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ON SEPARABLE POLYNOMIALS OVER
A COMMUTATIVE RING

F. R. DEMEYER

Separable polynomials over an arbitrary commutative ring
are studied. Given any separable polynomial p(X) over the
commutative ring R one can find a "splitting ring" for p(X)
which is a finitely generated normal separable extension of
R generated by roots of p{X) A polynomial closure A of R
generated by roots of separable polynomials is constructed.
Any separable polynomial over A factors into linear factors
in A, A Galois theory for such extensions is discussed.
Applications to separable extensions of von Neumann regular
rings and the Brauer group are given.

In [6] G. J. Janusz developed the fundamental properties of
separable polynomials over a commutative ring with no idempotents
other than 0 and 1. If R is a commutative ring a monic polynomial
p(X) in R[X] is separable in case R[X]/(p(X)) is a separable iϋ-algebra.
Here we develop a corresponding theory for separable polynomials
over an arbitrary commutative ring. Since the fundamental difficulty
to be overcome is the presence of idempotents, the tool (due to R. S.
Pierce [11]) of representing a commutative ring as a global cross
section of a sheaf of rings with no idempotents other than 0 and 1
is employed throughout. Basic properties of separable algebras and
Galois theory discovered by A. Magid [8], [9], [10] are also employed.

Our first section is devoted to introducing necessary terminology
and refining some of Magid's results for our own use. The principal
result of the section is an extension of the fundamental theorem of
Galois theory (Theorem 2.10 of [9]) to include the correspondence
between normal extensions and normal subgroupoids of the Galois
groupoid.

In the second section we analyze separable polynomials. Let p(X)
be a separable polynomial over the commutative ring R. We find a
finitely generated normal separable extension S of R generated by
roots of p(X) and so that p(X) factors into linear factors over S.
Also, S satisfies a "local projectivity" condition. Such an iϋ-algebra
S is a splitting ring for p(X). Associated to the extension S of R
and thus to p(X) is a compact totally disconnected topological groupoid
G(S/R). The nonuniqueness of S and G(S/R) are discussed. To each
commutative ring R we associate an extension A called a polynomial
closure of R and a compact totally disconnected topological groupoid
G(A/R). The extension A of R is generated by roots of separable
polynomials and every separable polynomial over A factors into linear
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factors in Λ. We show that the Galois theory developed in [9] applies
to Λ. The nonuniqueness of A is also discussed.

In the third section we give applications of our results to sepa-
rable extensions of von Neumann regular rings, to the Brauer group
of rings whose prime ideal spectrum is totally disconnected, and to
the Brauer group of the polynomial closure of such rings.

1* Preliminaries* Let R be a commutative ring, B(R) the
Boolean algebra of idempotents of R, and X{R) the maximal ideal
spectrum of B(R). Then X(R) is a compact totally disconnect Hausdorίf
space in the hull-kernel topology. For each x e X(R) let Rx be the
ideal in R generated by x and for each iϋ-module M let Mx = M/RxM.
Then Rx — R/Rx and Mx is an ϋ?x-module. The rings Rx are stalks
in a sheaf over the base space X(R) and R is naturally represented
as a global cross section of this sheaf. There are several standard
lines of argument which have been developed to lift information true
at all stalks Rx to information about R. We will not usually go
through the details of these arguments and refer the reader to [13],
[3], [7], [12], among others for examples of this sort of reasoning.

In [9] A. Madgid calls a commutative i?-algebra S a quasi sepapable
cover of R in case for each x e X(R), every finite subset of Sx is
contained in a finitely generated protective separable subalgeba of Sx

(Sx is a locally strongly separable iϊ^-algebra). The algebra S is a
separable cover of R if S is a quasi separable cover of R and S is
separable over R. Corollary 2.7 of [9] asserts that every quasi separable
cover S of R is a union of subalgebras which are separable covers of
R. R is called separably closed if whenever S is any protective
separable iϋ-algebra then there is an ϋί-algebra homomorphism from
S to R. A separably closed quasi separable cover Γ of R is called
a separable closure of R. If Γ is a separable closure of R and S is
a protective separable i?-algebra, then there is an -B-algebra homo-
morphism from S to Γ induced from the one from Γ(&RS to Γ.
This homomorphism need not be one-to-one and in general the separable
closure need not be unique. The problem is in the existence of
idempotents in Γ(&BS which are not in Γ.

If we call a ring R extra separably closed in case whenever S is
a separable cover of R which is finitely generated as an iϋ-module
then there is an jR-algebra homomorphism from S to R, then there
is a unique minimal extra separable closure S oΐ R [10]. The Boolean
algebra B(S) of idempotents of S is the completion of B(R). However,
in many cases (for example if X(R) is countable or R is a uniform
ring [9]) a separable closure of R exists with no new idempotents.
It is simpler to deal with the situation where no new idempotents
are added so we will do this whenever possible (see Theorem 1.1).
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A quasi separable cover S of R is called normal in case for each
x e X(R), all i^-homomorphism from Sx into the separable closure Γx

of Rx have the same image. Since the composite of locally strongly
separable lϊ^-subalgebras of an Rx algebra Γ with no idempotents
other than 0 and 1 is locally strongly separable, this definition is
equivalent to the one in [9]. Also, as observed in [8], S is a normal
quasi separable cover of R if and only if whenever x e X(R) and
a, be X(S) with a and b lying over x then Sa = Sb as Z^-algebras and
Sa is a normal extension of Rx.

Our next step' is to restate and extend the fundamental theorem
of Galois theory presented in [9]. Let S be a normal quasi separable
cover of R. Let x e X{R) and let α, b e X(S) lying over x. Let h
be an ϋ^-algebra isomorphism from Sb to Sa. Let σ be the set of
idempotents in S (&B S contained in the kernel of the map S <&R S —> Sa

by st—+sah(tb). Then it is shown in [9] that the above correspondence
gives a bijection between the points σ of X(S <S$BS) and the four tuples
(x, h, α, b) where xe X(R); a, be X(S) over x and h is an i^-algebra
isomorphism from Sb to Sa

The Galois groupoid G of S over R is the set of four tuples
(x, g, α, b) with the topology corresponding to that in X(S(x)S). The
partial multiplication is defined between pairs of four tuples of the
following form,

{x, g, a, b)(x, h, b, c) = (x, gh, a, c) .

The identities of the groupoid are the four tuples (x, 1, α, a) and a
subgroupoid is a subset containing all identities and dosed under
multiplication and inversion.

Let H be a subgroupoid of G. Let

SH - {s e S I g(sb) - sa for all (x, g, a, b) e H) .

Let T be an iϋ-subalgebra of S. Let

G(S/T) = {(x, g,a,b)eG\ta = g(tb) for all teT} .

Then Theorem 2.10 of [9] asserts the usual Galois correspondence
between the set of all quasi separable covers of R in S and all closed
subgroupoids of G. If G and H are groupoids and h: G —»H is a
homomorphism of G onto H then the inverse image of the identities
of H is a normal subgroupoid K of G and the natural multiplication
on the quotient structure turns G/K into a groupoid isomorphic to
H. If G and H are compact Hausdorff topological groupoids and h is
continuous, then K is closed in G and the natural isomorphism from
G/K to H is a homeomorphism. (See page. 16 of [1].)

THEOREM 1.1. (Fundamental theorem of Galois theory.) Let S



60 F. R. DEMEYER

be a normal quasi separable cover of R with Galois groupoid G.
Then there is a one-to-one correspondence between the quasi separable
covers T of R in S and the closed subgroupoids K of G by

K >SK , T >G(S/T) .

Moreover, if T is a normal extension of R then the corresponding
subgroupoid K is normal in G and GjK is the Galois groupoid of T
over R. If every idempotent of S belongs to R and K is normal in
G, then Sκ is a normal extension of R.

Proof All except the moreover statement are proved in [9].
First we state a result which is a consequence of the Galois theory in
Chapter III, § 3 of [5].

PROPOSITION 1.2. Let R be a commutative ring whose only idem-
potents are 0 and 1 and let Γ be the separable closure of R. Let S
be a normal locally strongly separable R-algebra whose only idempotents
are 0 and 1 and let T be a locally strongly separable R-subalgebra
of S. Let h be any R-homomorphism from T to Γ, then h can be
extended to an R-monomorphίsm from S to Γ. Any two extension of
h to S have the same image in Γ. If S is a subalgebra of Γ then
any extension of h to S is an automorphism of S.

Now we can prove the theorem. Assume T is a normal extension
of R with Galois groupoid K. Define a groupoid homomorphism
h:G~*K by the rule

H(x, g, a, b)) = (x, g*, a*, &*)

where xe X(R); a, be X(S) lying over x, and a*f δ* are points in X(T)
so that a lies over α* and b lies over b*. Also g*: T6*—> Ta* by
g*(tb*) = ua* in case g(tb) = ua where t,ueT. There is a natural
J?x-homomorphism from Ta* into Sa by £α*—> ta. By Proposition 1.2 this
correspondence is a monomorphism so if t, ve T then ta = va if and
only if ta* = va*. To see that g* is well defined assume t,veT and
tb* ~ vb* in Tb*. Then tb = vb in Sb so if g(tb) — ua and g(vb) = wa wi th

u, we T then ua = wa since g is well defined. Since T is normal over
R; u, w can be chosen from T. Thus ua* = wa* so g* is well defined.
Now Tα* and Tb* are isomorphic locally strongly separable normal
i2x-algebras with no idempotents other than 0 and 1. By Proposition
1.2 g* is an isomorphism. It is now routine to see that h is a con-
tinuous homomorphism. Let (x, g*, a*, 6*) be an element of K. Let
a and b be elements of X(R) lying over α* and 6* respectively. Then
Ta* is a locally strongly separable it^-subalgebra of Sa and ΪV is a
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locally strongly separable i^-subalgebra of Sb. Also, Sa and Sb are
isomorphic i^-algebras which are normal over Rx. So by Proposition
1.2. g* extends to an isomorphism g from Sb to Sa. Thus, (x, g*, α*, 6*) =
h((x, g, a, b)) and h is onto. The kernel of h is the subgroupoid H
of G which fixes T and G/iϊ = K.

Now assume every idempotent of S belongs to R and let T be
a locally quasi separable cover of R in S. Let K be the closed sub-
groupoid of G with Sκ = T and assume iΓ is a normal subgroupoid
of G. Since every idempotent of S belongs to R, each element of
G is of the form (x, g, x, x) where g is an automorphism of Sx. Thus,
G is the disjoint union of the Galois groups of each Sx over Rx as x
ranges through X(R) and multiplication is not defined between different
terms in the union. One can show that K must be the union of the
normal subgroups which fix Tx over Rx in Sx. Thus, Tx is a normal
extension of Rx for each x e X(R) so T is a normal extension of R.
This completes the proof.

If we do not assume that every idempotent in S belongs to R then
for α* and δ* in X(T) lying over xeX{R) one may have Ta* and Tb*
both normal over Rx but not isomorphic. In this case G(S/T) will be
normal in G(S/R) but T will not be normal over R. If Γ is a separable
closure of R and α, 6 e -3Γ(JΓ) lying over x e X(R) then both Γa and /^
are separable closures of Rx. Any i^-algebra homomorphism from Γa

and Γh to a separable closure Ω of i ^ have image Ω (as is shown in
the discussion on page 105 of [5]) so Γ is normal over R.

2. Separable polynomials* Let p(X) be a separable polynomial
over R. A normal quasi separable cover S of R is called a splitting
ring for p(X) in case

(1) S is generated over i? by roots of p(X).
(2) p(X) factors into linear factors in S[X].

PROPOSITION 2.1. Let p(X) e R[X] be a separable polynomial, then
a splitting ring S for p(X) exists. Moreover, S can be chosen to be
finitely generated over R.

Proof. Let Γ be a separable closure of R. Then p{X) is separable
over Γ and there is an F-algebra homomorphism from Γ[X]/(p{X))
to Γ. The image of X is a root a of p(X) in Γ. Now Rx(ax) is a
finitely generated separable iί^-subalgebra of Γx for each x e X(R) so
by Lemma 1.2 of [8] R(a) is a finitely generated separable cover of
R in Γ. Let T = i2(α:). The transitivity properties of separability,
projectivity, and finite generation insure that Γ is a separable closure
of T. Also, p(X) - (X - a)q{X) in T[X] and T[X]/(q(X)) is a homo-
morphic image of T[X]/p(X) by the natural map. Thus, q(X) is a
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separable polynomial over T and we can apply the first step in the
proof to q(X) over T. After a finite number of steps we come to
an extension S of R which is a finitely generated separable cover of
R, generated by roots of v{X), and so that p(X) factors into linear
factors in S. Now let xe X(R) and a, be X(S) lying over x. Then
both Sa and Sb are splitting rings of the separable polynomial p(X).
By the normality and uniqueness of splitting rings in case of no
nontrivial idempotents we have Sa as a normal extension of Rx and
all homomorphisms from Sa to Sb to be a separable closure of Rx have
the same image. Thus, S is normal over R.

With respect to uniqueness of splitting rings, the same situation
holds as for the separable closure. Let Γ be the separable closure
of R with the property that B(Γ) is the completion of B{R). Let p(X)
be a separable polynomial in R[X] and let S be the iϋ-subalgebra of
Γ generated by all the roots of p(X) in Γ. Then S is a normal quasi
separable cover of R and any jβ-splitting ring N of p(X) with
B(N) § B(S) will be isomorphic to an #-subalgebra of S. If B{R) is
countable than S can be chosen so that every idempotent in S is in
R (see [9]). If R is a uniform ring (see [4]) then in addition, S can
be chosen to be protective over T. Consider the following example.
Let X = {1, 1/2, 1/3, 1/4, -1/n, •} U {0} with the topology inherited
from the reals. Let R be the ring of complex valued continuous /
on X so that /(0) is real with the discrete topology on the complex
numbers. Let S be the ring of continuous complex valued functions
on X Then B(R) = B(S) and S is a normal finitely generated separable
cover of R. The Galois groupoid G of S over R is the cyclic group
of order 2 whose nonidentity element is complex conjugation at
/(0) for each feS. One observes that there are no nontrivial R
automorphisms of S, and there are no protective finitely generated
separable covers of R in S containing a root of the separable poly-
nomial X2 + 1 in R[X].

We next construct a normal quasi-separable cover A of R so
that every separable polynomial over R factors completely in A
and every finite subset of A is contained in an extension R{aιy

• , an) of R in A with a{ the root of a separable polynomial in
R(al9 , α^-i). Such an extension A is called a polynomial closure of
R (see [4]).

THEOREM 2.3. Let R be a commutative ring, then a polynomial
closure of R exists and is a normal extension of R.

Proof. Let Γ be a separable closure of R, consider the set £f
of all extensions of R in Γ of the form R(al9 , an) with a{ the root
of a separable polynomial in R(al9 •••, a^. The property of being
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a separable cover is transitive (2.3 of [9]) and as in the proof of
Proposition 2.1 each R(au , at) is a separable cover of R{aly , a^)
so R(alf , an) is a separable cover of R. If R(βlf , /3m) is another
element of Sζ then the separable polynomial over R having βι as a
root is also separable over R(alf , an) so i?(αΊ, , an9 βlf βm) is in
y By a finite induction i ϋ ^ , , anj βίt , /9m) is in ^ so Sf is a
directed set under inclusion. Let Λ be the union of all the elements in
Sf. Then A is a quasi separable cover of R in /\ Let p(X)eΛ[X]
be a separable polynomial and let (t(YιYj)) be the nx n matrix whose
i+ 1J + 1 entry is YίYj where Y = X + (p(X)) in A[X]/p(X), n =
degree (p(X)), and £ is the trace of the free Λ-module Λ[X]/(p(X)).
Exactly as in the proof of Theorem 4.4 page 111 of [5] one can show
p(X) is separable over A if and only if det (t( Yι Yj)) is a unit in A.
Find an element SeS^ containing the coefficients of p(X), the elements
t(YΎj) and d e t ^ F P ) ) * 1 - Then p{X) is separable over S, and Γ
contains a root β of p(X) as proved in Proposition 2.1. Then S(β) e 6^
so S(β) s A and Λ contains a root β of p(X). Then in A[X], p(X) =
(X — β)q(X) and d'(X) is separable over A Continue the process until
p(X) factors completely in A. For normality first observe that
p(X) = X2 — X is separable over 1? so every idempotent in Γ is in
Λ. Let xeX(R) and let α, 6eX(i) = X{Γ) be elements lying over
x. Then Λβ and Ab are polynomial closures of Rx in the separable
closures Γa and A of J?,,. Therefore by Theorem 1.1 of [4], Aa and Ab

are isomorphic normal extension of Rx so A is a normal extension
of R.

We can take 5(/l) to be the completion of B(R) since every
idempotent in Γ is in A and B(Γ) can be the completion of B(R).
Also a compact totally disconnected groupoid G(A/R) can be associated
to the extension A over R which puts one in the context of the
fundamental theorem of Galois theory, (Theorem 1.1).

3* Applications* A ring R is von Neumann regular if and only
if Rx is a field for each x e X{R). On account of the primitive element
theorem in the Galois theory of fields one has an extension of Theorem
2.7 of [4].

THEOREM 3.1. Let R be a von Neumann regular ring and let S
be a finitely generated separable cover of R, then S = R(aly , an)
with at the root of a separable polynomial over R(alt •••, a^).

Proof. R is regular so for each xeX(R), Rx is a field. There-
fore, Sx is a finite direct sum of separable field extensions of Rx, say
Sx = .Fi® 0-Pn By the primitive element theorem, F1 = Rx(ax),
F2 = R{ax), , Fn = R{al) with a\ satisfying separable polynomials
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pί(X) in RX[X] of the same degree (see [14]). Then Sx = Rx(al, , an

z)
and at satisfies the separable polynomial pΐ{X) in Rx(aι

Xf •• ,α'i~1)
Lift pi(X) and α£ to monic polynomials p\X) e R[X] and a* e S. Since
&, = lϋ^αi, •••,«;) and S is finitely generated, (2.11) of [13] implies
there is a neighborhood U of x so that for each ye U, Sy =
^2,(̂ 4, •••,#£)• Also, pj(-X") is separable for each i/ in a neighbor-
hood of x. Therefore, there is an idempotent e e R so that Se —
i?e {aι

n, , α£) and α*'e satisfies the monic separable polynomial p\X)e
in Re [X]. Employing the compactness of X{R) one can decompose R
by a finite number of such idempotents e thereby obtaining the result.

COROLLARY 3.2. If R is a von Neumann regular ring then every
separable closure of R is a polynomial closure and conversely.

Let Spec (R) be the maximal ideal spectrum of Ry than Spec R
is totally disconnected if and only if Rx is semi-local (finite number
of maximal ideals) for each xeX(R). For such rings we have the
following result.

THEOREM 3.3. Let R be a ring with Spec (R) totally disconnected.
If A is a central separable R-algebra, then A is split in the Brauer
group of R by a normal finitely generated separable cover R(<xlf , an)
of R with av the root of a separable polynomial over R{au , a^.
If A is a polynomial closure of R, we can assume R(aly , an) is in A.

Proof. Modifying the proof of Theorem 1 in [2] by using Henseli-
zation instead of completion one has for each x e X{R) a strongly
separable extension Sx over Rx of the form Rx{ax) with ax the root
of a separable polynomial px(X) over RX[X] which splits Ax. Now Sx is
contained in a normal separable extension Nx of Rx generated by the
roots of px(X) by Theorems 3.4.2 and 3.2.9 or [5]. Arguing as in
Theorem 2.1 of [4] one can construct a finite set of orthogonal
idempotents elf , en e R with 1 = e1 + + en and Ne{ a normal
extra separable extension of Re, in Aet generated by roots of the
separable polynomial Pi(X) and Nβi splits Ae{. The extension
N — Net 0 © Nen is the one we seek.

LEMMA 3.4. Let S be a locally extra separable R-algebra and P
a finitely generated protective S-module. Assume Spec (R) is totally
disconnected, then there is a finite set el9 , en of orthogonal idem-
potents in S summing to 1 with Pe{ free over Se{.

Proof. Let x e X(R) and let a e X(S) lying over x. Then Sa is
a locally strongly separable ϋ^-algebra with no idempotents other than
0 and 1 and Rx is a semi-local ring so the proof of Proposition 3 of
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[2] shows Pα is a free Sα-module. Let [Pa: Sa] be the rank of Pa over
Sα. The function a-+[Pa:Sa] is continuous and bounded from X(S)
to the nonnegative integers so there exists orthogonal idempotents
el9 -—,en in S summing to 1 with the rank of Pe{ over Se{ defined.
Let P = Pe, and S = Set with [P: S] = n. Let aeX(S) and let y\,
• , yl be a free basis for Pa over Sa. Lift the j/j to elements yί in P,
and let E be the submodule of P generated by y\ Then Ea = Pα so
2£6 = Pδ for all b in a neighborhood of a (2.11 of [13]). This neigh-
borhood determines an idempotent e of S and ey1 generate Pe over
iϋe. The natural map from Pe onto the free Se-module Se{n) by
assigning the ey4 to basis elements of Se{n) has a kernel if which is
a direct summand of P. Now Ka = 0 so in- a neighborhood F of
α, iξ, = 0 for each ye V. This gives an idempotent βxe Sβ with Pet

free over Sfex. Using the compactness of X(S) gives the result.

COROLLARY 3.5. Let Λ be a polynomial closure or a separable
closure of R. If Spec (R) is totally disconnected, then the Brauer
group of A is trivial.

Proof. Let A be a central separable /ί-algebra. We can write
A — Aex 0 0 Aen over Λet 0 @Λen with Aeh a free ylermodule.
Let at, ' , ai be a free Aei basis for Ae{. Let cfj be the multiplication
constants for the algebra A with respect to the basis α{, , αl, that is
a\a\ = ^cfίαl with cϊteΛ. Let S = #(#!, , αΛ) be a finitely gener-
ated separable cover of R in A containing {cfi, β̂  }. Define the central
separable S-algebra ^45 by letting Aseά be the free Sβy-module Seάa[ +
• + Sβjai with multiplication constants {cfi}.

Now Spec (R) is totally disconnected and since S is a finitely
generated separable cover of R, Spec (S) is totally disconnected. By
Theorem 3.3 there is a finitely generated separable over S(βlf , βm)
of Sin Λ which splits A. Let Γ = £(&, , βn) then A ~ Λ®τ{T®sAs)
so A is in the zero class of the Brauer group of A. The argument
in case A is a separable closure of R is completely analogous.

As an alternate proof of the last result, we can use Theorem 1.1
of [4]. One can show as in Proposition 3.3 of [9] that a quasi
separable cover A of R is a polynomial closure of R if and only if
for each x e X(R) and each a e X{A) lying over x that Aa is a poly-
nomial closure of Rx. Corollary 1.11 of [7] asserts that the Brauer
group of A is trivial if and only if the Brauer group of Aa it trivial
for each aeX(A). Thus, an alternate proof of Corollary 3.5 would
be provided by showing the Brauer group of the polynomial closure
of a semi-local ring whose only idempotents are 0 and 1 is trivial.
This is proved in Theorem 1.6 of [12].
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