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HOMOTOPY TYPES OF SPHERICAL FIBRE
SPACES OVER SPHERES

SEIYA SASAO

It is known that the fibre homotopy type of a spherical
fibre space over a sphere is determined by its characteristic
class. Our purpose is to describe the homotopy type of the
total space of a spherical fibre space over a sphere in terms
of its characteristic class, and to classify homotopy types of
them by defining a kind of equivalence between characteristic
classes.

I. M. James and J. H. C. Whitehead classified homotopy types
of the total space of sphere bundles over spheres in [2] and [3].
Our results are a generalization of their theorems and also an answer
to one of problems proposed by J. D. Stascheff in [7]. Let <, be
the space of maps of a k-sphere into itself with degree 1 and let
Z, be the subspace of <7, consisting of maps preserving the base
point (0, ---,0,1). We denote by &,.(x) the total space of an
orientable k-spherical fibre space over an n-sphere with yem, (<)
as its characteristic class. First we shall treat with the case where
fibrations have cross-sections. Then we may suppose ¥ = ,.(§) where
i Fp— <, denotes the inclusion map.

Now let

Al nn—-x(%) - 7Zk+'n—1('c/k)

be the isomorphism defined by B. Steer in [5]. We are concerned
with A(¢) but not y.
Then if 7,.(8) = 1,(&) we claim

(1) ME) = M8 + [=, 4l

for some z¢e m, (%) where [,] denotes Whitehead product.

For, let ¢+ be the inclusion .&Z,., — &, where .&Z,,, is the rotation
group of .&7*. Clearly 7 induces a fibre map of the fibration &#,,,— &*
into the fibration &, — .¢°*. Since the restriction of ) on the image
of 7, () is equal to (up to sign) ([5]), the homomorphism _# which
is defined by G. W. Whitehead in [6], A maps o7,(.S”*%) onto the group
[7.(&%), o] by the formula _#d(x) = —|[x,¢] where 0 denotes the
boundary homomorphism taken from the homotopy sequences of fib-
rations. Thus, since & — ¢ is contained in the 67, (S7%), we obtain
).

Let 3 be the natural projection

ﬂk-l—n—-l(*gk) B ﬂk+n—1(yk)/[ﬂn(yk)y [k] .
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A map of &% into itself with degree —1 canonically~ induces an
endmorphism of 7., ,(*)/[7.(%), ¢,]. We denote by 2 the compo-
sition of ¥ and the endmorphism. The set

AN L) = (£EME), =2INME))
is independent from the choice of & by (1). Then we shall prove

THEOREM 1. If the fibration y.(2 =1,2) has a cross-section
(m, &k = 2), Z4..(0) has the same homotopy type as &,.(X) tf and only
if

(1) ifn==k or n=k=even #Z(Z.(X)) = A (L))

(2) ifn=Fk=odd d-\M§&)=N§,) mod [7,(57F), ¢,] for some integer
d, (d, m) =1, where m 1is the order of M&,) mod [7,(S%), &].

If £, .() has the same homotopy type as .&°* x .&#" the fibration
has a cross-section. Hence we have

COROLLARY 1.1. &,.(%) has the same homotopy type as &% x "
if and only if the fibration ¥ ts fibre homotopically trivial.

Secondly we consider fibrations which do not necessarily have
cross-sections. Therefore, we are mainly concerned in the case n > k.
However, the case n =k + 1 is different from others, so we suppose
n=k+2=4.

Let p:.97% — &% be the homeomorphism defined by

la(xly xZ, M) xk-l—l) = (—xl, xZ) A xk+1) ’

and let 0: £, — %, be the homeomorphism induced by 2(o(f) = p.fp).
For any ac7m, (5%, from the diagram

ﬂk+n—1('—(/n_l) —(X—) ﬁk-&-n—l(‘—yk) <_l— ﬂ.n—l(%) —;k—)ﬂn—l(gk) ’
ES *

we have the subgroup of 7,.,_.(%,) defined by
L(a) = TN e W, T (P
Then we claim
(2) Z(a) = Z(—a) and p(F(a)) = Z(—4).) -

For, the former is clear and the latter follows from the following
commutative diagram (see Lemma 2.2)

Tysni(FF) — T (F) — Tui(Z)
—2 =

(3) (—!k)*l lP:k L"*
Tiraa(S7F) N T i(F2) —;;" T, (L)
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where p | &, = i, 0" is the natural factorization.
Now let S7[X] (x € ®._i(Z,)) be the set of elements

{X; _X, IO*X) —lO*X}

and let &, &, — &% be the projection of the canonical fibration.
We define a relation in =, (%, as follows ¥, ~ y, if and only if
0, = 0, mod & (% (0,)) for some pair (4, 6,), 6,€ .F[X].

It can be easily checked by (2) that this is an equivalence rela-
tion.

THEOREM 2. Ifn =k + 2 =4, then &,,.(L) has the same homo-
topy type as &y.(x) tf and only if Y ~ L.

If fibrations have cross-sections this is an alternative version of
Theorem 1. For, since .F.(x;) =0 we have ¥ = 4,.(§;). Then the
condition X, ~ X, means that y, = £y, or ¥, = *+p,% i.e.,

17(8) = 208 or 1.(8) = £0.((00)(&) -

These are satisfied if and only if & = +&, + 90 or & = +p.& + o0
where o€ 7,(5°%). Now apply A to the both side, then we have that

ME) = £ME) or (=) ME) mod [, (), o] .
This is so if and only if _Z(£...(1)) = Z(Z4..(())-

From Theorem 2 the following is easily deduced.

CoROLLARY 2.1.  Suppose that 7w, () D FoX)Tprnai( 7).
If €..0m=Fk+2=4) has the same homotopy type as the total
space of amn orthogonal S *-bundle over ", then the fibration itself
18 fibre homotopically equivalent to an orthogonal &7 *-bundle over &.

As special cases we have

COROLLARY 2.2. Suppose that the fibration y has a cross-section.
If &0 =k + 2=4) has the homotopy type of the total space of
an orthogonal &7 -bundle over 7", the fibration is fibre homotopically
equivalent to an orthogonal .&F*-bundle over .S°™.

COROLLARY 2.3. A k-spherical fibring over S°* 4s stable fibre
homotopically equivalent to an orthogonal SZ*-bundle over ™ if and
only if the total space of the fibring has the same homotopy & -type
as the total space of an orthogonal S*-bundle over 7",
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2. &ua(X) as a CW-complex. Let f: (" x)— (L, 1) be a
representative of ¥ and let f: 57" x .&* — 5% be the adjoint map.
We denote by .27(f) the complex .&*U 2" x S* obtained from
identifying (x, y) with f(z, y) for (x, y)e ¥ x S~

Then it is known that &,,.(x) has the same homotopy type as
ZZ°(f) (Prop. 1 of [4]). It may be considered that 227(f) is given
the natural CW-decomposition .57* Ue” Ue**" in which attaching
maps for cells are as follows

a: S —— P a@) = [, %)

(4) 18: yk+n—l — gfn X yk—-luyn—-l X @k
— D" X U X Frh—— P Ue"
auf

where a: (2", ") —(* Ue", %) denotes the characteristic map
for e*(a = 0a).

Let j be the inclusion: (S7* Ue", +) — (&% Ue", &%). Then we
have

LEMMA 2.1. Fu(X) =a, and j.(B) = x[&,¢), if n >k + 1 or
a=0. Thus we can define the orientation of 22 (f) by 7.(B) = &, t]..

Proof. The former follows from (4) and the definition of F..
Since the group m.,_,(S* Ue", &%) is isomorphic to the direct sum

/%C’Y[C_i? ek]r + ank‘i‘”—l(g’n? ynnl)
under the assumption, j,.(8) is of the form
mla, ¢, + ax

for some integer m and z¢€ 7wy, (2", *Y). Let ZU(i=Fk,n, k+ n)
be generators of 57 9%(f)) = 2. Then, by the theorem in [1],

23U &5 = tmZin -

On the other hand, since .%°(f) has the homotopy type of & ,,.(X)
we have

%U%a:i%o+n!

i.e., m = +1. And moreover ax = 0 follows from the existence of
the projection of the fibration.

Now we consider the special case where 0 = a = . (y). Then
the map f may be considered as a map: ("%, x) — (¥, 1). Since
Fl1&" 1 x x = %, & is naturally imbedded as the image of 2™ x x.
In this situation, after identifying x,,, (5% V.5°") with 7}, (&%) +
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Tprnn(FF N ", FF), it follows from Lemma 2.1 that
(5) B = @) + [&, t] -
And also B may be considered as follows

Lt = gt x LY X G D7
(6) P

X x USSP x P s " X xUxx .
PaX*UxXf

where @, denotes the identification map: <* — 7% /p* 2,

We make use of M to determine x, so we recall the definition of
A. Let ¢ be the map: &?— &, defined by e¢( ) = the identity of
&% and let & be a map: (&7, ) — (F,, 1). Since adjoint maps
h, & .57 x <% — <% has the same restriction on 577\ .&% the
separation element d(h, &) € 7,.,(.7%) is defined. B. Steer defined \(h)
by d(k, §). For example we have (see the diagram (3))

LEMMA 2.2. —2\0%(8) = (=) ME(E e T (FD)) -

Proof. Let g be a representative of £. Then we have

(=) MO) = (—4),d(F, &) = p,d(, &) = d(F7, p)
= d(p3, &id x ) = d(Pi(id x p)(id x ), &(id x p))
= —d(pa(id x ), §) .

Since 0 g(x, ¥) = (I, PW)) = P'G(id x p)(, y) we have g = pi(id x ).
Hence d(og(id x 0), &) = d(0'g, &) = Me'9) = M0%(9)).

LEMMA 2.3. In the expression in (4) we have x = ME), up to
stgn, where & denotes the homotopy class of f.

For the proof of Lemma 2.3 we prepare the following general

LEMMA 2.4. Let & be a l-connected CW-complex and let ¢
be a complex <& Ue"(a ~ 0). Let f, g be maps: 25 — 2 such that
1L =9 and let € be a map: .Y — 2% which induces the tso-
morphism: SE(FY, x) — SF( 02, ). Then we have d(f, 9) = f(£)
— 9+(8) (up to sign).

Proof. Since o ~ 0 there exists a homotopy equivalence @: (& V
PV, ) — (£, &) relative to &£ Let 6 be the inclusion &Y —
¥ V.Y, Then

a(f, 9) = =d(fP, 99) = £((fP).d — (99).9) .
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From ¢ 'Cemy(¥ Vv .S°Y) and the assumption on { we have
Pl = 20 + e (L)), ie., L = £p,(0) + P«(0) .
Hence

(0 — 9.0 = Fu(E£P. () + Pu(0)) — 9.(£P,(0) + P«(7))
= £(fuPx0) — 9,2.00) = £d(f, 9) .
Proof of Lemma 2.3. Let & be the identification map:
X PP P PP X
The maps
fo ™ iz X PP X x o

are well-defined and has the same restriction on * X 7%/ X x,
The complex &7**' x 7%/ ' x % has a form .&7* U e (a ~ 0).
Then we apply Lemma 2.4 to the case where

L%/:yn—lxyk/yn—lx *’ gs*xgk/yn—lx*,
N=n+k—-1, f:f@’“, g =Eé ' and 2= .
Thus we have
Mf) =d(f, &) =d(fe, §o™) = 2(f@ .0 — E&.0)
for any {: (&7 %) — (24, &) which induces an isomorphism
C*: %k-l—'n—ly (yk+n-1' *) - %I«ﬁn—l(*%/; g) N
Consider the following commutative diagram
yk+n—1 — gn X yk—l U yn—l X gn __)gn
X % U .7 X FE—— P PRGN
x U
Jenu |7
o

Since we can take { with the composition of two maps in the upper
row it follows from (é<™),({) = 0 that \f) = =(f&7).(0). From
the diagram (6) the proof is completed.

3. Proof of Theorem 1. Let %" be a complex of the form
yk \/ yn U ek+n
where B8 = & + [¢, ¢,] under the decomposition

Tsna(FF NV F) = Tpini(FF) + Tprni(F™) + 2, 0] -
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By the cellular homotopy theorem .27 has the same homotopy type
as >¢7; if and only if there exists a homotopy equivalence (n, k = 2)

0. FhN - PN

such that @.(8,) = =8,. Now consider the case » = k. It is obvious
that a map @ is homotopy equivalence if and only if @ | " = +¢, +
tyot(te (™), and @ | & = +¢, if n <k = *¢, and @|.97" = f,00 +
+e(cen, (%) if n > k. From easy computation of @,.(8,) we can
obtain

LemmA 3.1. If n+# k, %] has the same homotopy type as 7,
if and only if the set {+a,, £(—¢).} is equal to the set

{£a,, =)} mod [7,(7), ¢] .

Next we consider the case n» = k. By the same way as in [2]
we have

LEMMA 3.2. (James and Whitehead). If n =k = even, %] and
%5 have the same homotopy type if and only if

{ta} = {a} mod [7.(&), u] -

LemmMmA 3.3. (James and Whitehead). If n =k = odd, 22, and
% have the same homotopy type if and only if there exists an integer
d which is prime to m, and da, = a, mod [7,(57%), t,] where m, is the
order of a,mod [7, (%), ¢].

Thus Theorem 1 follows from Lemmas 3.1, 3.2, 3.3, and 2.3.

4. Some Lemmas. Let &© be a complex of the form .&°* U e”
with the characteristic map a: (=", ") — (&, &%) for the n-cell.
Let &~ be the complex obtained from identifying .* of two copies
of & ie., ZFZ=e" UL Ue*. It may be considered that two maps
1t =1,2): &~ < and a map v: &F— & are naturally defined and
satisfy vy, = the identity. Since o, |.o°* = p,| 5% the separation
element d(x, tt,) is defined. Then we have

LEMMA 4'1° If Be 7T'k+71',—1(~><Z) a’nd J*(B) = ’m[@, lk]n then /‘1*(‘8) -
ﬂz*(B) = m[d{th, ), ¢l

Proof. Consider the following commutative diagram
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ﬂ*(yk) I 71'*(,57) - TC*(% yk)

o T T

* *

which is taken from the homotopy sequence of the pair and * =k +
n— 1.
From the commutativity it follows that

§4((B) — 1:AB)) = It — 1, 1), .
On the orther hand, we have
Jeld(es, 1), 4l = [5.d(es, 1), 4l = [ — 114, 4], .
Thus, for some element ve 7,(57%), it holds
mld(th, ), 4l = t(B) — 144B) + 1.:(7) -
Applying v, to the both side, then, from
Vud(t, ts) = AV, v1t) = d(id, 1d) = 0 and v4(8) = B,

we have v,7.(v) = 0. Hence 7,(v) = 0 from the commutativity of the
diagram.

As an application of Lemma 4.1 we have

LEMMA 4.2. Let f, g be maps: ¥ — 2 such that f | £ = g| &
For any B, 1.(B8) = m|Q, ¢],, we have

Proof. Define a map f U g: &— 2 by
(fUugu.=f, and (fUNL.=9.

Since d(f, 9) = d((f U 9)ts, (f Ugtt) = (f U 9),d(t, ) the proof is
completed by applying (f U g), to the both side of the equality in
Lemma 4.1.

Let id be the identity map of #(n =k + 2 = 4) and let w: &¥—
& be a map with w | &% = id|.&#*. In general, d(id, w) is belonging
to 7, (). However, we have

LEMMA 4.3. w is a homotopy equivalence preserving the orien-
tation of the m-cell if and only if d(id, w) is contained in 1,7, ().
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Proof. Let x,, y, be the orientation generators of S#,(<%°), and
G7(”") respectively, and let 6 be d(id, w). Since z, — w,(x,) =
04(Y.), . = w,(x,) holds if and only if J,(y,) = 0. On the other hand,
the diagram

T () o T (L) — T (L S = S FF) = L)
*
shows that 0,(x,) = 0 is equivalent to é € 7,7, (7%).

Now we prepare lemmas for the proof of Theorem 2. In what
follows, we use the notations in §2 and suppose n =k + 2 = 4.

LEMMA 4.4. Let 1 be the inclusion: % — % Ue" < #(f). Then
we have

15'(0) = QyThina(F"7)

Proof. Since the pair (£7(f), &%) is homotopy equivalent to
(gk,n(X)’ yk)

n-k+n(*%(f); '—Vk) = 77"k+n(’-qn) = Eﬂk«f—n—l(yn_‘) .

Hence from the homotopy sequence of the triple (2£7(f), &7 U e, &%)
we obtain

Trsn( P U €, 1) = 0Ty (E(S), SF Ue") U @,mpn(27, 7).
Thus we have that
7:;‘(0) = a77"lc+'n(*9pk U en’ yk) = a*nk+n_1(,_§/”‘1) .

Let x,(¢ = 1, 2) be elements such that . Z.(y) = Fu()) = @. Then
Bi€ T (¥ Ue™) and there exists an element &e 7w, (%,) which
satisfies 9,.(8) = % — Xa-

LEMMA 4.5. There exists a homotopy equivalence @: 7% Ue" —
S U e which satisfies

(1) ¢*(6k) = ek’ 50*(6”) =e"

(2) B — PulB:) = 1, ME) (up to sign).

Proof. Let k: &¥"— 5"V 57 be a map of type (1, —1) and let
X be the fibration induced from X, \/ y, by «, i.e., y = X, — ). Since
1:(3) = x%7(f) has the form 7%\ .&°"U¢e** by (5). It may be
considered that £ induces a map £:

Z(f) = &LF Vv LU — Z(f) U Z2(f)
=9 x UL U g7 x FF
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which satisfies
Ey(e"t™) = eft™ — e, £ (e") = eF — e} and £,(¢) = €* .

Let £: &%\ 7" — e U 57" U e} be the map obtained from the restric-
tion of £ on ¥V <" and let ¢; be the inclusion: e} V .&*—ef U
S* Uer. Then we have

(*) £ (B) = 1:(B)) — 12:(Bs) -
Define the map »: e U .S#* Uer — % Ue™ by
rler US* =identity =7 | .  Uer.

We claim that
(**) 7.(w) is contained in 17,-image where @ = & |.%" and 7 denotes
the inclusion: &% —er U &7 U e,

For, consider the commutative diagram

T(F* NV " ) — m(er U S Uer, FF) — T (FFV e, FF)

E* Tx
[jl* [.7'2* Ijs*

ﬂn(gk\/y") ?ﬂn(e?ukae?) T»n,,(V"Ue”).
% *

Let z, be the element of 7,(* v .5°"*) which is represented by ..
Then we have

j34"*(0)) = js*"”*’?(zn) = 7'*.7;2*(?(27»)) = T*E*jl*(zn)
=7 (1l@) — (@) =@ —a =0.

Thus (**) is proved.
Now, by applying », to the both side of (*) we have

& (B) =B — B .
On the other hand, by using (5), we have
T*E*(B) = T*E*(‘k(ix(f)) + [‘k, z,,]), (‘n = zn)
= 1 (E£M8)) + a4, 7(@)]
= 1, (EME) + [4, @), (@' € T (), 1,0 = 7,(®) by (**))
= 1,.(£ME) = [¢, &])
ie., B — B:=1(ENME) % [0, 4]) .

If we take a map @: .* Ue* — .5°% U e such that d(id, ») = Fo, it
follows from Lemma 4.2 and Lemma 2.1 that

By — ?*(;82) = 7:*(1[(1)’, 51:]) i-e-: B — q)*(ﬁz) = @*(ik(é)) .
Since d(id, @) € 1,m,(S*) @ satisfies (1) by Lemma 4.3.
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LEMMA 4.6. There exist homotopy equivalences u': 2 (—f)—
Z(f) and w': 277 (pp) — ZZ(f) which satisfy

(1) ul(e®) = e and u.(e”) = —e",

(2) wi(e) = —é" and ui(e") =e".

Proof. Let % be the identification map: .&7*+ 9" x .&* — 27 (f)
and define ', u”’ as follows

lon(xly xz; ccty xn) - (—xly xZ) c wn)y ((%1, xZ; ct x'n)e »@n)
w@) =2, u'(®) =px if xe " and
Wy, 2) = %0y, 2), vy, 2) =%W, 02 it (y,9)e Z" x .

%' and " are well-defined by the formulas
—F = flo. | &™) x 4d) and of = pf(id x p).
5. Proof of Theorem 2. First of all we prove

LEMMA 5.1. If &,.() has the same homotopy type as &pa(Xs)
there exists a pair (8, 8,), 0, € .S7[L;] which satisfies

(M) g}k*(‘%) = ,g(’k*(ﬂz)

(Z) there exists a homotopy equivalence i 97(g,) — 727(g,) with
vo(e) =€ (1 =k, n).

Proof. Let h: 227(f) — 27(f,) be a homotopy equivalence which
may be considered as a cellular map. Then we have

Foel(s) = £(Fuldy)) o H(—4),FlXe) -

Since it is clear that each element on the right hand side can be
obtained as &.(0,) of a suitable 0,¢ .5”[X,], there exists a pair (X, 0.)
which satisfies (%), and a homotopy equivalence w: 227(f) — 27(9.)
by Lemma 4.6.

We suppse that u,(ef) = ¢.ef and u,(e}) = €,e0-(¢4, €, = £1). Then
we have the equation

(B) (et )(FuX,) = €, F(0,).
Hence, by (%), we have

(2) eet) Flk) = Fll) = TN
The case of ¢, = 1. Since, by Lemma 4.6, there exists a homotopy
equivalence u’: 257 (e.f,) — ¢ 7(f) with % (e¥) = ¢" and w)(e") = ¢,¢", the
set

{01 = enxly 027 "#‘ = u°7’(’,}

satisfies (.%) and (<%).
The case of ¢, = —1. Similarly, by Lemma 4.6, there exists a



218 SEIYA SASAO

homotopy equivalence w”: %27 (e.0f.) — 22 (f,) with wi(e*) = —¢* and
uy(e”) = e¢". The set

{01 = €aP04 X1y 62! "/r = u"u”}
satisfies (.97) and (F) by Fu(e.0:X) = € — ) FlXy).

Proof of Theorem 2. First we suppose that &,.().) has the same
homotopy type as &;,.(X;). We choose (4,, 6,, ¥) as stated in Lemma
5.1. Let g, be a representative of 6, and let v, be the attaching
class for the (k + n)-cell of .2£7(g;,). Let ¢: F* Ue"— F* Ue™ be a
map as stated in Lemma 4.5 (x; = 6,) and let v be the map obtained
from the restriction of 4 on &* Ue". Since y,(7) =7, we have

0="7— "—V*(%)
=Y — @>k(71) + 7’*(71) - "7;*('71)
(7. — PL(7y) + [d(®, ¥), 4] by Lemma 4.2 and Lemma 2.1
= 1, (EN®) + [d(®, ¥), ¢l by Lemma 4.5 and
0, — 0, = 0,u() .

On the other hand, since d(@, v) = d(®, id) + d(id, ¥), d(®¥) is con-
tained in 7,7,(5%) by Lemma 4.3. Hence we obtain that

Il

M®) =19, ¢] + 3'(0) for some d € 7w, (%) i.e.,
7 = N[0, 6] mod A73(0) = A F(0) Tk s nn(ST)

by Lemma 4.4. By applying %,. to the both side we have
0, — 6, = 0 mod &(F.(0)), ie., X~ %.

Secondly we assume that x, ~ y.. Hence there exists a pair (4, 6,)
such that 4, = 6, mod £ (Z.(4,)) which means

01 - 62 = 'Lk‘(‘,])’ 776 ﬂ"n—-l(%)y )‘(7]) € -@k*(el)nké-n—l(y%_l) .

Since .Z.(0,) = F.(0,) there exists a homotopy equivalence ®: &* U
e" — &% U e" which satisfies (see Lemma 4.5)

71— Pul(72) = 1 (E=MD))

Since 7, (END)) € 1, Ful(0) * Tpyni(F"") =0 by Lemma 4.4, we have
v, = @.(7,), i.e., @ is extendable over .9¢7(g,) to .%7(g,). Then, by
Lemma 4.6, &,,.(%) has the same homotopy type as % .(X.)-
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