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SEPARATE CONTINUITY AND JOINT
CONTINUITY

I. NAMIOKA

The main theorem is somewhat stronger than the following
statement;: Let X be either a locally compact Hausdorff space
of a complete metric space, let Y be a compact Hausdorff
space and let Z be a metric space. If a map [ X X Y > Z is
separately continuous, then there is a dense Gj;set A in X
such that f is jointly continuous at each point of A X Y. This
theorem has consequences such as Ellis’ theorem on separately
continuous actions of locally compact groups on locally compact
spaces and the existence of denting points on weakly compact
convex subsets of locally convex metrizable linear topological
spaces.

0. Introduction. The consideration of separate continuity vis-
d-vis joint continuity goes back, at least, to Baire (1899), whose work
is the prototype of all the subsequent investigations on this subject
by many mathematicians. The general problem is (P): find conditions
on topological spaces X, Y, and Z so that each separately continuous
function f: X x Y— Z (i.e., function continuous in each variable
while the other variable is fixed) is jointly continuous at points of a
“substantial” (in some topological sense) subset of X x Y. As far
as we know, all the available answers to this question require that
either X or Y be metrizable or satisfy some sort of countability
condition (e.g. [4, § 5 Problem 23] and [9, Theorem 3]). This require-
ment severely restricts their applications. For instance, the proof
of Ellis’ theorem [7, Theorem 1] is fairly complicated because a
step by step reduction of the general case to the metrizable case is
involved. This also explains why the theorems on weak-compact sets
in [18] require the separability condition.

However, the recent result of Troyanski [21] on renorming a
Banach space that is generated by a weak-compact set enables one
to drop the separability condition from many theorems on weak-compact
subsets of Banach spaces. Indeed, it is relatively simple to deduce
the following answer to problem (P) from Troyanski’s renorming
theorem: Let X and Y be compact Hausdorff spaces and let f be a
bounded separately continuous real-valued function on X x Y. Then
there are dense G;-sets 4 and B of X and Y respectively such that
f is jointly continuous at each point of A x YU X x B. This indi-
cates that some good answers to problem (P) have been overlooked
in the past.
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516 I. NAMIOKA

The purpose of the present paper is to give an answer (Theorem
1.2) to problem (P) that generalizes the one which follows from
Troyanski’s theorem, and to describe some applications of Theorem
1.2,

Section 1 begins with a discussion of a class of topological spaces
which is used in the statement of the basic theorem (Theorem 1.2).
The statement and the proof of this theorem occupy the rest of the
section. The proof employs, in addition to the usual category argu-
ment, an argument based on a double sequence, which is reminiscent
of the poof of Eberlein’s theorem.

In § 2, the basic theorem is recast as theorems on function spaces.
This formulations is sometimes useful.

In §3, we prove a generalization of Ellis’ theorem [7, Theorem 1]
and a theorem of Corson and Glicksberg [6, Theorem 1] not, however,
in the generality as stated in [6] (cf. Remark 3.4). Both theorems
follow immediately from the basic theorem.

In §4, the method of [18] is combined with the basic theorem
to prove Troyanski’s theorems on weak-compact sets [e.g. a weak-
compact convex subset of a Banach space is the closed convex hull
of its “denting points” (see the definition in §4)]. Since our method
is linear topological, metrizable locally convex linear topological spaces
are more natural settings for these theorems. Finally we discuss
weak*-compact subsets of a dual Banach space that is generated by
a weak-compact set. Problem 16 of Lindenstrauss [17] is settled
affirmatively.

In most cases, the notation and terminology are those of Kelley
[13] and Kelley, Namioka et al. [14].

Finally, we wish to express our gratitude to the following friends
and colleagues whose suggestions and encouragements resulted in a
substantial improvement of the final version over the preliminary
draft: Professor H. Corson, Professor J. Dugundji, Professor E.
Michael, Dr. R. Olson, and Professor R. Phelps.

1. The basic theorem. In order to state the basic theorem in
a unified manner, we shall use a convenient class of topological spaces
that includes locally (countably) compact spaces and complete metric
spaces. Let .27 be an open covering of a topological space X. Then
a subset S of X is said to be .&%-small if S is contained in a member
of .o A topological space X is said to be strongly countably complete
[11], if there is a sequence {.&;:% = 1,2, ---} of open converings of
X such that a sequence {F'} of closed subsets of X has nonempty
intersection provided that ¥, D F,,, for all 7+ and each F; is .%;-small.
A locally countably compact space is strongly countably complete.
Clearly a closed subspace of a strongly countably complete space is
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again strongly countably complete, but the product of two strongly
countably complete spaces may not be strongly countably complete
[11]. There is a class of strongly countably complete spaces with more
pleasant permanence properties. A Tychonoff space (i.e., a completely
regular T.-space) X is said to be 5ech-complete (“complete in the sence
of Cech” in [8]) if and only if X is a G, in its Stone-Cech compacti-
fication, and this is the case if and only if X is a G; in some comp-
pactification of X [8, Theorem 3.8.1]. In particular, locally compact
Hausdorff spaces are Cech-complete. The following characterization,
due to Frolik [10], shows that éech-complete spaces are strongly
countably complete.

THEOREM 1.1. A Tychonoff space X s é’ech—complete if and only
if there is a sequence {721 =1,2, ---} of open coverings of X such
that, if a family F of closed subsets of X has the finite intersection
property, and if F contains -small members for each 1, then
N +ao.

It follows from the theorem that each topological space which
is homeomorphic to a complete metric space is éech-complete. The
product of a countable family of éech—complete spaces is again Cech-
complete [8, Theorem 3.8.5]. For additional permanence properties,
consult [8]. The proof of the Baire category theorem in [8] actually
shows that a strongly countably complete regular space is Baire.

A map f of the product X x Y of topological spaces X and Y
into a topological space Z is said to be separately continuous if, for
each (%, %) in X x Y, the maps z+> f(z, ¥): X— Z and y+ f(z,
¥): Y —Z are continuous. When f is continuous at (x,, ¥, relative
to the product topology, we shall say that f is jointly continuous at
(%o, o) for emphasis. The following theorem gives a relationship
between separate continuity and joint continuity, and it is the funda-
mental theorem of the present paper.

THEOREM 1.2. Let X be a strongly countably complete regular
space, let Y be a locally compact and g-compact space, and let Z be
a pseudo-metrizable space. If a map f: X X Y—Z is separately
continuous, then there exists a dense Gs-set A in X, such that f is
jointly continuous at each point of A X Y.

Proof. We may obviously assume that X+ @ and Y% @. Now
it is easy to deduce the theorem from the special case where Y is
compact. For, under the hypothesis on Y, there is a sequence
{Y:1=12 ...} of compact subsets of Y such that Y = U {Int
Y:1=12 ---}. Suppose that, for each ¢, we can find a dense G;-set



518 1. NAMIOKA

A; in X such that f|X x Y, is jointly continuous at each point of
A, x Y,. Then fis jointly continuous at each point of (N, 4.) x Y,
and ). 4, is a dense G, in X, because X is Baire. Therefore, for
the rest of the proof, we shall assume that Y is compact. The proof
is divided into four steps.

I. Let d be a pseudo-metric for Z compatible with the topology,
and, for a positive number ¢, let O, be the union of all open subsets
O of X x Y such that diam f[O] <¢, where, for a subset S of Z,
diam S = sup {d(u, v): u, ve S}. Clearly O, is open in X X Y. Let
A =@z} x YcO} =X~ p[X x Y~ O], where p: X X Y— X is
the projection of the product space onto the first factor. Since Y
is compact, p is a closed map. Therefore, A, is an open subset of
X. Let A=N{4y.:n=12 .-} and D=N{0p:n =12 ---}.
Then D is the set of points of joint continuity of fand 4 x Y D.
If it is shown that A, is dense in X for each positive number ¢, then
A is a dense G; in X, because X is Baire. Therefore, it remains to
prove that A, is dense in X.

Let U be a nonempty open subset of X, and let ¢ be a fixed
positive number. We will show that U N A. = @ by contradiction.
Assume, then, that U N A, = @, or equivalently that UcC p[Xx Y~ O,].
Let F be a minimal closed subset of X x Y ~ O, such that Uc p[F'].
Such a minimal closed subset exists. For, suppose that {F,} is a nest
of closed subsets of X x Y ~ O, such that U c p[F,] for each «. For
each z in U, the family {({x} x Y) N F,} of compact sets has the finite
intersection property, and therefore ({x} x Y)N N.F.# @ for each
@ in U, ie., Uc p[N, F.]. Zorn’s lemma can now be applied to ensure
the existence of a minimal F.

II. Let 6 =¢/6. In this step, we shall establish the following
property of the set F' constructed in step I.

(&) Let (%, y)e F, let V be an open mneighborhood of x, in X,
and let W be an open meighborhood of y, in Y. Then there exist u
wm V oand v, w in W such that

(w, w)e F' and d(f(u, v), flu, w)) Z 0.

Proof of (%). By the minimality of F, we know that U cC p[F']
and UZ p[F ~ (Vx W)]. Letze U~ p[F ~ (Vx W)]. Then clearly
ze UN V. Since p[F ~ (V x W)] is closed, there is an open neigh-
borhood N of % such that Te Nc UN Vand NN p[F~(Vx W)= @.
Then, for each =z in N, @ # {y: (v, y)e F}c W. For each x in N,
choose an element g(x) in W so that (z, o(x)) € F, and write ¥ = o(%).
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By making N smaller, if necessary, we may assume that d(f(z, %),
f(&, ¥)) < 6 whenever € N. Suppose for a moment that d(f(z, v),
f(x, 0(x))) <o for all (x,y) in N x W. This would imply that, for
each (z,y) in N x W,

d(f @, v), f&, 9)) = d(f (@, v), flw, o) + A (@, §), f(z, o(z)))
+ d(f(x, 9), (7, 7)) <30 =¢/2.

It follows that diam f[N x W] < ¢ and hence N x W c O,, but this
contradicts the fact that (%, ¥)e N x W and (T, ) = (7, 0(Z)) e F C
X x Y~ O, Therefore there must exist («, v) in N x W such that
a(f(w, v), fu, o)) = 0. Let w = o(u); the u, v, w satisfy all the
requirements of property (¥%).

III. Since the space X is strongly countably complete, there is
a sequence {.97:¢ =1,2, ---} of open coverings of X that has the
property: If {C;} is a sequence of closed subsets of X such that
C,oC,, and C; is .%7;-small for all 4, then );C; # @. By induction
we construct sequence {x;} in U and {y.}, {#.} in ¥ and a sequence {G;}
of open subsets of X such that

(i) (w;, z)e F for all 4,

(ii) d(f (s, v2), f(®@;, ¥:)) < 9/3 for ¢ <,

(i) d(f(z., y5), [, 2:)) < 0/3 for © < j,

(iv) d(f(x,, 2;), f(z;, 2)) < 0/3 for © < 4,

(v) d(f(®., v, f(x;, 2)) = 0 for all 7,

(vi) 2;eG,; for ¢ < j, and

(vii) G, is .o7-small for all i.

Let (%, ¥,) be any point in F' such that x,€ U, and apply property
(#%) with V=U and W =Y. Then we can find z, in U and y, 2,
in Y satisfying (i) and (v) for ¢ =1. Next assume that z, .-, 2,
in Uy, Y32, %, in Y and open subsets G, ---,G,_, of X
have been chosen so that (i)-(vi) are valid for ¢ £ »,j < » and (vii)
is valid for 7 < m. Let

Vi = {22 d(f (2, ¥2), (@, 9)) <0/3 for 1 =1, ---m,} N U
and
Woir = {w: d(f (%, w), f(x;, 2,)) <0/3 for ¢t =1, -+, n}.

The sets V,,, and W,,, are open because f is separately continuous.
By inductive hypotheses (i), (ii), (iv), and (vi), we have (x,, z,)€ F,
2,€ Vs, 2n€ W,y and z,eG, N ---NG,_,. Since .97, is an open
covering of X and since X is regular, there is an open neighborhood
G, of x, such that G, is .o7-small. Let Vi, =V,.. NG N - - NG,.
By property (%) applied to the open neighborhoods V., and W, _, of z,
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and z, respectively, we can choose «,,, in V¥, and Y, 2nts in Wy,
S0 tha‘t (wn-)-lr zn+l) € F and d(f(xn-)—ly yn+1)’ f(m'n+17 zn+1)) g 3' Then (I)-
(vi) hold for 1 <n +1,7<m + 1, and (vii) holds for ¢ <=, and
therefore the inductive construction is complete.

IV. Now we prove that the construction of step III leads to a
contradiction. Observe first that (ii), (iii), and (v) imply

(viil)  d(f (s, ¥ f (%, ¥35)) > 6/3 for @ <.
Next, let C; = {#;:5 > ¢}~ for ¢ =1,2, ---. Then clearly C; D C,,, for
1=1,2 ---, and by (vi) and (vii) the closed set C; is ¥;-small for
each 7. Therefore, by the property of .o stated in step IlI, N. C; = @,
i.e., the sequence {x;: 5 =1, 2, ---} has a cluster point. Since the se-
quence {y;: J =1, 2, - - -} lies in a compact set Y, the sequence {(z;, ¥;): j =
1,2, -..} has a cluster point in X x Y, say (a, b).

For a fixed ¢, the map (z, ) — d(f(x, v.), f(x;, ¥)) is continuous
on X x Y. Therefore (viii) implies that

(ix) d(f(a, ¥.), f(x, b)) = 6/3 for all 7.
Similarly the map (x, y) — d(f(a, ¥), f(x, b)) is continuous. Hence (ix)
implies that d(f(a, b), f(a, b)) = 6/3. But this last inequality is absurd;
hence the assumption in step I that UN 4. = @ is untenable, and
the proof is complete.

REMARKS 1.3. (a) In some specific cases, the proof of Theorem
1.2 can be made much simpler. For instance, assume that X is locally
countably compact and regular. Then in step I, U can be assumed
to be countably compact without loss of generality. Then in step III,
construct sequences {x.}, {y:}, {#:} satisfying (i)-(v), and disregard {.o7}
and conditions (vi), (vii). Here V,,, and W,,, are all we need for
the construction. In step IV, the existence of a cluster point of the
sequence {(x;, ¥;)} is immediate, because the sequence lies in a counta-
bly compact set U x Y.

(b) In [9], Fort proved the following theorem that is not strictly
comparable to Theorem 1.2 but similar in form: Let X be a
topological space, let Y be a locally compact separable metric space,
and lel Z be a separable metric space. If f: X x Y— Z is separately
centinuous then there is a residual subset A of X such that f is
jointly continuous at each point of 4 X Y. In view of Fort’s theorem,
it is natural to ask if Theorem 1.2 remains valid when X is only
assumed to be Baire. We are unable to answer this question.

2. Function spaces. It is often convenient to reformulate
Theorem 1.2 in terms of function spaces. The following lemma is
useful in this connection. An easy proof is omitted.
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LEMMA 2.1. Let X be a topological space, let Y be a compact
space, and let (Z, d) be a pseudo-metric space. Suppose that a func-
tion f: X X Y— Z 1s jointly continuous at each point of {x,} x Y for
some %, in X. Then for each positive number ¢, there is a neighbor-
hood U of x, such that d(f(, v), f(@, ¥)) < ¢ for all x in U and all
yin Y.

For topological spaces Y and Z, C(Y, Z) denotes the space of all
continuous maps on Y into Z. In case Z is the space R of real
numbers, C(Y, R) will simply be denoted by C(Y). The pointwise
topology (i.e., the topology of pointwise convergence) for C(Y, Z) is
denoted by & If Zis a pseudo-metric (or uniform) space and if .o~
is a family of subsets of Y, then the topology of uniform con-
vergence on members of .o~ is denoted by 77..

THEOREM 2.2. Let X be a strongly countably complete regular
space, let 7 be a countable family of compact subsets of a topological
space Y such that U =Y, and let (Z, d) ba a pseudo-metric space.
If f is a continuous map of X into (C(Y, Z), ), then there is a
dense Gs-set A in X such that, at each point of A, f is continuous
from X to (C(Y, Z), .7.,)-

Proof. Let = {Y;:1=1,2, ---}, and for each 7 let F;: X x
Y,— Z be the map given by F,(z, y) = f(x)(y). Then obviously F;
is separately continuous. By Theorem 1.2, F; is jointly continuous
at each point of A4, x Y, for some dense Gs;-set A, in X. Let A=
N: A; then A is a dense G; in X. It follows from Lemma 2.1 that,
for each x, in A, each positive ¢, and for each positive integer 1, there
is a neighborhood U of x, such that sup {d(f(x)(y), f(x)(¥)): ye Y} <e¢
whenever e U. Therefore, f is continuous relative to .77, at x,

Let X be a topological space and let (Z, d) be a pseudo-metric
space. Recall that a subset H of C(X, Z) is equicontinuous at a point
x, of X if, for each positive number ¢, there is a neighborhood U of
x, such that d(h(x), h(x,)) < ¢ for all h in Hand all x in U. If H is
equicontinuous at each point of X, then H is said to be equicontinuous.
The following theorem is of interest when it is compared with Ascoli’s
theorem.

THEOREM 2.3. Let X be a strongly countably complete regular
space, and let Z be pseudo-metric space. If a subset H of C(X, Z)
is compact relative to the pointwise topology, then H is equicontinuous
at each point of a dense G;-set in X.

Proof. Let H be provided with the pointwise topology; then by
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assumption H is a compact space. The map f: X x H—Z given by

f(x, k) = h(x) is obviously separately continuous. By Theorem 1.2

there is a dense G;,-set 4 in X such that f is jointly continuous at

each point of A x H. Then by Lemma 2.1 and by the definition of

equicontinuity, the family H is equicontinuous at each point of A.
The following corollary is now obvious.

COROLLARY 2.4. Let X be a compact Hausdorff space, and let
C(X) be the Banach space of all continuous real-valued functions on
X with the supremum norm. If a subset H of C(X) is weakly com-
pact, then H is equicontinuous at each point of a dense Gs-set in X.

REMARK 2.5. Let C(X) be as in Corollary 2.4. Then by Ascoli’s
theorem, a bounded subset H of C(X) is relatively compact (i.e., the
closure of H is compact) with respect to the norm topology if and
anly if H is equicontinuous. In view of Corollary 2.4, one is tempted
to conjecture that a bounded subset H of C(X) is weakly relatively
compact if and only if H is equicontinuous at each point of a dense
G, in X. Unfortunately this is false. For, suppose {fi:1=1,2, ---}
is a uniformly bounded sequence of continuous real-valued functions
on [0, 1] such that f(z) = lim, f;(x) exists for each « in [0, 1] and that
the limit function f is not continuous. Then by the Osgood theorem
[14, Theorem 9.5], the family {f;} is equicontinuous at each point of
a dense G; in [0, 1]. However, {f;} connot be weakly relatively com-
pact in C([0, 1]), since the limit function f is not continuous.

3. Group actions. When the theorems of previous sections are
combined with group actions, some strong theorems should emerge
because the group actions spread the points of continuity around.
We shall illustrate this principle by proving two theorems. The first
theorem is a generalization of a classic theorem by Ellis [7, Theorem
1], and the second one is a slightly weaker version of a theorem
enunciated by Corson and Glicksberg [6, Theorem 1] (see however,
Remark 3.4).

A group G is said to act on a topological space X if a map:
G x X— X (denoted by (g, ) — g-x) is given so that the following
conditions are satisfied:

(a) the map x+ ¢g-z is continuous for each ¢ in G, and

(b) g-(h-x) = (gh)-x for all g, in G and = in X.

(c) If e denotes the identity element of G, then e-x =z for
all xe X.

Of course, (a)-(c) imply that, for each g, the map x+ g-2 is a homeo-
morphism of X onto itself.
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THEOREM 3.1. Let X be a locally compact regular space and let
G be a group acting on X. Suppose that G is given a topology such
that:

(i) G 1is strongly countably complete and regular,

(ii) the map (g9, %) —g-2:G x X — X s separately continuous,
and

(iii) the map h hg: G — G 1is continuous for each g in G.
Then the map of (ii) is continuous (relative to the product topology).

Proof. Let X+ be the one-point compactification [13; p. 150] of
X with o denoting the point at infinity. Then X+ is easily seen
to be regular and, hence, completely regular [13, p. 146]. We can
extend the action of G on X to X+ by defining g-o = < for all g
in G. Condition (ii) still holds when X is replaced by X*. Therefore,
without loss of generality we may assume that X is a compact
regular space.

Since X is completely regular, in order to prove that the map
(9,2)—>g-2:G x X— X is continuous, it is sufficient to prove that
the map (g, ) — ¢(g-2): G X X — R is continuous for each continuous
real-valued function ¢ on X. Let F: G — C(X) be the map given by
F(g)(x) = ¢(g-2), and, for each a in C(X) and ¢ in G, define a member
a-g of C(X) by (a-9)(x) = a(g-x). We note the following formal
properties: The map a— a-g: C(X)—C(X) is linear; ||a-gl|| = ||a]]
where || -|] is the supremum norm; (a-g)-h = a-(9h) and F(gh) =
F(g)-h for all & in C(X) and g, k2 in G.

Now F'is clearly continuous with respect to the poinwise topology
for C(X). Hence, by Theorem 2.2, F' is continuous at some point a
of G relative to the norm topology for C(X). Let b be an arbitrary
point of G and let {g,} be a net in G converging to b. Then by
(iii), g,b* @ — a. Therefore, || F(9;b7'a) — F(a)||— 0. But

1 E(g;) — FO) | = || Flg:b7'a)- (a™'b) — F(a)-(a™'b) |
= [[(F(g;b7"a) — F(a))-(a"'D) ||
= || F(9,;b7'a) — F(a)|| .

It follows that || F(g,) — F(b)||— 0 i.e., the map F is continuous
relative to the norm topology for C(X). This, of course, implies that
(g9, ») — F(9)(x) = ¢(g-x): G x X — R is continuous.

Let G be a topological group. A G-space consists of a topological
space M and an action of the group G on M such that the map
(g, m)—g-m:G X M— M is continuous. The topological group G
itself will be considered a G-space relative to the multiplication map:
G x G—G. Given two G-spaces M and M, a G-map 7w: M — M, is
a continuous map 7 such that z(g-z) = g-7z(x) for all g in G and
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in M. In particular, a continuous map 7:G— M is a G-map if
n(gh) = g-w(h) for all g,k in G.

LEMMA 3.2. Let G be a topological group. Then the topology
of G is determined by all G-maps of G into pseudo-metrizable G-spaces,
i.e., a net {g,} in G comverges to g if and only if n(g,) — w(g) for all
G-maps © of G into pseudo-metrizable G-spaces.

Proof. Let U be an arbitrary neighborhood of the identity e in
G. Then one can construct a sequence {U,: n =1, 2, - - -} of symmetric
open neighborhoods of ¢ such that U,c U and U,.,U,.,C U, for all
n. For each n, let *U, = {(x, y): y ¢ U,} G x G. Then {*U,:n =
1,2, ---} is a base for a uniformity % that is pseudo-metrizable. Let
d be a pseudo-metric for G compatible with %/, and let .7~ be the
original topology of G. We assert that the map (x, y) — xy: (G, 97) X
(G, d) — (G, d) is continuous. For, suppose that {g,} is a net in G
converging to a relative to .7~ and that {#,} is a net in G converging
to b relative to d. Then {b~'h,} is eventually in each U,., and, since
{a~'g,} — e relative to 7, {b~'a~'g,b} is eventually in each U,,,.
Therefore, {(ab) 'g,h;} = {(b-'a"'g,b)(d7'h,)} is eventually in each U,
i.e., {g,h;} — ab relative to d. This shows that (G, d) is a pseudo-
metrizable G-space. Obviously the identity map (G, 9)— (G, d) is
a G-map. Therefore, there are enough such maps to determine the
topology .7~

Given two topological groups H and G, we denote by Hom (H, G)
the space of all continuous homomorphisms of H into G.

THEOREM 3.3. Let H be a strongly countably complete topological
group, and let G be an arbitrary topological group. If a subset F
of Hom (H, G) is compact relative to the pointwise topology, then F
18 compact relative to the compact open topology.

Proof. Provide the set F' with the pointwise topology so that
F is a compact space, and let ¢: H x FF— G be the map defined by
é(h, f) = f(h). Clearly ¢ is separately continuous, and we shall show
that ¢ is continuous. In view of the lemma, it is sufficient to prove
that mwog: H X F'— M is continuous, where 7: G — M is an arbitrary
G-map of G into a pseudo-metrizable G-space M. Let o = wog; then
¥(hg, f) = f(h)-y(g, f) for all f in F and h,¢g in H. Since + is
separately continuous, it follows from Theorem 1.2 that there is a
point a of G such that + is jointly continuous at each point of {a} x F.
Now suppose that {(k,, f;)} is a net in H x F converging to (b, u).
Then by the above remark, +(k,, f;) = f(ba )y(adb 'k, ). Since
ab~h, —a, y(ab'k,, f;) — ¥(a, w) by the choice of a. Also, since
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fr— u relative to the pointwise topology, f;(ba™*) — u(ba™). There-
fore, v(h,, f,) — u(ba ")y (a, u) = ¥(b, w). This proves that ¢ is con-
tinuous. This shows that, on F, the pointwise topology is stronger
than the compact open topology (see, for instance, Theorem 5 of [13,
p. 223]). It follows that F' is compact relative to the compact open
topology.

REMARK 3.4. In [6], Corson and Glicksberg state a theorem
stronger than Theorem 3.3. They require H to satisfy only the
following condition: Each closed subgroup of H is Baire. Clearly if
H is strongly countably complete, it satisfies the condition of Corson
and Glicksberg, and the converse is probably false. It should be
pointed out, however, that the proof of Corson and Glicksberg is
incomplete, because they assumd that the topology of an arbitrary
topological group G is determined by a family of homomorphisms of
G into metrizable topological groups. It is very likely that their
proof can be repaired by using something like Lemma 3.2, but, at
any rate, their proof remains valid for a large class of topological
groups. Caution: In the discussion above, the roles of H and G are
exactly the reverse of those in [6]. We avoided the term “H-space”,
since it has quite a different connotation among some topologists.

4. Weak and weak™ topologies. Let K be a locally convex
metrizable linear topological space, then there is a countable family
&7 of weak*-compact subsets of the dual E* such that | &= E*
and that the topology of E is identical with .77, where E is viewed
as a space of weak*-continuous functions on E*. Hence the following
theorem is an immediate consequence of Theorem 2.2.

THEOREM 4.1. Let X be a strongly countably complete regular
space, and let (E, 77) be a locally convex metrizable linear topological
space. If f: X— (E, weak) is a continuous map, then there is a dense
Gs-set A in X such that, at each point of A, f is continuous from X
to (E, . 9).

If K is a subset of a topological space (E, .77), we denote by
(K, .77) the space K with the topology induced by .7~

COROLLARY 4.2. Let K be a weak-compact subset of a locally
conver metrizable linear topological space (E, 7). Then there is a
dense Gy-set A in (K, weak) such that the identity map (K, weak) —
(K, .77) is continuous at each point of A. In particular each point
of A is a G-point in (K, weak).

A weak-compact subset of a locally convex metrizable linear
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topological space is ‘ Eberlein compact’ in the sense of [1]. Amir and
Lindenstrauss proved that in an Eberlein compact set the set of all
Gs-points is dense [1].

In Corollary 4.1, if K is further assumed to be convex, then
A N ext(K) is weak-dense in ext (K), where ext (K) is the set of all
extreme points of K. We prove this fact by the methods of [18].
The necessary technical result is contained in [18, Theorem 2.3],
which we quote here with a slight modification to suit our purpose.

THEOREM 4.3. Let 7, and F, be two locally convex wvector
topologies for a linear space E such that

(i) there is a local base for 7, comsisting of 7 yclosed sets,

(ii) (E, 77) is pseud-metrizable and (E, 73) is Hausdorff, and

(iii) for each .7 ,-compact subset D of E, the identity map:
(D, 7,) — (D, .77) is continuous at each point of a dense subset of
D, 7).
Then, if K 1s a 7 ;-compact convex subset of E and if Z is the set
of all points of continuity of the identity map: (K, 7,)— (K, 7,),
the tntersection Z Next(K) is F,-dense in ext(K), and K is the
T ~closed convex hull of Z N ext (K).

Proof. We only indicate the necessary modification of the proof
in [18].) First assume that the topology .7 is defined by a single
lower _7,-semicontinuous pseudo-norm p. Then follow the proof of
[18, Theorem 2.2] werbatim except that “Z,” and “.7” should be
replaced by “.7,” and “.7,” respectively. The separability of (E, 77)
and [18, Proposition 1.2] are not necessary here because of assump-
tion (iii). The proof of [18, Theorem 2.3] can now be used verbatim.
This concludes the proof.

Now in Theorem 4.3, let (E, .7;) be a locally convex metrizable
linear topological space and let .7, be the weak topology (=w(E, E*)).
Then assumptions (i) and (ii) are clearly satisfied, and Corollary 4.2
states that assumption (iii) is also satisfied. Therefore we obtain:

THEOREM 4.4. Let (E, 77) be a locally convex metrizable linear
topological space, let K be a weak-compact convex subset of E, and
let A be the set of all points of continuity of the identity map (K,
weak) — (K, .77). Then AN ext(K) is weak-dense in ext(K), and
K is the closed convex hull of AN ext (K).

Theorem 4.4 was proved in [18] with the extra condition that

! We take this opportunity to make the following correction in [18]. Replace “of
the 2nd category in itself” by “Baire” at the following three places: p. 147 line 3;
p. 148 line 2; p. 169 line 6.
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(E, 97) be separable. In case (E, 77 ) is a Banach space, Theorem
4.4 is a consequence of Troyanski’s theorem [21, Corollary 7] that
depends on many difficult theorems in Banach space theory due to
Troyanski, Amir-Lindenstrauss and Lindenstrauss. In contrast with
Troyanski’s proof, where norms of a particular kind play an essential
role, our approach is completely topological and relatively easy.

REMARK 4.5. Let (F, 97), K and A be as in Theorem 4.4, let
we ANext(K), and let U be an arbitrary .7 -neighborhood of u.
Then, by the definition of A, there is a weak-open neighborhood W
of u such that WnN Kc U. Let K, be the closed convex hull of the
weak-compact set K ~ W. If we K, then  is extreme in K,, and
hence we K ~ W, contradicting the fact that we W. Therefore,
u¢ K, and a fortiori w is not contained in the closed convex hull
of K~ U. In case (E, 77) is a Banach space, a point of K having
the property just described is called a denting point of K. More
specifically, a point u of a subset S of a Banach space is called a
denting point of S [20], if, for each positive ¢, w is not in the closed
convex hull of S ~ {z: |2 — w]|| <¢}. Hence Theorem 4.4 implies that
each weak-compact convex subset of a Banach space is the convex
closed hull of its denting points. When the Banach space is separable,
this fact was observed by Rieffel [20] using a theorem of Linden-
strauss [15], and the general case is due to Troyanski [21].

Now we consider the weak* topology in the dual E* of a Banach
space E. The situation here is much more complicated. Given a
weak*-compact subset K of E*, there may not exist any point where
the identity map (K, weak*) — (K, norm) is continuous. However, if
E* is separable, then by an easy category argument one can prove
that the identity map (K, weak*) — (K, norm) is continuous at points
of a weak*-dense subset of K (see [18, Corollary 1.3]). We shall extend
this result to the duals E* that are “weak-compactly generated” (for
definition, see below).

LEMMA 4.6. Let E be a normed linear space, let K be a non-
empty weak™ (= w(E*, E))-compact subset of E* such that K< C + B,
for some weak (= w(E*, E**))-compact subset C of E* and for some
positive number ¢, where B, = {f: fe E* || fll £ ¢}, and let 0 > 2¢.
Then there is a momempty open subset W of (K, weak™) such that
diam W < 4.

Proof. The space K x B, is compact with respect to the product
of the weak™* topologies, which will be again referred to as the weak*
topology. Let d: K x B.— E* be the map defined by d(f, 9) =f — g.
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Let F = d*[C], and let p: K x B,— K be the projection. Since C is
weak-compact, it is also weak*-compact, and consequently C is weak*-
closed in E*. Hence F is weak*-closed in K x B,, and p[F] =K
because K< C + B.. By using the weak*-compactness of F' and Zorn’s
lemma, we note that there is a minimal weak*-compact subset F, of
F such that p[F,] = K (cf. step I of the proof of Theorem 1.2).
The map d: (F,, weak*) — (d[F,], weak) is continuous and d[F,] is weak-
compact, because the weak and weak* topologies coincide on C. By
Corollary 4.2, the identity map i: (d[F,], weak) — (d[F], norm) is con-
tinuous at some point of d[F,]. Therefore, there is a point (f,, 9,) € F,
where ¢od: (F,, weak*) — (d[F}], norm) is continuous. It follows that
there is an open neighborhood V of (f,, g,) in (K x B, weak*) such
that diam d[F, N V] <6 — 2¢. By the minimality of F,, K # p[F,~ V].
Therefore, W = K ~ p[F,~ V] is a nonempty open subset of (K,
weak*). Let f,, f,e¢ W. Then there are g, g, in B, such that (f,, g.),
(f» 9.) € F,. By the definition of W, it follows that (f,, 9.), (3, 92) €
F,N V. Therefore 6 — 2¢ = ||d(f,, 9)) — (S, 9) || = 1| — 9. — F2 + 9:1];
whence ||f, — fi|| < (6 — 2) + || g, — 9.]| £ 6. This shows that diam
W < 4, and the proof is complete.

A closed linear subspace H of a Banach space E is said to be
weak-compactly generated if there is a weak-compact subset of H
whose linear extension is dense in H. Equivalently, H is weak-
compactly generated if and only if there is a weak-compact convex
circled subset C of H such that H is the closure of J{nC:n =1, 2,

.Y

THEOREM 4.7. Let E be a mormed linear space, and let K be
a weak*-compact subset of E* such that KcC H for some weak-
compactly generated norm-closed linear subspace H of E*. Then
the identity map: (K, weak*) — (K, norm) ¢s continuous at each point
of a dense subset of (K, weak*).

Proof. Let ¢ be a positive number and let O. be the union of
all open subsets O of (K, weak*) such that diam O <e¢. Since (X,
weak*) is a Baire space, it is sufficient to show that O, is dense in
(K, weak*). Clearly we may assume that X+ ¢. Let U be an
arbitrary nonempty open subset of (K, weak*). Then we must prove
that O.N U+ @. Let C be a weak-compact subset of E* such that
U{rC:n=1,2, ---} is norm-dense in H, and let d =¢/3. Then
UcU{®nC+ By:m =1,2, ---}. Since each nC + B, is weak*-closed
in E* and since (U, weak*) is a Baire spaces, there is a nonempty
open subset V in (K, weak*) and a positive integer n such that
V-c UN (nC + B;), whereV~ is the weak*-closure of ¥V in K. Since
V- is nonempty and weak*-compact, and since nC is weak-compact,
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it follows from Lemma 4.6 that there is a nonempty open subset W
of (V-, weak*) such that diam W <30 =e. Since V is weak*-dense
in V-, VN W is nonempty. Also VN W is open in (V, weak*) and,
hence, in (K, weak*). Therefore, @ = VN W O, N U, and the proof
is complete.

THEOREM 4.8. Let E be a normed linear space, and let K be a
weak*-compact convex subset of E* such that KC H for some weak-
compactly generated, norm-closed, linear subspace H of E*. If A 1is
the set of all points of continuity of the identity map: (K, weak*) —
(K, norm), then A N ext (K) is weak*-dense in ext (K), and the weak*-
closed convex hull of AN ext(K), is K.

Proof. It is only enough to apply Theorem 4.3 to the linear
space H with the norm and weak* topologies in places of .77 and
7, respectively. Conditions (i) and (i) are trivially satisfied, and
Theorem 4.7 states that condition (ii) is fulfilled.

A special case of Theorem 4.8, where E* is separable, was proved
in [18, Theorem 3.2]. This theorem had some interesting conse-
quences about the existence of extreme points and denting points
[18, Corollary 3.4 and Theorem 3.5]. By repeating exactly the same
simple arguments, we obtain from Theorem 4.8 the following corol-

lary.

COROLLARY 4.9. Let E be a normed linear space such that E*
18 weak-compactly generated. Then

(a) each nmorm-closed, convex, bounded subset of E* is the norm-
closed convexr hull of its extreme points, and

(b) each norm-closed, convex, bounded subset of E* is contained
1 the weak™-closed comvex hull of its denting poinmts.”

REMARK 4.10. The proof of (a) requires [16, Lemma 1] which
was proved by Lindenstrauss using a deep theorem of Bishop and
Phelps [3]. We wish to point out that there is a simple but elegant
alternative argument by Bourgin [5] (see [19, Lemma 1]).

Conclusion (a) of the preceding theorem answers Problem 16 of
Lindenstrauss [17] affirmatively.®* Previously John and Zizler obtained
the same conclusion with the additional hypothesis that E be a weak-
compactly generated Banach space [12, Corollary 3]. Their proof

2 In a forthcoming paper entitled “Dentability and extreme points in Banach
spaces”, R. R. Phelps derives from Theorem 4.8 a conclusion stronger than Corollary
4.9,

3 This problem was also solved recently by Lindenstrauss by a completely different
method.
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consists of a modification of Troyanski’s method.

There is another class of dual spaces where the conclusions of
Theorem 4.8 and Corollary 4.9 are valid. Let us say that the norm
of the dual E* of a normed linear space E satisfies condition (¥ %)
if anet {f,} in E* converges to f in norm whenever f,— f relative
to the weak* topology and || f;|| — || £||. This is equivalent to saying
that, on the unit sphere {f:|| f|| = 1}, the weak* topology coincides
with the norm topology. For instance, the norm of [,(S) = (c,(S))*
satisfies condition (k). The next proposition is not directly related
to the main theme of the present paper, but it is an easy consequence
of Theorem 4.3.

PROPOSITION 4.11. Let E be a mormed linear space such that the
norm of E* satisfies (k¥k), let K be a weak*-compact convexr subset
of E*, and let A be the set of all points of continuity of the identity
map: (K, weak*) — (K, norm). Then A N ext(K) is weak*-dense in
ext (K). Consequently conclusions (a) and (b) of Corollary 4.9 are
also valid for E*.

Proof. In view of Theorem 4.3, it is sufficient to establish the
following: If D is a weak*-compact subset of E* then the identity
map (D, weak*) — (D, norm) is continuous at points of a weak*-dense
subset of D. Since the norm function fi—||f] is lower weak*-
semicontinuous on E* and since (D, weak*) is Baire, there is a dense
Gs-set B in (D, weak*) such that the norm function restricted to D
is weak*-continuous at points of B. Suppose that {f,} is a net in D
such that f, — f e B relative to the weak* topology. Then || f,||—
[l £, and it follows from property (k%) that f; —f in the norm
topology, i.e., the identity map: (D, weak*) — (D, norm) is continuous
at points of B. This concludes the proof.

Proposition 4.11 was independently discovered by J. Lindenstrauss
and by us in 1967. The proof of Lindenstrauss is outlined in a letter
to Asplund, and it is based on a modification of [15, Theorem 1].
Asplund gave a different proof of the fact that [,(S) has the “Krein-
Milman property” (i.e., the conclusion (a) of Corollary 4.9) in [2].
When the set S is uncountable, the space [,(S) is not weak-compactly
generated.
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