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FUNCTIONALS ON CONTINUOUS FUNCTIONS

J. R. BAXTER AND R. V. CHACON

Let ^(M) be the space of continuous functions on a com-
pact metric space M. In a previous paper a class of nonlinear
functionals φ on ^([0, 1] x [0, 1]) was constructed, such that
each φ satisfied:

( i ) limM/11_o0(/) = O,
(ii) $ ( / + g) = Φ{f) + Φ{g) whenever fg — 0, and
(iii) Φ(f+ a) = φ(f) + φ{a) for any constant a.
In this paper we show that the dimensionality of [0, 1] x

[0, 1] is what makes the construction work. More precisely,
we show that if φ is a functional on ^(M) satisfying (i), (ii),
and (iii), and if the dimension of M is less than two, then φ
must be linear.

1* Introduction* Let M be a compact metric space. Let <g%M)
be the space of continuous real-valued functions on M. In this paper,
we will prove the following result:

THEOREM 1. Let Φ: ̂ (M)—*R (R = the real numbers) be a func-
tional such that:

( i ) limll/IH0 Φ(f) = 0, (|| / || = s m w \ f(x) |)
(ii) Φ(f+ g) = Φ(f) + Φ(g) whenever fg=0
(iii) Φ(f +a)= Φ(f) + Φ(a) for all f e rέ?(M), aeR.
Then if M has dimension no greater than onef Φ must be linear.

The additivity properties (ii) and (iii) may also be expressed by
one condition:

(ii)' Φ(f + g) = Φ(f) + Φ(g) whenever g is constant on {x \ f(x) Φ 0}.
It is also easy to see that we must have Φ(a) = aΦ(l) for all

aeR.
It has been shown in [2] that there exist nonlinear functionals

Φ on ^([0, 1] x [0, 1]) which are bounded, continuous, monotonic, and
satisfy conditions (ii) and (iii). Thus Theorem 1 does not extend to
spaces of dimension greater than one.

In [1], a proof of Theorem 1 is given for the special case M =
[0, 1]. We will use this case of Theorem 1 to prove the general case.
In §2 it is shown that Theorem 1 is equivalent to the following
result:

THEOREM 2. For each f e i f (M), let &f = [f~\E) \E^R,E
Borel). Suppose a measure μf on &f is given, for each fe
such that:
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( i ) the measures μf are uniformly bounded in total variation,
and

(ii) the measures μf are consistent, in the sense that if &f £ &g

then μf = μg on &f.
Then if M has dimension no greater than one, a measure μ on

the Borel sets of M can be found, which is the common extension of
all the μf.

Theorem 2 is obvious if M is the unit interval, but not if M is
the unit circle. Theorem 2 will be proved in § 3.

2* Construction of a set f unction* For each / e ^(M), let £fs

be the space of continuous functions g e <^(M) which are measurable
with respect to &f. It is easy to see that g^Sff if and only if
g(x) = g(y) whenever f(x) — f(y), and that this means g is of the form
hof where h is a continuous function on R.

LEMMA 1. Φ satisfies conditions (i), (ii), and (iii) of Theorem 1 if
and only if:

( i ) Φ is bounded, that is, there exists k such that \ Φ(f) | ^ k || / 1 |
for all f e <έ?(M),

(ii) Φ is linear on each space

Proof. Assume Φ satisfies (i), (ii) and (iii) of Theorem 1. Fix
fe ^(M). Let J be a compact interval containing f(M).

Define Φ* on <if(I) by the equation Φ*(fc) = Φ(hof). Clearly Φ*
satisfies conditions (i), (ii), and (iii) of Theorem 1. By the special case
of Theorem 1 that is proved in [1], Φ* must be linear. It follows at
once that Φ is linear on £ffm

Since Φ is continuous at 0, there exists r > 0 such that

11/11 ^r implies |Φ(/) | ^ 1 .

Then for any / e &(M), f Φ 0,

Thus Φ is bounded.
Now assume Φ satisfies conditions (i) and (ii) of Lemma 1. Then

condition (i) of Theorem 1 clearly holds.
To prove that condition (ii) of Theorem 1 holds, let us first assume

that / and g are in if(ilf), with / ^ 0, g ^ 0, and fg = 0.
Then / = ( / + g) V 0 and g = ( / + g) A 0, so that / and g are

both in £ff+g. Hence Φ(/+ g) = Φ(f) + φ(g).
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Now assume that / ^ 0, g ^ 0, and fg = 0. Then by the preceding
argument / and g are both in £ff-» so again Φ(f+ g) = Φ(f) + Φ(g).

Finally, for arbitrary / and g in %f(M) with fg = 0, let f =f V 0,
/» = / Λ 0, & = 0 V 0, & = ff Λ 0. Then

+ 0i) + Φ(/E + 9*) by the first case,

+ #(&) + ΦGQ + φ(^2) by the second case,

= Φ(/i + /s) + <%i + &) by the first case,

= Φ(f) + Φ(flr) . Thus condition (ii) of Theorem 1 holds.

Condition (iii) of Theorem 1 clearly holds, so Lemma 1 is proved.
Using Lemma 1 and the Riesz representation theorem it is easy to

see that for each functional Φ satisfying conditions (i), (ii), and (iii)
of Theorem 1 we can find a system of measures μf satisfying con-
ditions (i) and (ii) of Theorem 2, and such that Φ(f) = I fdμf for each

/ e &(M). Conversely, if μf, f e <^(M), is a system of measures
satisfying conditions (i) and (ii) of Theorem 2, then Lemma 1 implies

that the functional Φ defined by Φ(f) = I fdμf must satisfy conditions
(i), (ii), and (iii) of Theorem 1. It follows at once that Theorems 1
and 2 are equivalent.

In what follows we will use both Φ and the corresponding system
of measures μf.

LEMMA 2. Let f and g be in ^(M). Let K be a closed set in
&F, Π &?β. Then μf(K) = μg(K).

Proof. f(K) is a compact set in R. It is easy to see that one
can find a sequence of continuous functions hn on R such that 0 g
K ^ 1, hn = 1 on a neighborhood of f{K)f hn — 1 on the support of
hn+1, and the intersection of the supports of the hn is f(K).

Let fn = hn of. Then clearly 0 ^ fn ^ 1, fn — 1 on a neighborhood
of K,fn = l on the support of fn+lf and the intersection of the sup-
ports of the fn is K.

Let gn = Vn°g be a sequence having the same properties as the
fn. Fix/». Then fn = 1 on a neighborhood, A9 of K. Since the inter-
section of the supports of the gn is K, it follows that for sufficiently
large m the support of gm will be contained in A. Hence, by choosing
subsequences and relabelling, we may assume that, in addition to the
properties mentioned above, fn and gn are also such that fn — 1 on a
neighborhood of the support of gn> and gn ~ 1 on a neighborhood of
the support of /n+1.

Since the fn are uniformly bounded, and fn—*Xκ pointwise as
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n-* oo, w e h a v e Φ(/ u ) = \fndμf-* μf{K) as n —> oo. Similarly Φ(#w) —•

μ,(iΓ) as w — oo. Suppose μ , ( # ) > μg(K). Choose <5 > 0, δ < ̂ ( i Γ ) -
μg(K). F o r sufficiently l a r g e w w e m u s t h a v e Φ(fn) > Φ(gn) + δ. By
relabel l ing w e m a y a s s u m e t h a t Φ(fn) > Φ(gn) + δ for all n.

L e t un b e a cont inuous funct ion on M such t h a t 0 ̂  i t . <Ξ 1,
ww = 0 on t h e s u p p o r t of #„, a n d un — 1 on {x \ fn(x) < 1}. L e t

v«=f«- unfn - gn .

It is easy to check that 0 ̂  vn ̂  1, and the support of vn is contained
in

{x I /.(*) - 1} - {x I 0.(*) = 1} .

Hence Φ(—vn + fn) = Φ(—vn) + Φ(Λ), by the additivity property (ii)'
of Φ. That is, Φ(ttn/n + gn) - Φ(-t;») + Φ(Λ). Since unfn = 0 o n the
support of gn, we have Φ(t6Λ/w + gn) = Φ(unfn) + Φ(g) by the additivity
of Φ again. Thus ΦKΛ) + Φ(gn) = Φ ( - ^ ) + Φ(Λ). Hence Φ(uwΛ) >
Φ(-v.) + δ, and so Σ?-i*(w Λ) > ΣΓ-iΦ(-v ) + m«, for all m.

It is easy to check that the supports of the unfn are pairwise
disjoint, as are the supports of the vn. Hence

( Σ !*•/•φ\

by additivity, for all m.
The functions Σ J U ^ Λ a n d ΣίΓ=i(—^) a r e uniformly bounded

in m. Hence the last inequality contradicts the boundedness of Φ.
Hence our original supposition, μf{K) > μg{K), was false. This proves
Lemma 2.

Since M is a metric space, it is easy to see that every closed set
E and every open set E occurs in some &f.

DEFINITION 1. Let us write μf(E) = μ(E) for E closed or E open,
since the number has been shown to be independent of /.

LEMMA 3. The set function μ is bounded and additive wherever
defined.

Proof, μ is bounded because the total variation of the μ/s is
uniformly bounded.

Let Et and E2 be sets, with JŜ  n E2 = φ, such that μ{Eτ), μ{E2\
and μ(E1 U E2) are defined. We may have Elf E2 open, Eu E2 closed,
Eί open, E2 closed, and Et U E2 open, or JEΊ open, j&g closed, and E1 U ^ 2

closed. In each of the four possible cases it is easy to find a function
/ 6 ^(M) such that Et and E2 are in &f. This proves Lemma 3.
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LEMMA 4. Let Gn he a monotone increasing sequence of open sets,
with union G. Let Fn he a sequence of closed sets such that Gn^Fn^G
for all n. Then μ(Gn)-+μ(G) and μ(Fn)->μ(G) as n~* oo.

Proof. Suppose μ(Gn) -/> μ{G) or μ(Fn) -/> μ(G). Then there exists
a J > 0 and a subsequence n3- such that

I μ(Gnj) - μ{G) I + I μ{F%j) - μ(G) | > δ

for all j . Since the Fn are compact we can choose n5 so that
Fn. £ Gn.+l. It is then a straightforward matter to construct/e ^(M)
such that Gnp En. e έ%ff for all j . This contradiction proves the lemma.

3* Proof of the theorems* In this section we will prove:

THEOREM 3. Let μ be a real-valued set function defined for closed
subsets and for open subsets of M, such that:

( i) μ is hounded and additive wherever defined, and
(ii) μ has the continuity property described in Lemma 4.
Then if M has dimension no greater than one, μ can be extended

to a measure on the Borel sets of M.

We can apply Theorem 3 to the set function μ constructed in the
previous section. The Borel measure μ which is an extension of μ
agrees with each measure μf on all closed sets in &f. Since each μf

is obviously regular, μ must be an extension of μf. Thus Theorem 2
is proved, and hence Theorem 1 also.

From now on let μ be any set function satisfying conditions (i)
and (ii) of Theorem 3.

LEMMA 5. Let Fn be a monotone decreasing sequence of closed sets,
having intersection F. Let Gn be a sequence of open sets such that
Fn^Gn^F for all n. Then μ(Fn) -> μ{F) and μ(Gn) --> μ{F) as
n —* co.

Proof. Follows from condition (ii) by taking complements and
using the additivity property.

DEFINITION 2. For any set E £ M, define

v{E) = sup {μ(F) \F^E, F closed} .

Since μ is bounded, so is v. Clearly v is monotone.

LEMMA 6. Let Et and Ez he disjoint subsets of M. Then v(E1 U
JE,) ;> v{Eύ + v(E2). If E, and E2 are either both open or both closed,
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then v{Ex U E2) = v{E,) + v(E2).

Proof. Follows from the additivity of μ.

LEMMA 7. Let G be open. Then

v(G) = sup {μ(H) I H £ G, H open) .

Proof. Follows from the continuity of μ.

We pause now for a general topological lemma.

LEMMA 8. Let X be a locally compact separable metric space of
dimension 0. Then X is a countable union of monotone increasing
sets that are both compact and open.

Proof. From the definition of dimension 0, each point x has
arbitrarily small neighborhoods Gx which are both closed and open.

By choosing Gx small enough, it can therefore be made both com-
pact and open.

Since X = \JXeχGx, and X has a countable base, we can find
xl9 x2, such that X = U~=i G9%. Let Kn = U;=i G9.. Then each Kn

is both compact and open, and Kn \ X.
Now we return to M9 μ, and v.

LEMMA 9. Let G be open. Let Έ be open, E £ G, such that BE Π G
has dimension 0. Then μ(G) <* v(E) + v(G — E).

Proof. Let D =dEf]G. Let H = G - E. Then the sets E, D,
and H are mutually disjoint, and G = E U D U H.

Since D is a closed subset of the locally compact separable metric
space (?, D is a locally compact separable metric space also.

By Lemma 8, we can find sets Kn which are both compact and
open in D, such that Kn \ D.

Let Kn = An Π D, where An is open. Since Kn is compact we may
choose An such that 4 n g G . By taking unions if necessary we may
choose the An to be increasing.

Let En and Hn be open sets such that ΐ?n £ E, Hn^ H for all n,
En 1 E and Hn \ H. Let GΛ = En U AM U Hn. Then GΛ is open, Gn £ G,
and GΛ ί G Then μ(Gn)-+μ(G) as ^~^ ©o, by continuity.

But for all n, Gn - (Gw nf i)U (Gn f) D) Ό (G% Π ff)

- (Gn n JS?) u κn u (G. n H ) .
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Thus μ(Gn) = μ(Gn n E) + μ(Kn) + μ(Gn f] H), by additivity,

^ v{Gn ΠE) + v(Kn) + v(Gn n H)

S v(E) + v(D) + v(H) ^ v(E) + v(G - E) .

This proves Lemma 9.

LEMMA 10. Let G be an open set. Let E be open, £ £ ( ? , such
that dEf]G has dimension 0. Then v{G) = v(E) + v(G - E).

Proof. Let ε > 0 be given. Choose H open, if S G, such that
μ(#) ^ v(G) — ε. This is possible by Lemma 7.

Then d(EnH)f]H = dEf]HSdEπG. Hence 3(#n#)n#
has dimension 0. By Lemma 7, μ(iϊ) ^ y(JS7 n # ) + ̂ (^" - Ef) H) ^

+ v(G - J57). Hence v(G) ^ y(JS') + v(G - E).
The reverse inequality holds by Lemma 6, so Lemma 10 is proved.
From now on in this section, let M have dimension at most one.

LEMMA 11. Let Gx and G2 be open, with union G. Then v{G) ^

Proof. Gλ — (?2 and G2 — Gι are disjoint and relatively closed in
G. G is a separable metric space of dimension no larger than 1.
Hence by Theorem 1 in [3], section 2711, page 290, we can find an
open set E^G such that E3Gi-G2,En (G2 - GJ = 0, and dEf)G
has dimension 0.

By Lemma 10,

v{G) = v{E) + v{G -E)^ v(Gd + v(G2) .

LEMMA 12. Let Gn be a sequence of open sets. Let G = U"=i Gn.
Then v(G) ^ Σ - i v(Gn).

Proof Let ε > 0 be given. Choose F closed, F g ( ? such that
μ(F) ^ v(G) - ε .

Then there exists n such that F S U?=i G1/. Hence Σf=1 v (Gy) >
Σ?=i (̂Gi) ̂  ^(Ui=i Gi), by Lemma 11, ^ ^(F) by definition.

This proves Lemma 12.

DEFINITION 3. For any set E^M, define v*(E) = inf {v(G) \ E S
Gf G open}. Clearly y*(£/) = v(E) when £/ is open.

LEMMA 13. v* is an outer measure.

Proof. Follows from Lemma 12.
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LEMMA 14. Every open set is measurable with respect to v*, in
the sense of Caratheodory.

Proof. Let G be open. Let E be any set. We know

v*(E) ^ v*(E ΠG) + v*(E - G),

since v* is an outer measure. We must show that

v*(E) ^ v*(Ef) G) + v*(E - G) .

Choose any open set H such that E S H. Let ε > 0 be given.
Choose F closed, F § G Π H, such that v(F) ̂  v(G n H) - e. Then
v(H) ^ v(F) + v(H- F\ by Lemma 6, ^v(Gf]H)-ε + v{H-F) ^
v*(EnG) - ε + v*(j& - G) by definition.

Hence v(H) έ y*(J^Π G) + v*{E - G). By definition, then, v*(E) ^
y * ^ Π G) + y*(£/ — G), and Lemma 14 is proved.

Because of Lemma 14 we know that v* defines a measure on a
(7-algebra of sets that includes the Borel sets of M.

Proof of Theorem 3. First suppose that μ is nonnegative. Let
G be open. By Lemma 7, μ{G) ^ v(G). On the other hand, for any
closed subset F of G, μCF) ̂  ^(F) + μ(G - F) = μ(G). Thus /̂ (G) =
y(G). v* is a measure on the Borel sets of M which agrees with μ
on open sets and hence on all sets in the domain of μ.

Now let μ be arbitrary. Consider the set function ω = v* — μ,
defined for closed subsets of M and for open subsets of M. ω is
nonnegative by Lemma 7. By what has already been proved, ω can
be extended to a Borel measure. But then μ = v* — ω can be
extended also, so the theorem is proved.
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