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SEPARATE CONTINUITY AND JOINT
CONTINUITY

I. NAMIOKA

The main theorem is somewhat stronger than the following
statement: Let X be either a locally compact Hausdorff space
of a complete metric space, let Y be a compact Hausdorff
space and let Z be a metric space. If a map /: X X Y-± Z is
separately continuous, then there is a dense G5-set A in X
such that / is jointly continuous at each point of A x Y. This
theorem has consequences such as Ellis' theorem on separately
continuous actions of locally compact groups on locally compact
spaces and the existence of denting points on weakly compact
convex subsets of locally convex metrizable linear topological
spaces.

0. Introduction* The consideration of separate continuity vis-

a-vis joint continuity goes back, at least, to Baire (1899), whose work
is the prototype of all the subsequent investigations on this subject
by many mathematicians. The general problem is (P): find conditions
on topological spaces X, F, and Z so that each separately continuous
function f:Xx Y-+Z (i.e., function continuous in each variable
while the other variable is fixed) is jointly continuous at points of a
"substantial" (in some topological sense) subset of X x Γ". As far
as we know, all the available answers to this question require that
either X or 7 be metrizable or satisfy some sort of countability
condition (e.g. [4, § 5 Problem 23] and [9, Theorem 3]). This require-
ment severely restricts their applications. For instance, the proof
of Ellis' theorem [7, Theorem 1] is fairly complicated because a
step by step reduction of the general case to the metrizable case is
involved. This also explains why the theorems on weak-compact sets
in [18] require the separability condition.

However, the recent result of Troyanski [21] on renorming a
Banach space that is generated by a weak-compact set enables one
to drop the separability condition from many theorems on weak-compact
subsets of Banach spaces. Indeed, it is relatively simple to deduce
the following answer to problem (P) from Troyanski's renorming
theorem: Let X and Y be compact Hausdorff spaces and let / be a
bounded separately continuous real-valued function on X x Y. Then
there are dense Gδ-sets A and B of X and Y respectively such that
/ is jointly continuous at each point of A x YU X x B. This indi-
cates that some good answers to problem (P) have been overlooked
in the past.
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The purpose of the present paper is to give an answer (Theorem
1.2) to problem (P) that generalizes the one which follows from
Troyanski's theorem, and to describe some applications of Theorem
1.2.

Section 1 begins with a discussion of a class of topological spaces
which is used in the statement of the basic theorem (Theorem 1.2).
The statement and the proof of this theorem occupy the rest of the
section. The proof employs, in addition to the usual category argu-
ment, an argument based on a double sequence, which is reminiscent
of the poof of Eberlein's theorem.

In § 2, the basic theorem is recast as theorems on function spaces.
This formulations is sometimes useful.

In § 3, we prove a generalization of Ellis' theorem [7, Theorem 1]
and a theorem of Corson and Glicksberg [6, Theorem 1] not, however,
in the generality as stated in [6] (cf. Remark 3.4). Both theorems
follow immediately from the basic theorem.

In §4, the method of [18] is combined with the basic theorem
to prove Troyanski's theorems on weak-compact sets [e.g. a weak-
compact convex subset of a Banach space is the closed convex hull
of its "denting points" (see the definition in §4)] Since our method
is linear topological, metrizable locally convex linear topological spaces
are more natural settings for these theorems. Finally we discuss
weak*-compact subsets of a dual Banach space that is generated by
a weak-compact set. Problem 16 of Lindenstrauss [17] is settled
affirmatively.

In most cases, the notation and terminology are those of Kelley
[13] and Kelley, Namioka et al. [14].

Finally, we wish to express our gratitude to the following friends
and colleagues whose suggestions and encouragements resulted in a
substantial improvement of the final version over the preliminary
draft: Professor H. Corson, Professor J. Dugundji, Professor E.
Michael, Dr. R. Olson, and Professor R. Phelps.

1* The basic theorem* In order to state the basic theorem in
a unified manner, we shall use a convenient class of topological spaces
that includes locally (countably) compact spaces and complete metric
spaces. Let s/ be an open covering of a topological space X. Then
a subset S of X is said to be Jzf-small if S is contained in a member
of Jzf. A topological space X is said to be strongly countably complete
[11], if there is a sequence {J^: i = 1, 2, •••} of open converings of
X such that a sequence {Ft} of closed subsets of X has nonempty
intersection provided that Ft z> Fi+1 for all i and each Ft is J^-small.
A locally countably compact space is strongly countably complete.
Clearly a closed subspace of a strongly countably complete space is
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again strongly countably complete, but the product of two strongly
countably complete spaces may not be strongly countably complete
[11]. There is a class of strongly countably complete spaces with more
pleasant permanence properties. A Tychonoff space (i.e., a completely
regular TVspace) X is said to be Cech-complete ("complete in the sence
of Cech" in [8]) if and only if X is a Gδ in its Stone-Cech compacti-
ίication, and this is the case if and only if X is a Gδ in some comp-
pactiίication of X [8, Theorem 3.8.1]. In particular, locally compact
Hausdorff spaces are Cech-complete. The following characterization,
due to Frolίk [10], shows that Cech-complete spaces are strongly
countably complete.

THEOREM 1.1. A Tychonoff space X is Cech-complete if and only
if there is a sequence {J^: i = 1, 2, •} of open coverings of X such
that, if a family Jf of closed subsets of X has the finite intersection
property, and if J?~ contains Szfcsmall members for each i, then

It follows from the theorem that each topological space which
is homeomorphic to a complete metric space is Cech-complete. The
product of a countable family of Cech-complete spaces is again Cech-
complete [8, Theorem 3.8.5]. For additional permanence properties,
consult [8]. The proof of the Baire category theorem in [8] actually
shows that a strongly countably complete regular space is Baire.

A map / of the product I x 7 o f topological spaces X and Y
into a topological space Z is said to be separately continuous if, for
each (x0, y0) i n l x Γ, the maps xt-+f(x,y0): X-+Z and yt-*f(x09

y): Y—>Z are continuous. When / is continuous at (x0, Vo) relative
to the product topology, we shall say that / is jointly continuous at
($o, Vo) f° r emphasis. The following theorem gives a relationship
between separate continuity and joint continuity, and it is the funda-
mental theorem of the present paper.

THEOREM 1.2. Let X be a strongly countably complete regular
space, let Y be a locally compact and σ-compact space, and let Z be
a pseudo-metrizable space. If a map f:Xx Y—>Z is separately
continuous, then there exists a dense Gδ-set A in X, such that f is
jointly continuous at each point of A x Y.

Proof. We may obviously assume that X Φ 0 and Y Φ 0 . Now
it is easy to deduce the theorem from the special case where Y is
compact. For, under the hypothesis on Y, there is a sequence
{Yt: i = 1, 2, ••} of compact subsets of Y such that Y= U {Int
Yύ: i = 1, 2, •}. Suppose that, for each i, we can find a dense Gδ-set
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Ai in X such that / | X x Yt is jointly continuous at each point of
Ai x Yt. Then / is jointly continuous at each point of (Π* At) x Y,
and Πz At is a dense Gδ in X, because X is Baire. Therefore, for
the rest of the proof, we shall assume that Y is compact. The proof
is divided into four steps.

I. Let d be a pseudo-metric for Z compatible with the topology,
and, for a positive number ε, let Oε be the union of all open subsets
Oof 1 x 7 such that diam/[O] ^ε, where, for a subset S of Z,
diamS = sup {d(u, v): u, ve S}. Clearly Oe is open in X x Y. Let
Aε = {x:{x} x Γ c O J = X ~ p [ X x Γ ~ OJ, where p I x Γ— X is
the projection of the product space onto the first factor. Since Y
is compact, p is a closed map. Therefore, Aε is an open subset of
X. Let A = Γi{AίlΆ:n = l, 2, ...} and Z> - Γl{OlM: w - 1, 2, ...}.
Then D is the set of points of joint continuity of / and A x 7 c D.
If it is shown that Aε is dense in X for each positive number ε, then
A is a dense Gδ in X, because X is Baire. Therefore, it remains to
prove that Aε is dense in X.

Let U be a nonempty open subset of X, and let ε be a fixed
positive number. We will show that Uf] Aε Φ 0 by contradiction.
Assume, then, that Uf] Aε — 0, or equivalently that C/cp[Xx Y~ OJ.
Let F be a minimal closed subset of X x Y — Oε such that Uczp[F],
Such a minimal closed subset exists. For, suppose that {Fa} is a nest
of closed subsets of X x Y — Oε such that J7 c p[.Fβ] ί ° r e a c k # For
each # in U, the family {({x} x Y) n i77 }̂ of compact sets has the finite
intersection property, and therefore ({&} x Y) Γ) Π« FaΦ 0 for each
$ in C7, i.e., C/c p[Πα -P̂ l Zorn's lemma can now be applied to ensure
the existence of a minimal F.

II. Let δ = ε/6. In this step, we shall establish the following
property of the set F constructed in step I.

Let (xθ9 y0) e F, let V be an open neighborhood of xQ in X,
and let W be an open neighborhood of y0 in Y. Then there exist u
in V and v, w in W such that

{u, w)e F and d(f(uf v), f(u, w)) Ξ> <? .

Proof of (*). By the minimality of Ff we know that Uczp[F]
and Uς£p[F~ (Vx W)\. Let xe U~ p[F~(Vx W)]. Then clearly
xellΠV. Since p[F ~ (V x W)] is closed, there is an open neigh-
borhood Noΐx such that xeNc: Uf] Fand Nf] p[F~(Vx W)] = 0.
Then, for each x in N, 0 Φ {y: (x, y)e F}a W. For each x in N,
choose an element σ(x) in W so that (x, σ(x))e F, and write y — σ(x).
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By making N smaller, if necessary, we may assume that d(f(x, y),
f(x, y)) < δ whenever x e N. Suppose for a moment that d(f(x, y),
f(x, σ(x))) < δ for all (x, y) in N x W. This would imply that, for
each (x9 y) in N x W,

d(f(x, y), f(β9 V)) ^ d(f{x, y), f(χ, σ(x))) + d(f(x, y), f(x, σ(x)

, y), f(x, y)) <3δ = ε/2 .

It follows that diam f[N x W] ^ ε and hence N x W c Oε, but this
contradicts the fact that (x, y)e N x W and (x, y) = (x, σ(x))eFa
Xx Y~ Oε. Therefore there must exist (u, v) in N x W such that
d(f(u, v), f{uy o{v))) ^ δ. Let w — σ(u)\ the u, v, w satisfy all the
requirements of property

III. Since the space X is strongly countably complete, there is
a sequence {ja<: i = 1, 2, } of open coverings of X that has the
property: If {CJ is a sequence of closed subsets of X such that
Cί Z) Cί+i and C< is J^-small for all i, then Π* ^ ^ 0 . By induction
we construct sequence {xt} in U and {?/J, {«J in Y and a sequence {GJ
of open subsets of X such that

( i ) (xi9 zt) e F for all i,

(ii) ^(/(α y, i/O, / f e , 1/0) < 3/3 for i < j ,
(iii) d(f(xif ys\ f(xif zt)) < δβ for i < j ,
(iv) d(f(xif zj), f(χi9 z%)) < δβ for i < j ,
(v) d(f(xlf Vi), f(xif zt)) ^ δ for all i,
(vi) % G G* for i < i, and
(vii) Gi is J^-small for all i.
Let (x0,7/0) be any point in F such that xQ e U, and apply property

(it) with V = U and W = Y. Then we can find ^ in J7 and yl9 z1

m Y satisfying (i) and (v) for i = 1. Next assume that xl9 -- ,xn

in J7, i/i, , yn; zu — ,zn in Γ and open subsets Glf , Gw_! of X
have been chosen so that (i)-(vi) are valid for i ^ n, j ^ n and (vii)
is valid for i < n. Let

K + 1 - {α;: d(f(xf yt), f(xt, yt)) < S/3 for i - 1, - n, } Π C/

and

^)) < δ/S for i = 1, - , n] .

The sets Vn+1 and TFW+1 are open because / is separately continuous.
By inductive hypotheses (i), (ii), (iv), and (vi), we have (xn, zn) e F,
xne Vn+ί, zne Wn+1 and xne G, Π Π G w Since J K is an open
covering of X and since X is regular, there is an open neighborhood
Gn of xn such that GΛ is JK-small. Let V*+ι = K+i ΓΊ Gx Π Π Gn

By property (^) applied to the open neighborhoods F* + 1 and IF,,^, of xn
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and zn respectively, we can choose xn+1 in VS+ί and yn+ί, zn+ι in Wn+1

so that (xn+1, zn+1) e F and d(f(xn+1, yn+1), f(xn+u zn+1)) ^ δ. Then (i)-
(vi) hold for i ^ n + 1, j ^ n + 1, and (vii) holds for ΐ ^ w, and
therefore the inductive construction is complete.

IV. Now we prove that the construction of step III leads to a
contradiction. Observe first that (ii), (iii), and (v) imply

(viii) d(f(xif Vι)f(xu y3)) > δ/Z for i < j .
Next, let Ct = {xά: j > i}~ for i = 1, 2, . Then clearly C* D C<+1 for
i = 1, 2, •••, and by (vi) and (vii) the closed set C* is J^-small for
each i. Therefore, by the property of J^< stated in step III, Π* C% ^ 0>
i.e., the sequence {xό: j = 1,2, •} has a cluster point. Since the se-
quence {yd: j = 1,2, } lies in a compact set Y, the sequence {(a?Λ y3): j =
1, 2, •} has a cluster point in X x F, say (α, b).

For a fixed ΐ, the map (x, y) \-> d(f(x, y%), f(xit y)) is continuous
on X x Y. Therefore (viii) implies that

(ix) d(f(a, y<), f(xi9 b)) ̂  δβ for all i.
Similarly the map (xf y) H* d(f(a, y), f(x, b)) is continuous. Hence (ix)
implies that ώ(/(α, 6), /(α, &)) ̂  δ/3. But this last inequality is absurd;
hence the assumption in step I that U Π Aε = 0 is untenable, and
the proof is complete.

REMARKS 1.3. (a) In some specific cases, the proof of Theorem
1.2 can be made much simpler. For instance, assume that Xis locally
countably compact and regular. Then in step I, Ό can be assumed
to be countably compact without loss of generality. Then in step III,
construct sequences {#J, {y%), {z%) satisfying (i)-(v), and disregard {J^}
and conditions (vi), (vii). Here Vn+1 and Wn+1 are all we need for
the construction. In step IV, the existence of a cluster point of the
sequence {(xif yτ)} is immediate, because the sequence lies in a counta-
bly compact set U x Y.

(b) In [9], Fort proved the following theorem that is not strictly
comparable to Theorem 1.2 but similar in form: Let X be a
topological space, let Y be a locally compact separable metric space,
and lei Z be a separable metric space. If / : X x Y-+Z is separately
centinuous then there is a residual subset A of X such that / is
jointly continuous at each point of A x Y. In view of Fort's theorem,
it is natural to ask if Theorem 1.2 remains valid when X is only
assumed to be Baire. We are unable to answer this question.

2* Function spaces* It is often convenient to reformulate
Theorem 1.2 in terms of function spaces. The following lemma is
useful in this connection. An easy proof is omitted.
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LEMMA 2.1. Let X be a topological space, let Y be a compact
space, and let (Z, d) be a pseudo-metric space. Suppose that a func-
tion f: X x Y-+Z is jointly continuous at each point of {x0} x Y for
some xQ in X. Then for each positive number ε, there is a neighbor-
hood U of x0 such that d(f(x, y), f(xOf y)) <Ξ ε for all x in U and all
y in Y.

For topological spaces Y and Z, C( Y, Z) denotes the space of all
continuous maps on Y into Z. In case Z is the space R of real
numbers, C(Y, R) will simply be denoted by C(Y). The pointwise
topology (i.e., the topology of pointwise convergence) for C(Y, Z) is
denoted by ^. If Z is a pseudo-metric (or uniform) space and if Sf
is a family of subsets of Y, then the topology of uniform con-
vergence on members of sf is denoted by

THEOREM 2.2. Let X be a strongly countably complete regular
space, let Jϊf be a countable family of compact subsets of a topological
space Y such that \J S^f— Y, and let {Z, d) ba a pseudo-metric space.
If f is a continuous map of X into (C( Y, Z), ^), then there is a
dense Gδ-set A in X such that, at each point of A, f is continuous
from Xto (C(Y, Z), jT^).

Proof. Let J^f= {Y,: i = 1, 2, •}, and for each i let Ft: X x
Yt —>Z be the map given by Ft(ps, y) = f{x){y) Then obviously Ft

is separately continuous. By Theorem 1.2, Ft is jointly continuous
at each point of At x Yx for some dense Gδ-set At in X. Let A —
Πi Ai'f then A is a dense Gδ in X. It follows from Lemma 2.1 that,
for each xQ in A, each positive ε, and for each positive integer i, there
is a neighborhood U of x0 such that sup {d(f(x)(y), f{xo){y)Y y e Yτ) ^ ε
whenever xe U. Therefore, / is continuous relative to ^^ at x0

Let X be a topological space and let (Z, d) be a pseudo-metric
space. Recall that a subset H of C(X, Z) is equicontinuous at a point
x0 of X if, for each positive number e, there is a neighborhood U of
x0 such that d(h(x), h(xQ)) ̂  ε for all h in H and all x in U. If H is
equicontinuous at each point of X, then H is said to be equicontinuous.
The following theorem is of interest when it is compared with Ascoli's
theorem.

THEOREM 2.3. Let X be a strongly countably complete regular
space, and let Z be pseudo-metric space. If a subset H of C(X, Z)
is compact relative to the pointwise topology, then H is equicontinuous
at each point of a dense Gδ-set in X.

Proof. Let H be provided with the pointwise topology; then by
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assumption H is a compact space. The map f:Xx H—*Z given by
f(x, h) = h(x) is obviously separately continuous. By Theorem 1.2,
there is a dense G3-set A in X such that / is jointly continuous at
each point of A x H. Then by Lemma 2.1 and by the definition of
equicontinuity, the family H is eqtiicontinuous at each point of A.

The following corollary is now obvious.

COROLLARY 2.4. Let X be a compact Hausdorff space, and let
C(X) be the Banach space of all continuous real-valued functions on
X with the supremum norm. If a subset H of C{X) is weakly com-
pact, then H is equicontinuous at each point of a dense Gδset in X.

REMARK 2.5. Let C(X) be as in Corollary 2.4. Then by Ascoli's
theorem, a bounded subset H of C(X) is relatively compact (i.e., the
closure of H is compact) with respect to the norm topology if and
anly if H is equicontinuous. In view of Corollary 2.4, one is tempted
to conjecture that a bounded subset H of C(X) is weakly relatively
compact if and only if H is equicontinuous at each point of a dense
Gδ in X. Unfortunately this is false. For, suppose {/*: i = 1, 2, •}
is a uniformly bounded sequence of continuous real-valued functions
on [0, 1] such that f(x) = liπiif^x) exists for each x in [0,1] and that
the limit function / is not continuous. Then by the Osgood theorem
[14, Theorem 9.5], the family {/J is equicontinuous at each point of
a dense Gδ in [0, 1]. However, {/J connot be weakly relatively com-
pact in C([0, 1]), since the limit function/is not continuous.

3* Group actions* When the theorems of previous sections are
combined with group actions, some strong theorems should emerge
because the group actions spread the points of continuity around.
We shall illustrate this principle by proving two theorems. The first
theorem is a generalization of a classic theorem by Ellis [7, Theorem
1], and the second one is a slightly weaker version of a theorem
enunciated by Corson and Glicksberg [6, Theorem 1] (see however,
Remark 3.4).

A group G is said to act on a topological space X if a map:
G x X—>X (denoted by (g, x)h-+g x) is given so that the following
conditions are satisfied:

(a) the map x ι-» g x is continuous for each g in G, and
(b) g-(h x) = (gh) x for all g, h in G and x in X

( c ) If e denotes the identity element of G, then e-x = x for

all xeX.
Of course, (a)-(c) imply that, for each g, the map xv-* g-x is a homeo-
morphism of X onto itself.
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THEOREM 3.1. Let X be a locally compact regular space and let
G be a group acting on X. Suppose that G is given a topology such
that:

( i) G is strongly countably complete and regular,
(ii) the map (g, x) \->g-x: G x X—+X is separately continuous,

and
(iii) the map h\-*hg:G —*G is continuous for each g in G.

Then the map of (ii) is continuous (relative to the product topology).

Proof Let X+ be the one-point compactification [13; p. 150] of
X with co denoting the point at infinity. Then X+ is easily seen
to be regular and, hence, completely regular [13, p. 146], We can
extend the action of G on X to X+ by defining g °° = ©o for all g
in G. Condition (ii) still holds when Xis replaced by X+. Therefore,
without loss of generality we may assume that X is a compact
regular space.

Since X is completely regular, in order to prove that the map
(g, x) v->g-x: G x X—>X is continuous, it is sufficient to prove that
the map (gf x) \-> φ{g x): G x X—• R is continuous for each continuous
real-valued function φ on X. Let F:G-+ C(X) be the map given by
F(g)(x) - Φ(g-x), and, for each a in C(X) and g in G, define a member
a-g of C(X) by (a-g)(x) = a(g x). We note the following formal
properties: The map a\—> a-g: C(X) —*C(X) is linear; | | α ^ | | = 11̂ 11
where || || is the supremum norm; (a-g)-h = a-(gh) and F(gh) ~
F(g)-h for all a in C(X) and g, h in G.

Now F is clearly continuous with respect to the poinwise topology
for C(X). Hence, by Theorem 2.2, F is continuous at some point a
of G relative to the norm topology for C(X). Let b be an arbitrary
point of G and let {gγ} be a net in G converging to 6. Then by
(iii), gγb~ι a-~>a. Therefore, || F{grb~-ιa) - F(a) || — 0. But

\\F(g7) - F(b) || - WFigrb-ty ίa-'b) - F(a)'(a~1b) ||

= \\(F(grb-ιa)-F(a)) (a-ιb)\\

It follows that \\F(gγ) — F(b) \\ —* 0 i.e., the map F is continuous
relative to the norm topology for C(X). This, of course, implies that
{g, x)v-*F{g){x) = φ(g-x): G x X—> R is continuous.

Let G be a topological group. A G-space consists of a topological
space M and an action of the group G on M such that the map
(g, m)\~* g-miG x M-+M is continuous. The topological group G
itself will be considered a G-space relative to the multiplication map:
G x G—*G. Given two G-spaces M and Mlf & G-map π\M—*MY is
a continuous map π such that π(g-x) = g-π(x) for all g in G and x
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in M. In particular, a continuous map π:G—> M is a G-map if
π(gh) = g π(h) for all g, h in G.

LEMMA 3.2. Let G be a topological group. Then the topology
of G is determined by all G-maps of G into pseudo-metrizable G-spaces,
i.e., a net. {gr} in G converges to g if and only if τc(gr)—+π(g) for all
G-maps π of G into pseudo-metrizable G-spaces.

Proof. Let U be an arbitrary neighborhood of the identity e in
G. Then one can construct a sequence {Un: n = 1, 2, •} of symmetric
open neighborhoods of e such that U1c.U and Un+1 Un+ι c Un for all
n. For each n, let * Un = {(x, y): y~xx e Un) c G x G. Then {* Z7»: w -
1, 2, •} is a base for a uniformity ^ that is pseudo-metrizable. Let
d be a pseudo-metric for G compatible with ^<, and let ^~ be the
original topology of G. We assert that the map (x, y)\r-*xy: (G, ̂ ~) x
(G, cZ) —> (G, ώ) is continuous. For, suppose that {gr} is a net in G
converging to a relative to J?~ and that {hr} is a net in G converging
to 6 relative to cZ. Then {ίr1/^} is eventually in each Un+1, and, since
{α"1^} ""*β relative to ^ 7 {b~ιa~ιgγb} is eventually in each Un+ί.
Therefore, {{aby^γhγ} = {(6~1a~1gr6)(6~1/̂ r)} is eventually in each Un,
i.e., {grhr} —> αδ relative to d. This shows that (G, c£) is a pseudo-
metrizable G-space. Obviously the identity map (G, S^) —• (G, d) is
a G-map. Therefore, there are enough such maps to determine the
topology ^Z

Given two topological groups H and G, we denote by Horn (Jff, G)
the space of all continuous homomorphisms of H into G.

THEOREM 3.3. Let Hbe a strongly countably complete topological
group, and let G be an arbitrary topological group. If a subset F
of Horn (H, G) is compact relative to the pointwise topology, then F
is compact relative to the compact open topology.

Proof. Provide the set F with the pointwise topology so that
F is a compact space, and let φ: H x F-+G be the map defined by
Φ(Kf) — fty). Clearly φ is separately continuous, and we shall show
that φ is continuous. In view of the lemma, it is sufficient to prove
that πoφ: H x F—>M is continuous, where π: G -+M is an arbitrary
G-map of G into a pseudo-metrizable G-space M. Let ψ = πoφ; then
Ψ(hff, f) = f(h)mΨ(ff> f) for all f in F and h} g in H. Since ψ is
separately continuous, it follows from Theorem 1.2 that there is a
point a of G such that ψ is jointly continuous at each point of {a} x F.
Now suppose that {(ftr,/r)} is a net in if x F converging to (6, u).
Then by the above remark, ψ(hr, fr) = /\{ba~ι)f{ab~%, fr). Since
αδ'^^- —> α, ψiab^hγ, fr) —• α/r(α, u) by the choice of α. Also, since
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fγ—*u relative to the pointwise topology, fγ(ba~~ι) —+ u(ba~1). There-
fore, f{hγ, fr)-+u{bar1)ψ(a, u) = ψ(b, u). This proves that φ is con-
tinuous. This shows that, on F, the pointwise topology is stronger
than the compact open topology (see, for instance, Theorem 5 of [13,
p. 223]). It follows that F is compact relative to the compact open
topology.

REMARK 3.4. In [6], Corson and Glicksberg state a theorem
stronger than Theorem 3.3. They require H to satisfy only the
following condition: Each closed subgroup of H is Baire. Clearly if
H is strongly countably complete, it satisfies the condition of Corson
and Glicksberg, and the converse is probably false. It should be
pointed out, however, that the proof of Corson and Glicksberg is
incomplete, because they assumd that the topology of an arbitrary
topological group G is determined by a family of homomorphisms of
G into metrizable topological groups. It is very likely that their
proof can be repaired by using something like Lemma 3.2, but, at
any rate, their proof remains valid for a large class of topological
groups. Caution: In the discussion above, the roles of H and G are
exactly the reverse of those in [6], We avoided the term "if-space",
since it has quite a different connotation among some topologists.

4* Weak and weak* topologies* Let E be a locally convex
metrizable linear topological space, then there is a countable family
Ssf of weak*-compact subsets of the dual E* such that U sf— E*
and that the topology of E is identical with jfs, where E is viewed
as a space of weak*-continuous functions on E*. Hence the following
theorem is an immediate consequence of Theorem 2.2.

THEOREM 4.1. Let X be a strongly countably complete regular
space, and let (E, J7~) be a locally convex metrizable linear topological
space. If f: X—> (E, weak) is a continuous map, then there is a dense
G5set A in X such that, at each point of A, f is continuous from X
to (

If £ is a subset of a topological space (E, ^), we denote by
(K, άΓ) the space K with the topology induced by

COROLLARY 4.2. Let K be a weak-compact subset of a locally
convex metrizable linear topological space (E, ^~). Then there is a
dense Gδ-set A in (K, weak) such that the identity map (K, weak) —•
(K, J7~) is continuous at each point of A. In particular each point
of A is a Gδ-point in (K, weak).

A weak-compact subset of a locally convex metrizable linear
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topological space is Έberlein compact' in the sense of [lj. Amir and
Lindenstrauss proved that in an Eberlein compact set the set of all
(xδ-points is dense [1],

In Corollary 4.1, if K is further assumed to be convex, then
A Π ext (K) is weak-dense in ext (K), where ext (K) is the set of all
extreme points of K. We prove this fact by the methods of [18].
The necessary technical result is contained in [18, Theorem 2.3],
which we quote here with a slight modification to suit our purpose.

THEOREM 4.3. Let ^\ and ^ 2 be two locally convex vector
topologies for a linear space E such that

( i ) there is a local base for ^ 7 consisting of ^-closed sets,
(ii) {E, J7~l) is pseud-metrizable and (E, j^l) is Hausdorff, and
(iii) for each ^l-compact subset D of E, the identity map:

(D, J7~2) —> (D, j^Ί) is continuous at each point of a dense subset of
(A JQ.
Then, if K is a j^~2-compact convex subset of E and if Z is the set
of all points of continuity of the identity map: (K, ̂ l) ~> (K, ̂ 7) ,
the intersection ZΓ)ext(K) is ^2-dense in ext (K), and K is the

convex hull ofZf] ext(K).

Proof We only indicate the necessary modification of the proof
in [18].1 First assume that the topology J5Γ

1 is defined by a single
lower ^-semicontinuous pseudo-norm p. Then follow the proof of
[18, Theorem 2.2] verbatim except that "S~P" and "^~" should be
replaced by " ^ 7 " and " ^ 7 " respectively. The separability of (Ef ^7)
and [18, Proposition 1.2] are not necessary here because of assump-
tion (iii). The proof of [18, Theorem 2.3] can now be used verbatim.
This concludes the proof.

Now in Theorem 4.3, let (Ef ^7) be a locally convex metrizable
linear topological space and let ^ 7 be the weak topology ( = w(E, E*)).
Then assumptions (i) and (ii) are clearly satisfied, and Corollary 4.2
states that assumption (iii) is also satisfied. Therefore we obtain:

THEOREM 4.4. Let (E, ̂ ~) be a locally convex metrizable linear
topological space, let K be a weak-compact convex subset of E, and
let A be the set of all points of continuity of the identity map (K,
weak)—> (K, J^~). Then A Π ext (K) is weak-dense in ext(K), and
K is the closed convex hull of A f] ext (K).

Theorem 4.4 was proved in [18] with the extra condition that
1 We take this opportunity to make the following correction in [18]. Replace "of

the 2nd category in itself" by "Baire" at the following three places: p. 147 line 3;
p. 148 line 2; p. 169 line β.
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(E, ̂ ) be separable. In case (E, jf) is a Banach space, Theorem
4.4 is a consequence of Troyanski's theorem [21, Corollary 7] that
depends on many difficult theorems in Banach space theory due to
Troyanski, Amir-Lindenstrauss and Lindenstrauss. In contrast with
Troyanski's proof, where norms of a particular kind play an essential
role, our approach is completely topological and relatively easy.

REMARK 4.5. Let {E, ^ ) , K and A be as in Theorem 4.4, let
ue AC) ext (if), and let U be an arbitrary ^^neighborhood of u.
Then, by the definition of A, there is a weak-open neighborhood W
of u such that W Π K c U. Let if0 be the closed convex hull of the
weak-compact set K ~ W. If u e if0, then u is extreme in if0, and
hence ue K~ W, contradicting the fact that ue W. Therefore,
u 0 if0, and a fortiori u is not contained in the closed convex hull
of K ~ U. In case {E, J7~) is a Banach space, a point of K having
the property just described is called a denting point of if. More
specifically, a point u of a subset S of a Banach space is called a
denting point of S [20], if, for each positive ε, u is not in the closed
convex hull of S ~ {x: \\x — u\\ <. ε}. Hence Theorem 4.4 implies that
each weak-compact convex subset of a Banach space is the convex
closed hull of its denting points. When the Banach space is separable,
this fact was observed by Rieffel [20] using a theorem of Linden-
strauss [15], and the general case is due to Troyanski [21].

Now we consider the weak* topology in the dual E* of a Banach
space E. The situation here is much more complicated. Given a
weak*-compact subset if of E*, there may not exist any point where
the identity map (K, weak*)—>(iΓ, norm) is continuous. However, if
E* is separable, then by an easy category argument one can prove
that the identity map {K, weak*) —> (K, norm) is continuous at points
of a weak*-dense subset of if (see [18, Corollary 1.3]). We shall extend
this result to the duals i?* that are "weak-compactly generated" (for
definition, see below).

LEMMA 4.6. Let E be a normed linear space, let K be a non-
empty weak* {— w(E*, E))-compact subset of E* such that KdC + B£

for some weak (= w(E*, E**))-compact subset C of E* and for some
positive number ε, where Bε = {/: fe E*f \\f\\ ^ ε}, and let δ > 2ε.
Then there is a nonempty open subset W of (if, weak*) such that
diam W ̂  δ.

Proof The space K x Be is compact with respect to the product
of the weak* topologies, which will be again referred to as the weak*
topology. Let d: K x Bε—+E* be the map defined by d{f, g) ~ f — g.
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Let F = d~l[C], and let p: K x Bε —> K be the projection. Since C is
weak-compact, it is also weak*-compact, and consequently C is weak*-
closed in £'*. Hence F is weak*-closed in K x 2?ε, and [̂JP7] = K
because Ka C + Bε. By using the weak*-compactness of F and Zorn's
lemma, we note that there is a minimal weak*-compact subset FQ of
F such that p[F0] = K (cf. step I of the proof of Theorem 1.2).
The map d: (Fo, weak*)—>(d[F0], weak) is continuous and d[F0] is weak-
compact, because the weak and weak* topologies coincide on C. By
Corollary 4.2, the identity map i: (d[F0], weak) —> (d[F0], norm) is con-
tinuous at some point of d[F0]. Therefore, there is a point (f0, g0) e Fo

where iod: (Fo, weak*) —> (d[F0], norm) is continuous. It follows that
there is an open neighborhood V of (/0, g0) in (K x Bε, weak*) such
that diam d[F0 Γ) V]^δ-2ε. By the minimality of Fo, KΦ p[F0 ~ V].
Therefore, W = K ~ p[F0 ~ V] is a nonempty open subset of (K,
weak*). Let flff2e W. Then there are gu gz in Bε such that (fl9 gj,
U2, Q2) effl. By the definition of W, it follows that (fl9 gj, (/2, g2) e
Fo n V. Therefore δ - 2ε ^ \\ d(fu Λ ) - d(& g2) \\ = U -g.-f. + g, ||,
whence \\ft - f2 \\ ^ (δ - 2ε) + || ^ - g2 \\ ^ δ. This shows that diam
TF ̂  δ, and the proof is complete.

A closed linear subspace H of a Banach space E is said to be
weak-compactly generated if there is a weak-compact subset of H
whose linear extension is dense in H. Equivalently, H is weak-
compactly generated if and only if there is a weak-compact convex
circled subset C of H such that H is the closure of U {n^: n = 1,2,

THEOREM 4.7. Let E be a normed linear space, and let K be
a weak*-compact subset of E* such that KaH for some weak-
compactly generated norm-closed linear subspace H of E*. Then
the identity map: (K, weak*) —> (if, norm) is continuous at each point
of a dense subset of {K, weak*).

Proof. Let e be a positive number and let Oε be the union of
all open subsets 0 of (K, weak*) such that diam 0 ^ ε. Since (K,
weak*) is a Baire space, it is sufficient to show that Oε is dense in
(K, weak*). Clearly we may assume that Xφ 0 . Let U be an
arbitrary nonempty open subset of (K, weak*). Then we must prove
that Oε Π Uφ 0 . Let C be a weak-compact subset of E* such that
(J {nC: n = 1, 2, •} is norm-dense in H, and let δ = e/3. Then
Ucz \J{nC + Bδ: n = 1, 2, •}. Since each nC + Bδ is weak*-closed
in E* and since (Z7, weak*) is a Baire spaces, there is a nonempty
open subset V in (K, weak*) and a positive integer n such that
V~ c Uf] (nC + Bδ), where V~ is the weak*-closure of V in K. Since
F~ is nonempty and weak*-compact, and since nC is weak-compact,
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it follows from Lemma 4.6 that there is a nonempty open subset W
of (F~, weak*) such that diam W ^ S3 = ε. Since V is weak*-dense
in V~, Vf] W is nonempty. Also VΠ W is open in (V, weak*) and,
hence, in (K, weak*). Therefore, 0 Φ Vf] Wa Oe Π U, and the proof
is complete.

THEOREM 4.8. Let E be a normed linear space, and let K be a
weak*-compact convex subset of E* such that KcH for some weak-
compactly generated, norm-closed, linear subspace H of E*. If A is
the set of all points of continuity of the identity map: (K, weak*) —*
(K, norm), then A (Ί ext (K) is weak*-dense in ext {K)f and the weak*-
closed convex hull of A Π ext (K), is K.

Proof. It is only enough to apply Theorem 4.3 to the linear
space H with the norm and weak* topologies in places of ^ 7 and
J?l respectively. Conditions (i) and (ii) are trivially satisfied, and
Theorem 4.7 states that condition (ii) is fulfilled.

A special case of Theorem 4.8, where E* is separable, was proved
in [18, Theorem 3.2]. This theorem had some interesting conse-
quences about the existence of extreme points and denting points
[18, Corollary 3.4 and Theorem 3.5]. By repeating exactly the same
simple arguments, we obtain from Theorem 4.8 the following corol-
lary.

COROLLARY 4.9. Let E be a normed linear space such that E*
is weak-compactly generated. Then

(a) each norm-closed, convex, bounded subset of E* is the norm-
closed convex hull of its extreme points, and

(b) each norm-closed, convex, bounded subset of E* is contained
in the weak*-closed convex hull of its denting points.2

REMARK 4.10. The proof of (a) requires [16, Lemma 1] which
was proved by Lindenstrauss using a deep theorem of Bishop and
Phelps [3j. We wish to point out that there is a simple but elegant
alternative argument by Bourgin [5] (see [19, Lemma 1]).

Conclusion (a) of the preceding theorem answers Problem 16 of
Lindenstrauss [17] affirmatively.3 Previously John and Zizler obtained
the same conclusion with the additional hypothesis that E be a weak-
compactly generated Banach space [12, Corollary 3]. Their proof

2 In a forthcoming paper entitled "Dentability and extreme points in Banach
spaces", R. R. Phelps derives from Theorem 4.8 a conclusion stronger than Corollary
4.9.

3 This problem was also solved recently by Lindenstrauss by a completely different
method.
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consists of a modification of Troyanski's method.
There is another class of dual spaces where the conclusions of

Theorem 4.8 and Corollary 4.9 are valid. Let us say that the norm
of the dual E* of a normed linear space E satisfies condition (iti*)
if a net {fγ} in E* converges to / in norm whenever fr-+f relative
to the weak* topology and || fr || — || / 1 | . This is equivalent to saying
that, on the unit sphere {/: | | / | | = 1}, the weak* topology coincides
with the norm topology. For instance, the norm of IJίβ) = (co(S))*
satisfies condition (^r^r) The next proposition is not directly related
to the main theme of the present paper, but it is an easy consequence
of Theorem 4.3.

PROPOSITION 4.11. Let E be a normed linear space such that the
norm of E* satisfies (iϊit), let K be a weak*-compact convex subset
of E*, and let A be the set of all points of continuity of the identity
map: (K, weak*) —> (K, norm). Then A Π ext (K) is weak*-dense in
ext (K). Consequently conclusions (a) and (b) of Corollary 4.9 are
also valid for E*.

Proof. In view of Theorem 4.3, it is sufficient to establish the
following: If D is a weak*-compact subset of E* then the identity
map (D, weak*) —> (D, norm) is continuous at points of a weak*-dense
subset of D. Since the norm function / H» || / 1 | is lower weak*-
semicontinuous on E* and since (D, weak*) is Baire, there is a dense
Gδ-set B in (Z?, weak*) such that the norm function restricted to D
is weak*-continuous at points of B. Suppose that {fr} is a net in D
such that / r -—/e B relative to the weak* topology. Then | |/ r | |—•
| | / 1 | , and it follows from property Oκi^) that /r—>/in the norm
topology, i.e., the identity map: (D, weak*)—>(D, norm) is continuous
at points of B. This concludes the proof.

Proposition 4.11 was independently discovered by J. Lindenstrauss
and by us in 1967. The proof of Lindenstrauss is outlined in a letter
to Asplund, and it is based on a modification of [15, Theorem 1].
Asplund gave a different proof of the fact that k(S) has the "Krein-
Milman property" (i.e., the conclusion (a) of Corollary 4.9) in [2J.
When the set S is uncountable, the space l^S) is not weak-compactly
generated.
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