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EXTREME OPERATORS ON CHOQUET SIMPLEXES

KA-SING Lavu

If K is a Choquet simplex and X is a metrizable compact
Hausdorff space, we let ;K denote the set of extreme points
of K with the facial topology and let S(L(C(X), A(K))) denote
the set of continuous operators from C(X) into A(K) with norm
not greater than 1. Our main purpose in this paper is to charac-
terize the extreme points of S(L(C(X), A(K))). We show that
T is an extreme point of S(L(C(X), A(K))) if and only if its
adjoint T* sends extreme points of K into XU — X S C(X)*,
also, the set of extreme points of S(L(C(X), A(K))) equals
C:K, XU — X).

1. Suppose E, E, are two real Banach spaces, we let S(H))
denote the unit ball of E, and let L(E,, E,) be the set of continuous
linear operators from E, into E,. Following Morris and Phelps [7],
we call an operator T in S(L(E, E,)) a nice operator if its adjoint
T* sends extreme points of S(E*) into extreme points of S(E;). It
is clear that if T is a nice operator, then 7T is an extreme point of
S(L(E, E,). The converse is in general not true and there are
various literatures dealing with this problem under different hypo-
theses (c.f. [2], [5], [9])- In [2], Blumenthal, Lindenstrauss, Phelps
proved the following: Suppose E, = C(X), E, = C(Y) where X, ¥
are compact Hausdorfl spaces with X metrizable, then T 1is an
extreme point of S(L(C(X), C(Y))) if and only if there exists a con-
tinuous map P:Y —X and a continuous function ne C(X), )| =
1 such that (Tf)(y) = My)f(PW)) for ye Y and fe C(X). Asa simple
consequence, we see that in such case, 7 is a nice operator. Our
main purpose in this paper is to prove a similar characterization for
an extreme point 7€ S(L(C(X), A(K))) where X is a metrizable com-
pact Hausdorff space and A(K) is the set of continuous affine functions
on a Choquet simplex K.

Suppose K is a Choquet simplex, we let 0K be the set of extreme
points of K and let 0;K be the set 0K with the facial topology. A
necessary and sufficient condition for a real-valued function f on
05K to be continuous is that for any ae A(K), there exists be A(K)
such that b(z) = f(x)-a(x), x€dK (c.f. [1]). In §2, we extend this
property to an E-valued function where E is a Fréchet space and we
will make use of the results in the next two sections. In §3, we
prove our main theorem: let K be a Choquet simplex and X a metriz-
able compact Hausdorff space, then Te S(L(C(X), A(K))) is an extreme
point if and only if there exists pe A(K, C(X)*) (set of affine w*-
continuous functions from K into C(X)*) and a nve A(K) such that
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@D POK) & X; (i) [Mx)| =1 for e dK; (il) Tf(v) = M) - P@)(f), f €
C(K),xc0K. From this, we can easily see that such 7 is a nice
operator. Analogous results have also been obtained by Lazar [4]
in considering the compact operators and positive operators from
C(X) into A(K). In 84, we prove that the set of extreme points
of S(L(C(X), A(K))) equals the set C(0sK, XU —X) where we consider
X and —X to be in C(X)*. By using this result, we can show that
S(L(C(X), A(K))) is the weak operator closed convex hull of its extreme
points if and only if 0gK 1is totally disconnected. In such case, K is a
Bauer simplex and A(K) = C(Y) for some compact Hausdorff space Y.
The above is a generalization of a result by Morris and Phelps [7]
on considering S(L(C(X), C(Y))).

2. Suppose K is a simplex (Choquet), we let K be the set of
extreme points of K and let 0,K be the set 0K with the facial topology.
Recall that a set A is facially closed if and only if A= @ or A=
F 0K where F is a closed face of K. It is known that [1] 0,K is
compact (not necessarily Hausdorff) and that every real-valued con-
tinuous function on 94K can be extended to a continuous affine function
on K. Our first theorem is to generalize this result to an E-valued
function where E is a Fréchet space. We will use A(K, E) to denote
the set of continuous affine functions from K into E.

LEMMA 2.1. Let K be a simplex and let E be a locally convex
space. Suppose f s a continuous function from 3;K to E and U is
an open convex symmetric neighborhood of 0 in E, then there exists
a continuwous affine function T in A(K, E) such that T(x) — f(x)e U
for each xe oK. Moreover, T can be chosen such that T/0K is facially
continuous.

Proof. By the above remark, we see that the lemma is true for
E=R. If E=R", we can write f = (f,, ++-, f.) Where each f,:
0;K—R,1 <1 < n, is continuous and hence there exist extensions
T, of fyon K, 1 <% <n. Letting T = (T, +--, T,) shows that the
lemma is true for E = R".

We now pass to prove the general case. Since ;K is a compact
set, f(0sK) is compact. Hence there exist ,, ---, #, in 0;K such that
{f(®) + U}z, is an open cover of f(0sK). Let {a, -+, a,} be a par-
tition of unity subordinated to {f(x,) + U}i,i.e,,eacha, i =1, «--, n
is real-valued, nonnegative continuous function on d;K such that
suppa; & f(x;) + U, 2., =1. Define fy:0;K— E by

Fol@) = 3, el f@)F @) -
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Then f, is continuous and for xze dsK
Fol@) = @) = S af@) (@) - f@)eU.

Also, notice that f,(0sK) is contained in a finite-dimensional subspace
of K, so we can extend f, to Tyec A(K, E) and

Ty(@) — f(e) = fulw) — f(x)e U, xedK .

THEOREM 2.2. Suppose K is a simplex and E is a Fréchet space;
then every continuous function from 05K into E can be extended to
a continuous affine function in A(K, E).

Proof. Let {p,} be an increasing sequence of pseudo norms on
E which defines the topology of E and let B,(r) = {y € E: p.(y) < r}.
We construct a sequence {7} in A(K, E) as follows: Let T, e A(K,
E) be such that

Ti(z) € f(x) + B(27), e oK .

Suppose we have constructed T,; let T,.,e A(K, E) satisfy
Tri(@) e (f(x) — kZzl T(x)) + B.(27"), v€ 0K .

(Note that (f(z) — X, T,(x)) is facially continuous on 0K, hence we
can apply Lemma 2.1.)

The function >}, T, converges uniformly to /' on 0K. We want
to show that 3\, T, is uniformly Cauchy on K and thus will converge
to a continuous affine function T'e A(K, X) such that T(x) = f(x), v ¢
oK. Indeed, for any pe {p,}, the function po(3}.,. T,): K— R is
continuous and convex, it attains maximum on some extreme point
2, € K, hence

p(ﬂiﬂ Tn(x)> =< p(;km Tn(x0)>, re K.

It follows that 3:_, T,.(x) converges uniformly to 0 as k&, m tend to
infinity. Thus 35, T, converges to Te A(K, F) and the proof is
completed.

Let K be a compact convex set and E a locally convex space.
We use ¢(E) to denote the family of all nonempty convex subsets of
E and let ¢(E) be the subfamily of ¢(F) consisting of all nonempty
closed convex subsets of E. A set-valued map @ from K into ¢(&)
is convex if
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M(z) + (1 — NO(@) SO0, + (1 — N2, 0SS 1, 2, 2, K.

The map @ is called lower semicontinuous if for each open set U in
E, the set {xec K: ®(x) N U #+ @} is an open set in K and a function
@: K— E is called a selection of @ if ¢(x)e @(x) for each xe K.

LEmmA 2.8. (Lazar [5]). Suppose K is a simplex and E is a
Fréchet space. Let @: K— ¢(E) be a convew, lower semicontinuous
map. Then @ admits a continuous affine selection ®. Moreover, if
F is a closed face of K and f:F — E is a continuous affine selection
of @/F, then the selection @ can be chosen so that @/F = f.

We remark that if we replace E by a complete locally convex
space and assume that for each xe K, @(x) is contained in a bounded
convex set which is metrizable with the relative topology, then the
above lemma still holds.

THEOREM 2.4. Let K be a simplex and let E be a Fréchet space.
Suppose f is a facially continuous real-valued fumction on 0K. Then
for any Te A(K, E). There exists Se¢ A(K, E) such that

S(x) = f(x)T(x), xc 0K .
Proof. The theorem is true for E = R [1]. For E = R", we can
write T = (T}, -+, T,) and there exists S;e A(K) such that
Si(x) = f(x)Ti(z), x€ 0K, 1=100,m.

Hence the function S = (S, ---, S,)e A(K, R") satisfies the require-
ment. To consider the general case, we let U be an open convex
neighborhood of 0 in E and claim that there exists Sy € A(K, E) such
that

Sy()e f(@)T(x) + U, xc oK .

Since fe C(05K) and 04K is compact, f has a bound M. The map
T is continuous. It follows that 7(K) is compact and there exists
%, +++, €, € K such that U, (T(x,) + (1/M)U) covers T(K). Define
¢: K— ¢(R") by

O(z) = {(x,.) e B 3\ T(w) e T() +
=1L, An=0,i=1, n}

It is easy to show that @ is lower semicontinuous and satisfies hypo-
theses of Lemma 2.3. Hence there is a continuous affine selection @



EXTREME OPERATORS ON CHOQUET SIMPLEXES 133

of @®. By the first part of the proof, we can find Sj: K— R" such
that

Sy(x) = f(@)p(x), x€ 0K .
Define S;: K— E by

Su@) = 3 (S @) T@) ,
where S; = ((S)),, =++, (Sy).). We see that for xe oK

@) = 3 F@P @) T(w) = @) 3 2@ T@) e f@)T@) + T

To complete the proof, we let {p,} be an increasing sequence of
pseudo norms which defines the topology on K and let B,(r) ={ye
E: p.(y) < r}. By the above, we can find a sequence S,c A(K, E)
such that

S.(x) e f(x)T(x) + B.(27"), xc 0K .

Similar to Theorem 2.2, we can show that the sequence converges
uniformly on dK and hence converges uniformly on K to S¢ A(K, E)
such that

Sx) = f(x)T(x), x€ oK .

We remark that above theorem will also hold if we replace F by
a complete locally convex space such that every bounded subset of
E is metrizable.

3. It is known that if K is a simplex and E is a Banach space,
for Te L(E, A(K)), there exists a w*-continuous affine function 7:
K — E* such that T(x)(k) = (T™(k))(x) for each € E, ke K. Moreover,
| T|| = sup,ex || T*(k)||. Conversely, for each w™*-continuous affine
function 7* from K into E*, there corresponds an operator T: E —
A(K) satisfies the above two conditions. Hence, for convenience, we
will identify A(K, E*), the space of w*-continuous affine functions
from K into E*, with L(E, A(K)). In this section, our main object
is to prove the following theorem.

THEOREM 3.1. Let K be a simplex and let X be a metrizable
compact Hausdorff space. Then a continuwous linear operator T in
L(C(X), A(K)) is an extreme point of S(L(C(X), AK))) if and only
if there exists a map e AK, C(X)*) and a map ne A(K) such that

(i) P0OK) = X< C(X)*

(ii) M=) =1, 20K
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(iii) T(f) (&) = M) - P@)(f), f € C(X), xe K.
As an easy consequence we have:

THEOREM 3.2. Suppose K is a simplex and X is a metrizable
compact Hausdorff space. Then Te S(L(C(X), A(K))) is an extreme
point if and only if T is a wmice operator. Equivalently, T*(0K) =
XU —X, where X and —X are considered to be in C(X)*.

Blumenthal-Lindenstrauss-Phelps [2] proved the above theorem
for the case when A(K) = C(Y) for some compact Hausdorff space
Y. We employ a similar idea to prove this general case. In [4],
Lazar considered the set of compact operators and set of positive
operators of similar type. He also gave an example showing the above
theorem is no more valid for the operator space L(A(K), C(X)). We
will begin by listing and proving a series of lemmas which will lead
to the theorem.

LEMMA 38.38. Suppose K is a topological space and E is a locally
convex space. Let @: K— c(E) be a set valued map satisfying

(i) there exists a compact set K' = E such that @&(x) & K’ for
each ve K,

(ii) for each open half space H in E (i.e., H={ye E: f(y) < r},
fe E* reR), the set {xc K: 9(x) N H+ O} is open in K.

Then @ is lower semicontinuous.
Proof. C.f. [3].

LEMMA 3.4. Let K be a simplex and let X be a metrizable com-
pact Hausdorff space. Let Te A(K, C(X)*), ||T|| £1. Define ®: K—

c(C(X)*) by
m@:d@mgygiMﬂ@ﬁiM@:%szLM

1

v

0,

k2

MGKi:L~mn%

where the closure is taken under the w*-topology. Then we have
(i) o0+ A —Ny) =2\0(x) + 1 —NP(¥); 0 <A<, 2 ye K.
(ii) @ s lower semicontinuous.

Proof. Note that for any open set U and any subset A4 in a
topological space, UN A = @ if and only if UN A # @; hence it
suffices to prove the lemma by showing that
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W) = {0 = 1t S SNTR)S S0k = 3, 33

=1

=1,xi20,kieK,i:1,...,n}

satisfies (i) and (ii).

(i) It is clear that Z(vx + L — N)y) 2 M (x) + 1 — MNP (). To
prove the reverse inclusion, let 0 < ¢ < 307, N, T(k,)*, where > Mk; =
M+ L —=Ny, SN =1,0=0,keK,i=1, ---, n. By the decom-
position lemma [8] on lattices, there exist {\;;}, {k;;} such that \;; >
0, k;eK,t=1+-+,1n,7=1 2 and

A = Z{ Nnkm (l - )“)y = Z{ Niokoss »
k’zkz = )‘ilkil + 7\:1'2]51;2 9 ?: = 1’ sy, n.

Hence

0<p< x(i —%‘—T(ka) +ad- M(éﬁ 1

=1

fﬁj - T(kﬂ)‘“) .

The Riesz decomposition property implies that there exist y, ¢
C(X)* such that

0 < =2 3 20 Tk

0= —Mp.=1-)N Z U T(km)+
and

#:)\,#14—(1—7\4)#2.

Hence we have
TOw + (1 — Ny) S (@) + (L — V() .

() Let VO, £, £) =i v(f) — #(f) <17, f € O(X), pre CXY*, >
0. By Lemma 3.3, we need only show that the set {x e K: ¥'(x) N V(,
® f) #* @} is open in K, or equivalently, we will prove the following:

(*) let xe K, e ¥(x), then there exists a neighborhood U
of x such that V@, g, f)N¥ (k) +# @ for each ke U.

Since 0 < ¢ < 32 N\ T(k,)*, by the Reisz decomposition property,
we can write ¢ = > A\, where 0 < ¢, < T(k)*, i =1, --+,n. We
first observe that if one of the 4, say ¢ = 1, has a neighborhood U,
of k, such that for ke U,
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VO"U ﬂu f) n w(k) ke @ ’

then (*) will hold, for the set N\, U, + 3%, Nk, is the neighborhood
we need. Now suppose (*) does not hold. By the above remark,
there exist nets {k%}, 4 =1, ---, » such that {k?} converges to %, and

Vs, sy )N (k) = @ for each ki .

Consider the net {32, Mkg}; it converges to « and
(**) V@, u, )N qf(zj“ Mk?) =@ for each «.

(The proof of this is straightforward, by using (i).) Since {T'(k7)*}.
is contained in a compact set (for ||T|| <1), we may assume that
T(k$)* eonverges to v, and T(k¢)~ converges tov), i =1, ---, n. Thus

T() = 30T (R)* = S 0T)™ = 3300 — 330k

It is clear that v, = T(k,)*. Let @ = > \y,; since D2, MT(k)T =
M, we have w = ¢. By Radon Nikodym’s theorem, we can write d¢ =
g.dw where g, is a Borel function on K such that 0 <9, <1. Let
g€ C(X) be such that

[ Jo—aldo<@IfID.

If we define g, by dy¢t, = g+ d(C 2 M T(k)), then p, e T(S . Nk5) for
each a and

tf) = Lf e, = Sxf gal(gi N T(kf)+) — SX fodw .
Hence

limsup (1(/) — 1) = | |£9— Faldo =3,

so that {g,} is eventually in V(1, £, f) N T (G % Mk7). This contradicts
(**) and we conclude that (*) is true.

LemMmA 8.5. Let K be a simplex and let X be a metrizable com-
pact Hausdorff space. Suppose there are set-valued maps @, U: K —
¢(C(X)*) satisfies

(i) @,¥ are convex, lower semicontinuous (w.r.t. the w*-topo-
logy).

(ii) There exists a bounded set W contained in the positive cone
of C(X)* such that for each xe K, O(x), ¥(x) = W.

(iii) 0e ?(x), ¥(x) for each xzc K.
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Also, let x,€ 0K, py€ O(x,), Yo € ¥ () with || ]| = ||vo|l. Then there ewist
T, T,e A(K, C(X)*) selections of @, U respectively such that T.(x,) =
Yy To(x)) = v, and || Ty(@)|| = || T(x)|| for each we K.

Proof. Let us first consider the case C(X)* = R. The map &z —
O(z) N ¥(x) is well-defined (i.e., ®(x) N ¥(x) = @ for all xe K) and is
lower semicontinuous, convex. Hence there exists a selection T of
the above map such that

T(w)) =ty =¥, -

(Note that in this case, ¢4, = v,.) The maps T, T, = T meet the re-
quirement.

To prove the general case, we let N = {¢re C(X)*: (1) = 0}, and
let By, Ry be the subspaces generated by g, and y,. (We assume
that g, v, # 0, otherwise the lemma is trivially true.) Then

C(X)* = N@Rr, =N@Ry, .

Let p, p, be the projections of C(X)* onto Ry and Ry, Define
o, K—¢(Ry,), ¥,: K— c(Ry,) as

@o(w) = {pl(#): He T(W)} s re K ,
Uyx) = {pt): pe 0(w)}, wxeckK.

It is clear that we may apply the above remark and find f,e A(K,
R, f.€ A(K, Ry,) such that

Fi@o) = o, fola) = v, || f1@)]] = || f(2)]] , reK.

Since every bounded set in C(X)* is metrizable under the w*-topology,
we let {g,} be an increasing sequence of pseudo norms on C(X)* which
defines the relative w*-topology on W and let B,(r) = {¢te C(X)*:
q.(¢) <r}. We will construct two sequences {7} and {77} as follows:
Let

D(z) = (p7(fu(®)) + B27) N O(@), w»ekK,
V(@) = (0'(fo@) + BET))N¥(), wzekK.

The maps @, ¥, are lower semicontinuous. By Lazar’s selection
theorem (also by the remark of Lemma 2.3), there exist continuous
affine selections T}, T; of ¥, @, such that

T (xo) = M, Tzl(xo) =Y, .

For n > 1, we let for x Cc K,
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0.(x) = (p7'(f1(®)) + B.27") N (T (x)

+ B,y(27)) N (2(@) + B.27M)
V() = (07'(fa(2) + Ba(27") N (T77(2)

+ B 27" N (¥ () + B,-i(27"))

and let T?, T7 be continuous affine selections of @, ¥, respectively
such that

TM(@,) = o, T3(o) = v, .

It is clear that {77}, %+ =1, 2 are uniformly Cauchy sequences and
converge to T, T,e A(K, C(X)*) respectively. Moreover,

T(x) e pr'(fu(x)) N O(@), Ty(x) € ' (fou@)) N T(@), wekK.

Observe that the subspace N has the property that each point in the
intersection of a translation of N with the positive cone has the same
norm. Thus for xe K each point in P;*(f.(x)) N D(x), P f(x)) N T(x)
(¢ = 1, 2) has the same norm and it follows that

T.@I = [[f: @[ =f@)] = T:@)I =zeK.

LeMMmA 3.6. (Lazar [4]). Let K be a simplex, X a metrizable com-
pact Hausdorff space and let S be the set of positive operators T from
C(X) to A(K) which satisfies T(1) =1. Then T is an extreme point
of S if and only if there is a function @: K— C(X)* which is affine
and w*-continuous such that

T(f)=) = P@)f), feC(X), ze K
and
T*PK)= X .

To prove Theorem 3.1, we use the standard fact that 7 is an
extreme point of S(A(K, C(X)*)) if and only if @ =0 is the only
Qe A(K, C(X)*) for which || T(x) + Q@)|| £ 1, xe oK.

Proof of Theorem 3.1. Let Te A(K, C(X)*) = L(C(X), A(K)).
Consider the following cases:

Case I. For each xedK, either T(x) =0 or T(zx) <0. In this
case, || T(x)|| = | T(x)(1)|. Hence the map x — || T'(x)|| is continuous and
we claim that 1 — || T(x)|] = 0 for x€ 0K. Suppose this is not true;
then there exists an extreme point «, of K such that 1 — || T'(x,)|| >
0. The map #—1 — || T(x,)|| is a continuous concave function and by
Edwards’ extension theorem [1], there exists he A(K) such that
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1 - ||T@)|| = h(x) =0, K
and

he) = L=

Choose e C(X)* such that z == 0, ||#]] < 1; then the map x— h(x)t
is in A(K, C(X)*) and

1 T() £ M)l =1, e K,

with h(z)¢ # 0, which contradicts the fact that T is an extreme point
of S(A(K, C(X)*)). We conclude that ||T(x)|] =1 for xc oK.

Let 7: K— R be the affine continuous function defined by z(x) =
T(x)(1); then |7(x)| = || T(®)|| =1 for x€ dK. Let \ be the restriction
of 7 to 0K. We claim that A is continuous in the facial topology on
oK. In fact, M(z) = =1 at each z in 0K and

Aid) = (1) N K .

Since 77'(1) is a closed face in K, the set A7'(1) is closed in the facial
toplogy and the same is true for A 7'(—1). We conclude that re
C(9sK) and can be extended to a function in A(K) [1]. By Theorem
2.4, there exists T"e A(K, C(X)*) such that

T'(x) = Mx)T(x), x€ 0K .

Note that 7" = 0 on 0K; hence 7" =0 on K and T"(x)(1) =1, xc oK.
Let F: C(X)— A(K) be defined as F(f)(x) = T"(z)(f). By the above
remark, we see that F(1) =1 and F = 0. Hence Lemma 3.6 implies
there exists a w*-continuous affine map @: K — C(X)* such that F(f) =
fop and ¢(K) = X. Thus we have

T(x)(f) = Mx) "' T"(@)(f) = M)F(f) (@) = M)P@)(f), xedK.
(Note that M(x) =1 or —1, for x€dK; hence Mx) = Mx)™)

Case II. There exists z,€ 0K such that T(x,) = T(x,)* — T(x,)",
where the decomposition is nontrivial. We will show that this is
impossible. Define @, ¥: K — ¢(C(X)*) by

0(w) = el {re C(X*): 0 = 1 < 3 MT@)", o

v

= Z:),x Sa =1, 0\ 0}

2 =1

and
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V() = el {re CX)": 0 < 1t < ST@),

]
M=
>
R
e
&

Il
R
&
v
S

=

By Lemma 3.4, they are convex and lower semicontinuous. If we let
0+~ (€ (), v, € ¥(x,) such that ||| = ||v,]||, Lemma 3.5 shows that
we can find continuous selections T, T, of @, ¥ respectively, so that

IT@)]| = | T@)ll, zeK

and
Ti(we) = o, To(we) =¥, .
Note that for xcdK,

O@) = {10 < 1 < T()"},
W(2) = {#1:0 < ot < T(2)) -

Hence if we let T, = T, + T,, then T, 0 and for x€0K

1 T(@) + Tu@) |l = [|T@)* + T@)|l + || T(@)~ — To@)|l
= 1 T@ | + I T@) + [ T@) [ = || Te(w) |
= [ T@* |+ | T@)~ | =1.

Similarly, we can show that || T(x) — T(x)|| =1 for all x€0K. This
contradicts that 7 is an extreme point of S(A(K, C(X)¥)).

4, In this section, we will consider the set of extreme points
of S(L(C(X), A(K))) where K is a simplex and X is a metrizable
compact Hausdorff space.

THEOREM 4.1. Let K be a simplex and let X be a metrizable
compact Hausdor(f space. Then there is a one-to-one correspondence
between the set of extreme points of S(L(C(X), A(K))) and C(0:K,
XU —X) where X U—X are contained in C(X)*.

Proof. Let T be an extreme point of S(L(C(X), A(K))) = S(A(K,
C(X)*)). By Theorem 3.2, T@K) < XU —X. We want to show that
T, = T/0K is continuous with respect to the facial topology on 0K.
Let E be a closed set in XU —X and let

E, =ENX E =En(—X).

The set conv E, is a closed face of S(C(X)*) [1]. Consider the set
0K N T *conv E)), it is clear that
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T7(E) = 0KN T Y(conv E)) .

To prove the reverse inclusion, let x € K N T (conv E,). Then T(x) e
X Nconv (B,). Thus T(x) is an extreme point of conv K, and T(x)e
E,ie., xe T (E)N oK = T7'(E,). We conclude that

T7Y(E) = 0K N T '(conv E))

and this shows that T, (%)) is facially closed (for T '(conv E,) is a
closed face of K). Similarly, T-(F%,) is facially closed. Thus for each
closed set £ < XU —X, T'(F) is facially closed and hence T, ¢ C(9K,
XU -X).

Conversely, suppose T,e C(0sK, X U — X). Since every bounded
subset of C(X)* is metrizable, by the remark of Theorem 2.2 we can
extend T, to Tec A(K, C(X)*) and hence it is an extreme point of
S(A(K, C(X)*)).

We call a simplex K a Bauer simplex if and only if 6K is closed
in K, or equivalently, 0,K is Hausdorff. Recall also that on a Bauer
simplex, the facial topology and the relative topology coincide and
A(K) is isometric to C(0;K) [1].

ProrosITION 4.2. (Morris-Phelps [7]). Let X, Y be two compact
Housdorff spaces with X metrizable. Then S(L(C(X), C(Y))) ts weak
operator closed convex hull of its extreme points if and only if Y is
totally disconmected.

THEOREM 4.3. Let K be a simplex and let X be a metrizable
compact Hausdorff space. Then the following are equivalent:

(i) The unit ball S(L(C(X), A(K))) is weak operator closed convex
hull of its extreme points,

(ii) 04K 1s totally disconnected,

(ili) A(K) 1s isometric to C(Y) for some Y which is compact
Hoausdorff and totally disconnected.

Proof. Note that if 0;K is totally disconnected, it must be Haus-
dorff. Hence the equivalence of (ii) and (iii) follows from the above
remarks on Bauer simplexes and that (iii) implies (i) follows from
Proposition 4.2. To show that (i) implies (iii), by Proposition 4.2, we
need only show that K is a Bauer simplex, i.e., 05K is Hausdorff.
To this end, for each xe€dK, we let [x] = {yc 0K: 3 facial neighbor-
hoods U, V of =, ye UNV = @}. Suppose ye [x]. Then f(y) = f(x)
for all feC(0s;K, XU —X) and by Theorem 4.1, T(x) = T(y) for all
extreme points T'e S(L(C(X), A(K))). Since S(L(C(X), A(K))) is the
weak operator closed convex hull of its extreme points, we have
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T(x) = T(y) for all Te S(L(C(X), A(K))). Suppose z # y. We let Rz
be the subspace generated by a ze X and define @: [z, y] — Rz by
@Az + (L — A)y) = @ — \)z. Then o is a continuous affine function
on the closed face [z, y] of K. Hence there exists an extension T, e
A(K, Rz) < A(K, C(Y)*) and Ty(x) # T.(y). This leads to a contradic-
tion. Thus # = y and 0;K is a Hausdorff space.

As a special case, we have:

COROLLARY 4.4. Let K be a simplex. Then A(K) is the closed
convex hull of its extreme points if and only if K is tisometric to
C(0,K) where 0,K (the set of extreme points with the relative topology)
is compact and totally discommected.

The author would like to express his indebtedness to Professor
R. R. Phelps for his valuable suggestions and careful reading of the
manuscript.
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