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SOME CONTENT MAXIMIZING PROPERTIES

OF THE REGULAR SIMPLEX

R. MICHAEL TANNER

In this paper it is shown that the regular simplex maxi-
mizes the sum of the squared contents of all ^-dimensional
faces, for all i = 2, , n, when the sum of the one-dimensional
squared contents is fixed. An immediate corollary is that the
regular simplex has the largest total length of all joining
lines, total area of all triangles, total volume of all tetrahedra,
and so forth, for a fixed sum of squared line lengths. Some
related unsolved conjectures are presented.

If a set of n + 1 points in ^-dimensional Euclidean space do not
lie in an (n — l)-dimensional hyperplane, their convex hull is a simplex,
the simplest of all ^-dimensional polytopes. Any two points in the
set determine a one-dimensional edge, or line, any three points deter-
mine a two-dimensional face, or triangle, and so forth. If all one-
dimensional edges have the same length, the simplex is called regular.
If for no other reason than pure symmetry, the regular simplex
should seem to be the extremum in any number of constrained
maximization problems involving simplices. In this paper we consider
a class of problems for which it is indeed maximal.

The author wishes to thank a conscientious referee who rewrote
and substantially improved the exposition of the main result.

l A symmetrization* Let S be the simplex in E% with vertices
A19 , An+1 and let V(i, j) — aίό = | At — A5 | be a typical one-dimen-
sional edge length. More generally, let V(ilf •••, is) be the content
of the subsimplex formed by Ah, •••, Aig.

THEOREM. For Σ ah > 0 fixed, the content power sum

taken over all s-tuples iγ < < i8, is maximal if and only if S is
a regular simplex.

The proof is based on a symmetrization which can be applied
to any nonregular simplex to increase each of the sums while main-
taining the constraint. We will give two equivalent constructions
for the symmetrization: The first gives insight into its general nature,
whereas the second is more immediately useful to the proof.

Given Alf , An+1, let / be the matrix whose (i, j)th component
is At Aif a vector inner product. If the simplex is not regular, we
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can assume without loss of generality that aik Φ aik for some k. Let
Jitj be the matrix formed from J by replacing every (i, k)th com-
ponent and (k, i)th component by the (j, k)th component and every
(y, k)th and (k9 j)th component by the (i, k)th. In effect, this corre-
sponds to an interchanging of the labels on At and As. Then let
J' = 1/2(J + Jitj). As the average of two nonnegative definite
matrices, J ' is itself nonnegative definite, so Jr = PΛPT, where
A — (λtf) is a diagonal matrix with nonnegative entries. Thus Jf =
QQT where Q = PΛιl\ The column vectors of Q can be taken for
A[, •••, A'%+19 the vertices of a new simplex for which a\k = a'jk for
all k.

In physical terms, this construction is equivalent to rotating the
At — Aj edge into En+1

f holding its midpoint fixed, until the edge is
normal to the original E*. The sum Σ ah will not be affected, but
the content power sum for λ = 2 will become strictly larger unless
the simplex is already regular. The reader might try this for n = 2
to get the idea. To handle the general case, we always represent
E% as t h e hyperplane xn+1 = 0 in En+1 = {(xlf * ,xn, %n+i)} Choose

the origin at 1/2(A< + Aj) and the x1 axis so that At = (1, 0, , 0),
and Aj = (-1 , 0, . , 0). Define S' = S(i, i; x) to be the simplex
formed from S by replacing A, and Ay with ^(α?) = (x, 0, « ,0,
l/(l - x2)) and ily(a?) - (-x, 0, .. , 0, V{1 - x2)). Note that Λ(l) -
A<, ̂ ( — 1) = Ah and similarly for As.

LEMMA 1. If A is any point in En then

\At{x) - AΫ = ( ί ± ^ ) IΛ - A|2 + ( ί ^ * ) I A3 - Af

and this remains true if i and j are interchanged) hence

\At(x) -A\* + \Aj(x) -A\2 = {\Ai- A\2 + \Aά - A\2} .

Proof. Simply write A = (xu , xn, 0) and calculate directly.
In what follows we call the translate of a subspace a flat, and

write d(K, p) for the distance from the set K to the point p.

LEMMA 2. Let F be any flat of En. Then

g(x) = WF, M*))

is concave in x.

Proof. By the Pythagorean theorem,

d\F9 At{x)) = 1 - x2 + d\F, p)
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where p = (x, 0, , 0) 6 En. Clearly d(F, p) = \(χ — χ0) sin θ0| for some
real numbers x0 and θ0, unless the x1 axis is parallel to F, in which
case it is constant. In either case g(x) — ax2 + bx + c with a ̂  0.

Note. The above remains true if i is replaced by j . The
function g{x) is strictly concave unless the a^-axis is normal to F.

LEMMA 3. The distance from {x, 0, • ••, Q)eEn+1 to a subspace
of En is at most the distance from (0, , 0, 1) e En+1 to that subspace
for any — 1 ^ x ^ 1.

Proof. The point 0 e En+1 belongs to the subspace.

Let V(i, j , klf , ks; x) be the content of the subsimplex formed
by Ai(x), Aά{x\ Ah, « , Λ s .

LEMMA 4. We have V(i, j , klf , ks) ̂  V{i, j , ίά, , &s; 0). Equal-
ity holds if and only if the line segment joining At and the A3 is normal
to the flat F determined by all the Akm and the point Ao — l/2(Ai +

Proof. The flat F cuts the subsimplex into two (measure dis-
joint) simplices, each of which can be considered as having for its
base the convex hull of Ao and the Akm. The heights of these
simplices are d(F, Aτ) and d(F, Aβ) respectively. By choosing co-
ordinates as before we have AQ = 0 and it follows from Lemma 3
with x = 1 and x = - 1 that d(F, A^O)) ̂  d(F, A,) and d(F, A3{0)) ^
d{F, Aj). The case of equality is obvious.

LEMMA 5. If Au , Ak are the vertices of a simplex and if the
flat formed by any k — 2 of them and the midpoint of the remaining
two is normal to the line segment formed by the remaining two,
then the simplex is regular.

Proof. Consider Atf As, and Ak where i, j and k are distinct.
Since the flat determined by all vertices except As and Ak is equi-
distant from these two points, d(Aif Aj) = d(Au Ak). Since this is
also true with i and j interchanged, every triangle is equilateral and
the result follows.

We now prove the theorem. Consider the sum

both for T = S and T = S(i, j ; x) - S'. There are 3 types of terms:
(i) those which involve neither i nor j , (ii) those which involve exactly
one of i and j , and (iii) those which involve both i and j . Terms



614 R. MICHAEL TANNER

of type (i) are the same for S and S'. By Lemma 4 terms of type
(iii) for S are at most as large as the corresponding terms for S\
We now group the terms of type (ii) in pairs so that the subscripts
of two paired terms are the same except that one has an i where
the other has a j . Consider a typical pair. Let Bl9 •••, Br be the
vertices corresponding to their common subscripts, H their convex
hull, V{H) its content, and F the flat they determine. Then each
pair is proportional to

where dk(x) = d(F, Ak(x)). Note that dt(l) = d3{-l) and dt(-ΐ) = dό(l).
By Lemma 2,

Thus Σ (S) ^ Σ (S(ΐ, i; °)) β y Lemma 1, when S is replaced by
S(i, j ; 0) the quantity Σ α v ^s n ° t changed, and both distances | -Afc — A< |
and \Ak — Aj\, for any k, are replaced by their root mean square.
Thus, by applying an infinite sequence of operations S —• S(i, j ; 0)
where every pair (i, i) occurs infinitely often, one obtains a sequence
of simplices S = Si, S2> which converges to a regular simplex, and
moreover Σ (Si) ^ Σ (S2) ^ . By Lemma 5, one of these inequali-
ties must be strict unless S is regular.

Now for 0 < λ ίg 2 the function /(#) = #*/2 is concave, so if N
is the number of V(iu •••,*•) then

i.e.

The right side is maximal if and only if S is regular. However,
if S is regular then all terms in both sums are equal and we have
equality. This completes the proof of the theorem.

COROLLARY. Of all simplices whose vertices lie on a unit
hypersphere U, the regular simplex uniquely maximizes the sum

Σ
taken over all s-tuples it < < is.

Proof. I t is well known (see, e.g., [1]) t h a t if Alf •••, An+1 lie

on U, t h e n Σ ah = (n + 1) 2(! ~ ^2) w h e r e d is t h e distance from t h e
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centroid of the vertices of the simplex to the center of the sphere.
Since d = 0 for the regular simplex, the result follows from the
previous theorem.

2 Conjectures* The following conjectures concern the relation-
ship between a hypersphere and a simplex. The interest in these
particular questions comes from Information Theory: Proof of either
would be sufficient to resolve the long-standing simplex code con-
jecture [2].

Let S be an arbitrary simplex and S a regular simplex of
-^-dimensions centered on the origin. Define the function

s(r) = μn.1{XeS:\X\ = r)

where μn^ is (n = l)-dimensional measure. The function thus repre-
sents the amount of a shell of radius r contained within the simplex.
S. Let s(r) be the corresponding function for the regular simplex.
The first conjecture is that for a given intersection volume the regular
simplex minimizes the shell, or surface, content.

Conjecture 1.

S
ro fro

s(r)dr = 1 s(r)dr then s(r0) <£ s(r0) .
o Jo

The second conjecture is weaker than the first, being implied by
the first. Now S and S are restricted to being formed by hyperplanes
which are all at some constant distance d from the origin. Under
the restriction, the conjecture is that S minimizes the content in the
following strict sense.

Conjecture 2.

s(r) <; s(r) for all r .

Both conjectures seem intuitively correct, but the constraints are
of a much greater complexity than those in the previous theorems.

3* Conclusions* The regular simplex is the obvious candidate
for achieving the extremum of a number of functions defined on
simplices under constraints. Intuitively its maximal symmetry must
give it special properties. We have here explicitly shown for a set
of problems a method for generating the symmetries in the course
of the optimization; in addition we make some conjectures on other
extremal properties. The symmetrization technique developed in this
pursuit, which was originally motivated by a problem in communi-
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cation theory, appears to have potential in other areas related to
group representation theory. Here we started with a matrix of vertex
inner products and forced it, by a convexity operation, to be invariant
under all permutations of row and column indices in the symmetric
group of degree n, Sn. By restricting the group to be proper sub-
group of Sn, a lower degree of symmetry would be imposed. This
may then give a solution to extremal problems involving more complex
polytopes.
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