f - Jr, [U(g\ Jr] = 0, U(g)*ξ = W. This implies

U(g)ψeVl= Vξ=VΨ.

Hence C7(^)F^c VΓ.
By (8.4), we have for ψ = U(g)σΨ(p) and (0 e

By U(g)σΨ(ρ)e V¥, we have (8.5).
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From (8.5), we have

for ψ e σΨ(RX) = VΨ. Since VΨ linearly span H, we have

UΨ{gι)UΨ(g2) =

For two cyclic and separating vectors Ψ and Φ, there exists a
unitary u' e Rf such that u'σΨ{ωφ) = Φ, which automatically satisfies
u'σΨ{ρ) = σφ(ρ) for all ρeR%. Then

u'Uψ(g)σr(g*p) = u'σw(p) = σφ{p) = UΦ(g)σΦ(g*ρ)

= UΦ{g)u'σΨ{g*ρ) .

Since σΨ{g*p), peRt, is total, we have (8.6).

REMARK. The weak, strong and *-strong topologies coincide on
unitaries and they induce a topology τυ on Aut(ϋί) through UΨ(g).
Since the multiplication of unitaries is continuous relative to strong
topology, (Aut (R), τπ) is a topological group. On Aut (R) there is a
topology τ by the norm convergence of g*p for every peR%. The
two topologies τ and τv coincide which can be seen as follows:

The strong convergence of U¥(g) is equivalent to the strong con-
vergence of UΨ{g)*.

Since VΨ span H, the strong convergence of UΨ{g)* is equivalent
to the strong convergence of UΨ{g~~ι)σΨ(ρ) = σΨ{g*ρ) for each peR%.

Since σΨ is a homeomorphism, the strong convergence of σΨ(g*p)
is equivalent to the norm convergence of g*p for each ρeR%.

9* Radon-Nikodym derivative satisfying a chain rule*

THEOREM 12. Let p, μe R% and Ψ be a cyclic and separating
vector.

( 1 ) The following two conditions are equivalent.
(a) lp ^ μ for some I.
(β) There exists A = A(μ/p) e R such that

(9.1) μ(x) = ρ{A*xA) , AσΨ(p) = σr(μ) ,

(9.2) s(ρ) ^

The operator Ae R satisfying (9.1) and (9.2) is unique.
(2 ) If (a) or (β) holds, then

(9.3)

(9.4) \\A(μ/p)\\σΨ(p)^σΨ(μ)
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where x ^ y denotes x — ye VΨ.

( 3 ) If kμ, ^ μ2, l2μ2 ^ μ3, then

(9.5) AiμJμJ = A(μ3/μ2)A(μ2/μ,) .

( 4 ) A(μ/μ) = s(μ).

( 5 ) A(μ/p) does not depend on Ψ.

Proof. ( 1 ) First assume (/3). Noting JΨσw(p) = σψ(ρ), we have

σ¥(μ) = JΨσψ{μ) = JrAσr(p) = j¥(A)σ¥(ρ) .

Hence

(9.6)

^\\j¥(A*A)\\p(Q)

for Q ^ 0, Qe R. Hence (β) implies (a).
Next assume (a). Then there exists tf e Rr such that

(9.7) σw(μ) = t'σ¥(p) , \\t'\\^l.

Since JΨσψ(μ) = σψ(μ) and JΨσΨ{p) = σψ{ρ), we have

σΨ{μ) = JψσΨ(μ) = J r { ί ' s Λ ' ( M

Hence we have (9.1) with

A = ir{ ίV(

Since iy{sβ'((7y(/θ))} = sR{σψ(ρ)) = s(p) due to JΨσ¥(ρ) = σw(ρ), we have

sR(A*A) ^ jΨ{sR'(σ¥(p))} = s(p) .

If A,a¥(p) = A2σ¥(p) = σ¥(μ), then (A1 - A2)σ¥(ρ) = 0. Hence
(A, - A2)sβ(Mι°)) = 0. By (9.2), Aks

R(σ¥(p)) = Ak and hence A, = Aa.
( 2 ) From (9.6), we have

k = mί{i;ip^μ}^ \\A*A\\ = | | A | | 2 .

From (9.7), we have

for any I satisfying Ip ^ μ. Hence we have (9.3).
To prove (9.4), we first show that

(9.8) s(AA*) - s(μ) .

For e e R, e ^ 0, μ(e) = 0 is equivalent to eAσ¥(p) - 0, which is equiva-
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lent to eA = 0 due to s(A*A) ^ s(p). Hence (9.8) holds. We now
consider restriction of R and H by s(p)jΨ{s(ρ)}. Let M = s(p)Rs(p) \ K,
K = s(ρ)jΨ{s(p)}H. ξp is cyclic and separating and

s(p)jΨ{s(p)}Aξp = s(ρ)Aξp - Aξ
p

where s(ρ) ;> s(μ) due to lp ^ μ, which implies s(ρ)A = A, and
3r{8(p)}ξP = ξP. Thus AξPe Vξp = s(^V{s(ί>)}^.

By Theorem 3 (9), we have (9.4).
(3 ) follows from the uniqueness.
(4) s(μ) satisfies (9.1) and (9.2) with p = μ.
( 5) follows from Theorem 7 (6).

REMARK. If R is commutative, A(μ/p) is the same as the positive
square root of the Radon-Nikodym derivative in measure theoretical
sense. The following theorem gives a condition that A(μ/p) coincides
with Sakai's noncommutative Radon-Nikodym derivative. Because of
the chain rule, it also coincides with the condition A^μjp) — A2(μ/p)
when lλμ ^ p and l2p ^ μ, where Ak(μ/v), k = 1, 2, are defined in [3]

THEOREM 13. If lp^ μ, the following conditions are equivalent.
(a) A(μ/p)* = A(μ/p),
(b) A(μ/p)^0,
( c ) τp(t)A(μ/p) = A(μ/ρ) where τp(t) is the modular automorphism

for the state p of the reduced algebra s(ρ)Rs(p).
( d) μ commutes with p.

Proof. If (c) holds, then A(μ/p)ξP = ζμ 6 Vζp implies

0 £ τp(i/4)A(μ/p) - A(μ/p) .

Hence (c) implies (b). (b) trivially implies (a).

Assume (a). For any QeR and A = A(μ/p), we have

(£„ QAζp) = (ζp, QJζAζP) = (ξPf Qjζp{A)ξp)

= (Aξp, QξP) = (ζP, AQξp) .

Such A is known to be invariant under τp(t). ([9])
The equivalence of (c) and (d) is known. ([9])

10* Abounded operators* We shall call QeR ^-bounded if

COQΨ ^ lC0ψ .

for some Γ;> 0. We shall call QeR ^-symmetric if
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JwQW = QΨ .

We shall call QeR f-positive if

QΨe Vv.

THEOREM 14.

( 1 ) Q is Ψ-bounded if and only if there exists a Qψ e R such
that

(10.1) ΔψQ*Ψ = QΨΨ .

( 2 ) Any Ψ-bounded Q can be decomposed as Q — Qr + iQi where
Qr, Qi e R and both are Ψ-symmetric.

( 3 ) Any Ψ-symmetric QeR is Ψ-bounded and Qψ = Q. It has
a decomposition

(10.2) Q = Qι-Q*

where Qlf Q2eR, bothQxandQ2are Ψ-positive, \\Q,\\ ^ | | Q | | , | | Q 2 | |
and

(10.3)

( 4 ) Any QeR has a unique decomposition

(10.4) Q = u\Q\r

where u is a partial isometry in R such that

(10.5) u*u = s(\Q\w\Q\ί)

and \Q\w is Ψ-positive.

( 5 ) Qe R is Ψ-positive if and only if Q is Ψ-symmetric and
τψ(i/4:)Q is positive.

Proof (1) . If ωQΨ^ lωΨ, then there exists Q'eR',0^Q'^ lί}2 such
that ωQΨ = ωQfψ. Then there exists a partial isometry v! e R' such
that QΨ = u'Q'Ψ. Let Qψ = jr(u'Q'). We have

QW =: JψU'QfΨ = J¥QΨ = ΔψQ*Ψ .

Conversely, if (10.1) holds, then

Qψ = Jr4¥Q*W = JΨQ*Ψ = jΨ(Qw)Ψ .

Hence ωQΨ ^ \\jψ(Qψ)\\2ωΨ.

( 2) Define Qr = (Q + Qψ)/2, Q, - (Q - Qψ)/(2i). Then both are
^-symmetric and Q = Qr + iQim

( 3 ) Let QΨ^Φ,- Φ2, Φ,e V¥, Φ,e Vr, s^Φ,) JL sR'(Φ2), s^Φ,) i
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SR(Φ2) be the decomposition given by Theorem 4 (6). Denote s' = s
We have Φx = s'QΨ. Hence ωΦl = ws,QΨ ^ ωQΨ. Since Q f - JΨQΨ =

ίV(Q)y» " V ^ | |ir(Q)IΓω r - | |QIΓω r . Hence by Theorem 3 (8), there
exists a ?F-positive Q,e R such that Φ1 = Q,Ψ and || Qi II ̂  IIQ ll Simi-
larly there exists ^-positive Q2 e R such that Φ2 = Q2Ψ and || Q2 \\ ύ IIQ ||
Since f is separating, (10.2) holds.

Since r is separating for R, we have sR(QkΨ) = s(QkQt), k = l,2.
Since s^ΦJ j_ s*(Φ2), we have (10.3).

( 4 ) L e t /o = ωJrQr. T h e n /o ̂  || jΨ(Q) \\2ωΨ = \\Q\\2ωw. H e n c e
there exists a ^-positive Qi 6 R such that σrlo = Q?F. Since ωJrQ!F =
ωQlψ9 there exists a partial isometry v/ e JB' such that /^QίΓ = ^ ' Q ^
and u'*v/ = s^iQ.Ψ) = iΓ{sΛ(Q1?

Γ)} = if{sίQxQf)} where we have used
the property Λ Qi^ = Q ^

We now have Qf = J¥u'QP = jΨ{nr)JwQ,Ψ = uQ,Ψ where w Ξ iΓ(w')
Since F* is separating for R, Q = %Qle We have %*π = jτ(u'*u') —
siQ&ϊ). Hence Qt = | Q |Γ and w satisfy (10.4) and (10.5).

Conversely, assume that Q = ukQk, Qk is ?Γ-positive, uk is partially
isometric, uk, Qk e R, utuk = s{QkQt), k = l,2. Then ω J r ρ r = ω Q ^ where
we have used JrQkW = QkΨ. Since QkΨe Vr, such QkΨ is unique by
Theorem 7 (1) and we have Q1 — Q2.

Since ^ Q ! = u2Q2 = u2Qlf we have (uL — u2)8(QtQf) = 0. Since
w*!^ rr: sίQ^f) = s(Q2Q*) = u*u2, we have UkSiQiQ?) = uk, Jc = 1, 2, and
hence ut = u2.

(5 ) Q is ^-symmetric if Q is ^-positive by (5.2). By Theorem 3
(7) with a = 1/4, τΨ{ij4)Q ^ 0 if QΨ e VΨ. If Q is f-symmetric, then
JQ?Γ = Qψm Hence J^/2Q*?Γ = QΨ, which implies Jr 1 / 2 Qr = Q*?P\ Hence
r r ( e )Q G JB can be defined by Lemma 6 for Im z e [0,1/2]. Hence (A^QΔT)~
is in R. If it is positive, then QΨ e V¥ by Theorem 3 (7).

THEOREM 15. If p ^ lωψ9 there exists QeR,0^Q<: I11* such that
σΨp = QMQW.

Proof. Let px{A) = (σTp, ΔψM) for A e R. Then ft e Ri. Since
p ^ iωΓ, there exists Q,eR such that Q ^ = σψρ, WQ^^l. Then
QiF = MQiW and

where

by Theorem 3 (7).
Set Q2 - >(Q2). We have
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Hence ft ^ || Q2 \\ ωΨ ^ lίl2ωw. By Theorem 7 (1), there exists a ^-posi-
tive Q3eR such that ovft = Q3Ψ, || Q31| ^ ϊ1/4. Let Q = ττ(ί/4)Qa. By
Theorem 3 (7), || Q || ^ || Q31| ^ Z1/4 and Q ^ 0. We have Q3?F = JVQ8?r -

and hence

(Qs^, Aj¥(Q3)Ψ)

= (QMQΪW, AΨ) = ({r,(i/4)Q3bV({^(ί/4)Q3}*)f, ΔψAΨ) .

Since Δψ

ι*AW, AeR, is dense, we have

l l Additional remarks* In this paper, we have assumed that
R has a faithful normal state. This assumption is not essential in
defining d'(pl9 p2) and {oψpu σΨp2). They can be defined relative to sRs
where s = ^(ft) V s(p2). With such definition, Theorem 9 holds.

The cone Wv has been introduced as the weakly closed convex
hull of Qjψ(Q), Qe R. It is a weakly closed selfadjoint convex cone
which form a semigroup under multiplication. It is total in
W = (R U R')".

If p e W* is of the form p = Σ i ωχjyj with xh yά e V¥9 then ρ{w) ^ 0
for all w e WΨ. If p e W*, p = ωx and ρ(w) ^ 0 for all w e Wr, then
p — o)y for ye VΨ by Theorem 3. It is of interest to determine the
dual of WΨ in W*. If R is a type / factor, the dual of WΨ consists
of p = Σ i <*>χjVj, »i, 2/i e VΨ.
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Appendix* The result that V7 is selfdual can be proved directly
as follows:

We define VΨ first as the closed convex hull of {Qjw(Q)Ψ; Qe R}.
Then (5.1)~(5.4) are immediate. In particular (5.4) shows VΨcz V'Ψ.
Let Φ e Vr.

By noncommutative Radon-Nikodym theorem, there exists a
positive selfadjoint A2 affiliated with R and a partial isometry u' e Rr

such that Φ = v/AJP. If A2 — I xdEλ9 we set A\ = A2EL and

ΦL = Ezjr(EL)Φ = JAEL)u'AL

2Ψ .

Then limΦL = Φ and ΦL e V'Ψ. Since ωφL ^ Q)ΛLV9 there exists teR,
0 ^ t ^ 1 and a partial isometry weR' such that

ΦL = wtA£Ψ, w*ΦL = tAϊΨ, 8B'(ΦL) =
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Set Φ' = AJF, A3 = jψ(w*)tAϊeR. Then Φ' = w*jΨ(w*)ΦLe V'Ψ.
Since ΦL e V£, we have (a?, ΛΦL) = (ΦL, JΨx) = {Φ\ x) = (x, ΦL) ̂  0 for
xe VΨ. Since Vr is total, we have JΨΦL = ΦL and hence jΨ(w)wΦf =
jΨ(ww*)ΦL = ΦL. Hence it is enough to show Φ' € VΓ. Let ΦJ = A4?F,
Λ = 4 3 W ) defined by (3.7) and (3.11). Then Φ'β 6 Fr and lim^+ 0 Φ'β = Φ\

Let ^45 = r(ΐ/4)A4. Since .̂4?F e Vψ9 we have

= (QΨ, AJψQΨ) = (QΨ, AM

= (JAQ)QW, AW) ^ 0 .

Since ΔψRΨ is dense, we have A5 ^ 0. Let B = AJ/2, Br = B{fG

r).
Then lim B) = A5 and

- {{B) - A5}Ψ, Δψ{B* - A5}Ψ)

as 7—> + 0 . Therefore,

l i m z / y ^ r - z/y4A5?F = {τ r(-ί/4)A5}r - AJF = Φ'β .

We also have

AψBW = CiΓ(C)ΪΓ

for C = τ¥(-i/4)Bγ due to JΓC?Γ = C^. Hence AψB'Ψ e VΨ. This com-
pletes the proof.
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