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ASSOCIATORS IN SIMPLE ALGEBRAS

S. ROBERT GORDON

In this paper it is shown that, with suitable hypotheses
on the base field, any element of generic trace zero in an
octonion algebra is a commutator and an associator, and any
element of generic trace zero in a simple Jordan algebra is
an associator.

In 1937 K. Shoda [7] proved that every » x n matrix A of trace
zero over a field of characteristic bigger than % is a commutator
[B, C] = BC — CB for suitable n x n matrices B, C. His method was
to show that A is similar to a matrix all of whose diagonal entries
are zero, and then to give a specific formula for such a matrix. In
1957 A. A. Albert and B. Muckenhoupt [1] proved this theorem for
arbitrary fields by proving a more complicated similarity theorem and
giving a more complicated formula. In 1963 G. Brown [3] proved an
analogous theorem for Lie algebras: that every element of a (split)
classical Lie algebra £ is a commutator. His result is valid over all
fields, with the exception of certain small finite fields. His method was
to show that if & = P D,z & is the Cartan decomposition of £ with
respect to a Cartan subalgebra $, then every element of € is conjugate
under the automorphism group of ¥ to an element of >, L.

In this paper we present similar results for alternative and
Jordan algebras. If 2 is a (nonassociative) algebra with multiplication
z, y+— 2y, we define the commutator of z, ye A to be [z, y] = zy — yx
and the associator of =z, y, 2¢ U to be [z, y, 2] = (xy)z — 2(yz). We
prove that in an octonion algebra (with the possible exception of
division algebras of characteristic 2) any element of trace zero is both
a commutator and an associator. We show that in a simple Jordan
algebra over an algebraically closed field of characteristic bigger than
the degree of the algebra, every element of trace zero is an associator
(the question of commutators does not arise). Our methods are
analogous to the above: in each case we prove that an element of
trace zero is conjugate under the automorphism group of the algebra
to one whose “diagonal entries” (in an appropriate sense) are zero.
Then we give a specific computation for such elements.

The product of two elements z, ¥y of an associative or octonion
algebra will be denoted zy; the product of elements z, ¥ of a Jordan
algebra will be denoted x,y. The reader is referred to [2] and [6]
for relevant properties of octonion algebras, and to [5], especially
Chapter 5, § 6, for properties of simple Jordan algebras.
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1. Octonion algebras. We prove the following:

THEOREM 1. Let O be either an octonion division algebra over
a field @ of characteristic = 2 or a split octonion algebra over an
arbitrary field @. Then every element of O of trace zero is both a
commutator [a, b] and an associator [a, b, c].

Proof. We denote the canonical involution on O by 2+—Z. The
generic trace and norm forms on O are z + T = t(z), 2% = Tz = n(x)
respectively. The linearized norm form is n(x, y) = x¥ + y%T = t(xy).
See [2] or [6] for properties of these forms.

If © is a division algebra, we give an argument of R. Brown.
Suppose ae O and #(a) = 0. Choose 0= be O such that =(l, b) =
n(a, b) = 0; this is possible since {1, b)- must be at least 6-dimensional,
hence nonzero. Since #n(l, b) = t(b), we have @ = —a, b = —b, 0 =
ab + b@ = —ab — ba. Using the alternative law, we have

[6, ab] = b(ad) — (ab)b = —b(ba) — (ab)b = —b’a — ab’
= (bb)a + a(bb) = 2n(b)a.
Since 2 == 0 and n(b) = 0 (D is a division algebra), a is a commutator.

Now choose 0 == ce O orthogonal to 1, a, b, ab: the orthogonal
compliment of these elements is at least 4-dimensional. Then

(ab)e — a(be) = |[a, b, ¢] = [e, a, b] = (ca)b — c(ad)
= (ca)b — ¢(@b) = (ca)b — ¢(ba) = (ca)b + c(ab)
= (ca)b — (ab)¢ = (ca)b + (ab)c

a(be) = —(ca)b

[a(be), b, ] = ((a(be)be — (a(be))(be)
~ (((ca)b)b)e — albo): .

Since (b, ¢) = 0 implies bc = —bec and n(a, ¢) = 0 implies ca = —ac,
we have

[a(be), b, ¢] = ((ca)b®)c + an(be) = n(b)(cac) + an(bc)
= —n(b)(ac®) + an(bc) = n(b)n(c)a + an(bc)
= 2n(b)n(c)a .

But 2, n(b), n(c) are all nonzero, so a is an associator.

We now assume that O is a split octonion algebra. Let x, v, 2,
Yy, Xs, Yo, Tz, Ys D€ a canonical basis for O as given by van der BIlij
and Springer [2, p. 410-411]; {x,, .} are mutually orthogonal hyperbolic
pairs and x,, y, are complimentary primitive idempotents. Suppose
ve O and t(v) = 0. Suppose furthermore that 1, v are linearly inde-
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pendent (this happens necessarily if the characteristic is not 2). Let
n()=ae®. Then n(x, +ay,) = w®,) + n(x, ay,) +nlay)=0+a-1+0=
n(v), n(1, z, + ay,) = Wx, + Yo, . + ay,) = 0 = n(1, v). Witt’s theorem
therefore implies that there is an orthogonal transformation § of O
sending 1—1 and 2, + ay,—v. Lete=160(x,),f=1—¢=0(y,). Then
nle) = n(0x,) = n(x,) = 0, t(e) = nle, 1) = n(bx,, 01) = n(x,, 1) = t(x,) = 1.
Hence ¢ is a primitive idempotent of O. Also

e, v) = n(0w, 0w, + ay)) = n(x, ¢, + ay,) =0
/n(f’ 'U) = n(y(): Ly —I_ ay1) = 0 .

Using the arguments of [2, p. 411], we can identify O with the algebra
of “vector matrices” over @ in such a way that e, f are identified with
the diagonal idempotents. Then ve (e, f>* is a matrix with only zeroes
on the diagonal. This proves the “conjugacy” step.

We note the following formulas in the algebra of vector matrices:

(O —a (1 0) A
o/’\0 o/ \» o0

(O a) <0 ¢ 1 0 _(0 —-bxd

b 0/’ 0/’ \0 0) T \axe 0
where as usual a x b is the usual vector product in @° three-dimensional
space over @. This proves that v is a commutator; to prove that v
is an associator one need only show that every element of @ is of the
form a x b for some a, be @*. Fix 0~ ac@. By ad a we mean the
map b—a x b. Since a-(a X b) =0 (here a-b is the usual scalar product
on @°, the image of ad a is contained in the kernel of the linear

funectional b+—a.b. This kernel is 2-dimensional. If a = (a, B3, 7) then
the matrix of ad a is

St

IS

0 —v B
Y 0 —«a
-8 « 0

hence has rank 2. This means that the image of ad a equals the
kernel of b—a-b. Given be @, choose 0= ac @ so that a-b = 0.
Then be Image (ad a), i.e., b = a x ¢ for some c.

We have assumed that 1, v are linearly independent. Finally, we
need to show that 1O is a commutator and an associator in charac-
teristic 2. If {x,, y;} is a canonical basis of O as above then the
multiplication table given in [2] yields

[2, + vy, ] = & — 9,

[, @, @] = 2 — ¥, -
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This proves the theorem.
It would of course be interesting to know whether these results
hold in division algebras of characteristic 2.

2. Jordan algebras. In this section we prove the following:

THEOREM 2. Let X be a simple Jordan algebra over an algebraically
closed field @ of characteristic bigger than the degree of . Then every
element of & of gemeric trace 0 is an associator [a, b, c].

The assumption of algebraic closure is used to simplify appeal to
the classification theory and to guarantee the existence of square roots
in the field. It will be seen that at least one crucial lemma would
be false otherwise. The theorem may hold more generally, but a
different proof would be required. In any event, henceforth @ is
algebraically closed.

We first note that the theorem is vacuous for algebras of degree
1 (i.e., for @) and easy for algebras of degree 2. The latter are the
Jordan algebras @1 P B, B a vector space (of dimensional at least 2)
with a nondegenerate symmetric bilinear form (,). U is the space
of elements of trace zero in this algebra. If ve B, choose 0= ue B
such that (4, v) = 0 and w e ¥ such that (u, w) = 1. Then [w, u, v] = v.

In proving Theorem 2 for algebras of degree at least 3, we will
consider the algebras $(0,) of symmetric » X n matrices over @
separately from the other algebras.

LEMMA 1. Let § = @1 BT be the Jordan algebra of the space B
equipped with the nondegenerate symmetric bilinear form (,); let e
be a primitive idempotent in I and f=1—e. Suppose a = ae +
Bf + @« (where «, Be D, xe Jyule)) and suppose ae @1, dim L = 3.

Then there is an automorphism of & having determinant 1 and
sending a — (@ + B)e + y, for some y e J.(e).

Pioof. Let v =e¢—fec8. Then ¢ = -;-(1 +v), f= %(1 — ),
,v) =" =1, Jiule) = - = {weB| (v, w) =0}. If yeIyle) then

ae+Sf+m=%(a+,8)l+%(a—8)v+x
(a+,6>)e+y:—;—(a+6)1+é(a’+[3)v+y.

. . . . 1
Since « is not a scalar, either a = 8 or == 0; in any event, E(a' — Bv +

t Since the above was written, Michel Racine has supplied the author with a proof
of Theorem 1 in this case.
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¢ # 0. It therefore suffices to find ye Jy.(e) so that —;— (a—pv+=a

is nonzero and has the same norm as —;— (a + B)v + y. For then Witt’s

theorem implies that there is an automorphism ¢ of & sending the
first of the above elements to the second (recall that the automorphism
group of & is naturally isomorphic to the orthogonal group of ).

Since dim B = 3, <—%— (a + B)v + y>L cannot be a totally isotropic

subspace; if w is a nonsingular element of it and o, is the reflection
along w, then det (0,6) = —det ¢. The desired automorphism is either
é or 0,¢: whichever has determinant 1.

The norm of —;—(a — B + x is (%(a - ,6’))2 + (x, 2) = —i—
&Y — %aﬁ + (%,x). The norm of —;— (a+ B +yis —}1— (@ + B°) +

(a® +

%aﬁ + (¥, ¥). So we need to find y e {v)"* such that the norm of y is

(y, ¥) = (¢, ) — aB. Since {v)* is a nonisotropic subspace of dimension
at least 2, and since @ is algebraically closed, {v)>* contains nonzero
elements of arbitrary norm (including 0). So y can be chosen to be

nonzero, and hence —%— (a+ B +y =#0.

LEMMA 2. Let & be a simple Jordan algebra over @ and let
e, -+, e, be a complete set of orthogonal primitive idempotents in J.
Let = 3:<; X, be the corresponding Peirce decomposition and suppose
dm 3, =2. Ifaecl, say a= >, ae;+ Duci @y (A€ 9D, ;€ Jyiy), and if
either a, # o, or x, # 0, then there is an automorphism of I sending
a to an element (o, + ay)e, + Dis e, + Dl Yis JOr some y;;€ Jij.

Proof. We apply Lemma 1 to the simple Jordan algebra % =3, P
P Sy and conclude that there is an automorphism ¢ of this algebra,
of determinant 1 and sending a.e, + a.e, + 2, to (&, + as)e, + ¥y, for
some ¥, € J.. We wish to extend this to an automorphism of .

We note that in a simple Jordan algebra @1 P L any automorphism
of determinant 1 is a product of maps U,_,U,,_, (U the quadratic
Jordan operator, e and f primitive idempotents). For if v =2¢ — 1e %,
then U,.,(1) = 2(1.v).v — 1.v* =2 — 1 = 1; and we B implies

[Jze—-l(’w) = 2('17, w)v — w(v, ’U) = —<w — .2((—1:},’._;_()}21)) .

Ie., U,., = —o0, (where o, is the reflection along v). But every
orthogonal map of B of determinant 1 is the product of an even
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number of reflections, hence of an even number of negatives of reflec-
tions; and any reflection is a reflection along a vector of norm 1, since
the field is algebraically closed.

We conclude that ¢ is a product of automorphism U,_ ..,, where
e is a primitive idempotent of . But U,_, restricted to 2 is
Uso—(eysepr Since U, (v) = 8(x-¢)-¢ — 8x-e 4« forallw e J and U, ., (%)
is the same for x ¢ 2 [4, p. 47]. Thus ¢ extends to an automorphism
6 of & which is a product of automorphisms the form U,,_, ¢ a
primitive idempotent of 2. We show this ¢ has the desired property.

Let ¢ be a primitive idempotent of U, f=e¢ + ¢, —e. U,_, is
the identity on J(¢) D Ji(e) and is —1 on J,;(¢). We have the Peirce
decomposition JF = >;<; Ji; with respect to the idempotents e, f, e,
<oe, e,. S0 U,_, is the identity on >, ;:: ;. If © =3 then U,_, is
—1 on i and +1 on i, hence stabilizes J, D, = Jiple + F) N
Suze) = Jueler + €) N Jule) = Ju D Ju. We conclude that ¢ is the
identity on (¢, j = 3) and stabilizes all &), @ J..(¢ = 3); hence ¢ has
the desired effect on a.

The next lemma is the conjugacy step in the argument. We recall
that in a simple Jordan algebra over @ of degree at least 3 all the
Peirce spaces J;;(¢ = j) have the same dimension 1, 2,4 or 8 [5].

LEMMA 3. Let I be a simple Jordan algebra over @ and e, ---, e,
a complete set of orthogonal primitive idempotents. Assume the Peirce
spaces :5(t = 7) with respect to these idempotents are not one-dimen-
stonal. Assume also that the characteristic of @ is 0 or bigger than n.
Then every element of & of trace 0 is conjugate under the automor-
phism group of I to an element of >ic; Fije

Proof. Let a = >, ae; + ;% with S, a; = 0. We show by
induction on k that a is conjugate to an element 3 B, + >, v, in
which at least k& of the B,’s are zero. If k = 0, there is nothing to
prove. Assume the result for k. The nonzero B,’s cannot all be
equal, say, to @; otherwise (n — k)8 = tr(a) = 0: but » — k = 0 by the
assumption on the characteristic. So choose ¢, j such that B, = 8;
are nonzero. We apply Lemma 2 and conclude that a is conjugate
to an element with £ + 1 zeroes among the coefficients of the idem-
potents.

We note that this conjugacy theorem is false if dimJ.; = 1. Let
I = 9(9,) be the algebra of # x n symmetric matrices over @. Let

A be the matrix with G _{) in the upper left-hand corner and zero

elsewhere (here ¢+ = v —1). Then A is not orthogonally similar to any
symmetric matrix all of whose diagonal entries are zero. To see this,
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we regard & as acting on the vector space ¥ with the nondegenerate
symmetric bilinear form (,) and orthogonal basis =, ---, z,. Let
A be the linear transformation of ¥ whose matrix with respect to
this basis is 4. Suppose y,, ---, ¥, is another orthonormal basis with
respect to which the matrix of 4 has all zeroes on the diagonal.
Let v, = >,; a;%;. Then

O = (Ayk) yk)
= (@, + 1) + @i, — @), QU + Ayl T+ o0+ Auls)
= al} + 2ta,ay, — o, = (o + 10)° .

Hence for all %, a,, + iy, = 0. This says that all y, belong to some
(n — 1)-dimensional subspace of B, a contradiction.

Finally, we prove Theorem 2 for Jordan algebras & in which the
Peirce spaces ,; are not one-dimensional. The notation is as in
Lemmas 2 and 3. If a = >,;.;%;;, we show a is an associator. By
Lemma 3, this is sufficient. But

[¥i5, ie; + aje;, ae, + a,el

1 2 2
= Z(az + )Y — Y. (e, + adey)

1 1.,
X(az + )y — E(az + Ay = —i—(az — ).,

if Y.;€ f\c}ij' So

[Z Yijy 2.5, Za'zez] =, — M%i .

i<y B 7 i<y 4

If we take a,, ---, a, to be distinet and y,; = —4(a, — a;)*x,;, We see
that o is an associator.

We now prove Theorem 2 under the assumption that I = 9(2,)
for some 7 = 3; by the classification theory of Jordan algebras, this
is the only remaining case. We regard & as the algebra of symmetric
operators on the space L as above. We will have occasion to use
both orthonormal and hyperbolic bases of LB; the latter are bases
Xy, wovy, Xy, Yy, o0, Yy O &y, + oo, &y, Yy, -+, Yy, 2 (depending on whether
dim B is even or odd) satisfying (x;, x;) = (¥, ¥;) = (@, ?) = (¥, 2) = 0,
(%, ;) = 0. (, 2) = 1. The existence of bases of both kinds follows
from the algebraic closure of the field.

LEMMA 4. Let B be a three-dimensional vector space over @ with
nondegenerate symmetric bilinear form (,). Let ¢ be a monscalar
symmetric linear transformation on B. Then there exists a hyperbolic
basts x, y, 2 of B with respect to which the matrix of ¢ has the form
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0 IS4 Y
Y 0 Yz
2 Y A

Proof. Since the matrix of a symmetric transformation with
respect to a hyperbolic basis has the form

we need to find a hyperbolic basis x, y, # such that oz is a linear
combination of ¥y and 2. We first note that there exists 0 = 2D
such that (x, ®) = 0 and =z, oz are linearly independent. Suppose
otherwise. Let z, y, # be a hyperbolic basis of B. Then (z — (1/2)y +
z, o — 12y +2) =2(—1/2) +1 =0, (x,2) =0, (y,y) =0. So if the
matrix of o is as above, then ov = aw, oy =ay, y=p=8=v =0,
and hence oz = 2z, Also o(zx — (1/2)y + 2) = aw — (1/2)ay + Nz is a
scalar multiple of & — (1/2)y + 2; this implies that » = a, hence that
o = al is a scalar, a contradiction.

Suppose then that (x, ) = 0 and =z, ox are linearly independent.
Suppose in addition that (oz, ) = 0. There exists y¥'¢ ¥ such that
(@, ¥") = 1, (o2, y') = 0. The two-dimensional subspace (z, ¥’) is non-
isotropic since the matrix of the form on it is nonsingular. So there
exists ¥ e (x, y’) such that {z, y"> =1, <y”, ¥’> = 0. Since 0 = oxe
{x, y'>" =<w, y''>*, ox must be a nonsingular vector (otherwise it would
be orthogonal to x, ¥, ox, hence to all of B). So =z, ¥”, z=x/1 (ox, ox)
is a hyperbolic basis of ¥ of the desired kind.

Finally, suppose (oz, 2) = 0. Embed x in the hyperbolic basis
x, vy, 2 and let ox = ax + vy + 2. Note that (ox, ) = v# 0. Let

o=+ View, ox) =t + VF+ 2ay .
Hence (¢, — 1) = ¢ + 2av and thus g — 2¢p, = 2av. Let
a, = — 527 = —@2av + 2p0)/27 = —a — pp)y
Y, = . + Ty + HeR
2, = 0% — Y, .
Then
(Y, 0%) = ¥ + Yo + piph = (—a — ppu/v)yy + v + pt = 0
Wy, ¥1) = 2a,7 + 8 = 2(—6)27)y + £ = 0
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(zl,x):(O‘x,:v)—(yl,x)z,@-—,é?:o
(2, y) = (02 — y,, 1) = 0.

Since (2, ©) = 0 and (x, ¥,) = 7, we see that =, y./v, 2./V (z, 2,) is a
hyperbolic basis of ¥. It is as desired since ox = y, + 2,. This proves
the lemma.

Note that the lemma is false without the assumption that the
field is algebraically closed. Suppose L is a real vector space with
hyperbolic basis =, v, 2. Let o be the linear transformation whose
matrix with respect to this basis is

1 -3 ")
-3 1 0
0 0 -2

Let o' = 6x + Jry + ¢z be a singular vector: i.e., 26+ + ¢* = 0. Then
o) = (0 — 3y)x + (=30 + )y — 262, so

(03, 02) = 2(6 — 3vy)(—30 + ) + 4g°

= 2(—36° + 10y+0 — 3* — 40+)

= —2(39" — 696 + 3y*) = —6(0 — ¥)* = 0.
Suppose z', y', 2’ is a hyperbolic basis of ¥ with respect to which the
matrix of ¢ is as required in Lemma 4. Then (o2, 02') = (vy’ +
P, vy + ) = 12 = 0. We conclude that ¢ = 0. Also (oy/, 0y') =
V*>0s0ov=0. And N = 0 since X\ is the trace of 0. Therefore, the
matrix of ¢ with respect to 2/, ¥/, 2’ is

0 B 0
0 0 0],
0 0 0

which is impossible since ¢ is nonsingular.
The next lemma is the conjugacy step.

LEMMA 5. Let B be an n-dimenstonal vector space over @ (n = 2)
with nondegenerate symmetric bilinear form (,). Let o be a symmetric
linear transformation on B of trace zero. Assume the characteristic
of @ is 0 or bigger than n. Then there is a hyperbolic basis of B
with respect to which the matrix of o has all diagonal entries equal

to zero.

Proof. If Nl is a nonisotropic subspace of L then L = U HU-.
For xc 1l define o,(x) to be that element e 1l such that there exists
ve U with o2 = w + v. Then clearly o,: 1 — 1 is a symmetric linear
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transformation on 1. The matrix of ¢ with respect to a basis of L
obtained by combining bases of U and 1‘ has the form <‘51 g),
where A is the matrix of ¢, and D the matrix o,:.

We proceed by induction on %. The lemma is trivially true if
n = 2 (in this case any hyperbolic basis will do, since the diagonal
entries in the matrix of ¢ must be equal, hence both zero) and true
if » =8 by Lemma 4 (note that o is not a scalar, since 3= 0). Assume
n = 4. It will be sufficient to find a 2-dimensional nonisotropic sub-
space 1 of B such that tr (¢,) =0. For by induction the lemma applies
to o,., which has dimension % — 2 = 2; note that tr(o,.) = tr (o) —
tr(o,) =0. Soif w, v, is any hyperbolic basis of Il and x,, ¥,, - -- is the
hyperbolic basis of 1" whose existence is guaranteed by induction,
then 2, v, %, ¥, -+ is the desired basis of 8.

Let 2, - --, 2, be an orthonormal basis of ¥ and let the matrix of ¢
with respect to this basis be (a;). If ¢ j exist with a;, = a;; =0,
then 1 = (z,, 2;) is the desired subspace. If no such ¢, j exist then
in any event there must exist ¢, j with «a,, # a;; (otherwise we would
have 0 = tr (o) = na;; and since n = 0, all a,;, =0). Say @, + @
then <z, z, z,) = I is a nonisotropic subspace such that g, is not a
scalar. By Lemma 4 applied to oy, there is a 2-dimensional subspace
U of L such that ¢, = (04), has trace zero. This completes the proof.

Finally, we let ¥ be as in Lemma 5 and & be the Jordan algebra of
symmetric operators on B, and prove Theorem 2 for . Let 7 be a
linear transformation on B skew-symmetric with respect to the form.
Then 7 = [0, 0,] = 0,0, — 0,0, for some 0, 0,¢y. Indeedifz, ---, 2,
is an orthonormal basis of B, then the matrix of ¢ with respect to
this basis is skew-symmetric, while & consists of all transformations
with symmetric matrices. l.e., 7 = 3, a;(e; — e;), where the ¢ ;
are the usual matrix units in Hom (8, B). If B, ---, B, c @ are distinct,
then [e;;, > Brew] = (B — B:)e:; and so

|5 %o + 00), 5w | = 7
" Bi— B *

Now let 0 ¢ ¥ have trace zero and choose a hyperbolic basis %, ¥,
-+-, %, Y5, and (possibly) z as in Lemma 5. Let 8, ---, 8,€ @ be such
that 8, -+, B, =By, *++, =B, 0 are all distinct. Let ¢ be the linear
transformation whose matrix with respect to the hyperbolic basis is
diagonal, with diagonal entries (in order) 8,, — 8., B, — B ***, B, — B
and (possibly) 0. Then 7 is skew-symmetric. We rename the diagonal
entries of 7z, calling them v, 7, ---, vy, and (possibly) v,... The
eigenvalues of the map adrt:0— [z, o] for all oe Hom (T, B) are 0,
v; — it #J); the kernel of ad 7 is the set of diagonal matrices (the
7; are distinct), and ad 7 maps Hom (B, B) into the space of matrices
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all of whose diagonal entries are 0. Also ad 7 stabilizes & (since 7 is
skew), hence stabilizes &, = {0 e | the matrix of o has all diagonal
entries zero}. Since ad 7|, is nonsingular, we conclude that ad <t
maps 5, onto . l.e., 0 = [z, o] for some pc,. Now the previous
paragraph implies that ¢ = [0, 0,] for some 0, 0,eJ. So

o = [[o.0d0] = %«pz.m.pl — 0.(0.0)) -

Hence ¢ is an associator in . This proves Theorem 2.
We note that, by the computations in [4, § 5], Lemmas 3 and 5
may be stated in the following single conjugacy theorem.

THEOREM 8. Let Y be a simple Jordan algebra over an algebrai-
cally closed field @ of characteristic equal to 0 or bigger than the
degree of . Let © be a Cartan subalgebra of the derivation algebra
of & and let §F = 3. e be the corresponding decomposition of I into
weight spaces relative to . Then any element of I of trace 0 s
conjugate under the automorphism group of X to an element of D uue S
the sum of the monmzero weight spaces.

It would be interesting to have a more conceptual, Lie-theoretic
proof of Theorem 3.

We conclude with an open question: if & is as in Theorem 3, is
it true that any derivation of & has the form [R,, R,] for some %, ye ¥
(where R,c Hom (S, J) is defined as usual by R,(a) = x.0)? We saw
above that this holds if & is the algebra of % x n symmetric matrices.
Theorem 3 and this result (if true) together easily imply Theorem 2.
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