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BIHOLOMORPHIC APPROXIMATION OF PLANAR DOMAINS

BryaN E. CAIN AND RICHARD J. TONDRA

This paper establishes the existence of a domain (open
connected subset) B of the complex plane C such that for
every domain 2 c C and every compact set K C 2, there is
a biholomorphic embedding e¢: B— 2, such that K cC e¢(B) C
cl[e(B)] c Q.

1. Introduction. Let 2, and 2, be domains (i.e., open connected
sets) in the complex plane C such that cl2, € 2, (cl = closure). A
domain 2 is a biholomorphic approximation of 2, with respect to £,
provided that there exists an invertible holomorphic function e defined
on 2 such that

12, ce@ celle(@)] 2, .

The mapping e is a biholomorphic embedding (bh-embedding) of 2
into 2,. (2 may also be considered a biholomorphic approximation
of 9, with respect to 2..)

Homeomorphic domains may, of course, be biholomorphically
inequivalent, and, moreover, may not even be close biholomorphic
approximations of each other. For example, let A(r, s) = {zcC:r <
|z] < s} when 0 <7 <s < o. Suppose that 0 <e<1<t< e and
that ¢ is a bh-embedding of A = A(r, s) such that

clAQ,t)ce(A)celle(4)]c Al — ¢, t + ¢) .

By taking the modules of these ring domains (cf. [1]) we obtain the
inequality ¢ < s/r < (¢ + €)/(1 — €) which is precisely the condition »
and s must satisfy for such an embedding ¢ to exist.

Our main result establishes the existence of a domain BC C
which is a biholomorphic approximation of every bounded domain 2,
with respect to every domain 2, containing el 2..

2. The main theorem. Let C denote the Riemann sphere.

THEOREM 2.1. There exists a domain BcC C such that for every
domain 2 C and for every compact set K 2 other than C there
exists a biholomorphic embedding e: B— Q such that K cCe(B)C
cl[e(B)] ¢ L.

REMARK. Actually such an embedding will exist if 2 is any
connected Riemann surface (without boundary) and Kc® is any
planar compact surface other than C. (“Planar” means homeomorphic
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to a subset of 6'.) Indeed, by the trianguability of 2 there must
exist a planar domain 2, such that Kc 2,c 2, and so it suffices to
consider the planar case.

The following theorems are corollaries of Theorem 2.1.

COROLLARYA2.2. Let K+ C be a compact connected subset of
a domain QcC. Then K = i, B, where each B; s bh-equivalent
to Band clB,,,CB, for 1=1,2, ...,

COROLLARY 2.3. Let 2+ ¢ be a domain in C. Then 2 = U, B;
where each B, is bh-equivalent to B and ¢l B;C By, for i =1,2, «--.

3. Proofs. ForeachacCandr>0set D, r)={z|z—a|<7}
and let D(a, r) denote ¢l D(a, r). Set D= D(0,1). A circle {z: |z —a|=1}
will be called “rational” provided that Rea, Ima, and >0 are
rational numbers. The topological boundary of a domain 2 will be
denoted 02.

To construct B consider the domains 2 satisfying: (1) 02 has
finitely many components, (2) each component of 02 is a rational
circle, (3) ¢l 2 < D and its outer boundary is centered at the origin.
Let E, E, --- be an enumeration of these domains. Let s; be the
radius of the outer boundary of E; and let ¢; be the linear fractional
transformation of D onto H = {z: Re z > 0} which carries —1to 0, +1
to o, and —s; to 1 if 7 =1 and to ¢;_(s;_) if 7>1. Let B=
H\U5- ¢;[D(0, s;)\E;].

To show that B has the desired properties, we prove the follow-
ing lemma using the “small mesh grid” technique (often employed
in texts on function theory), rather than the theory of trianguability.

. A bounded domain 2 c C will be called a Jordan domain if 02 con-

sists of finitely many disjoint Jordan curves.

LEMMA 3.1. Let K be a compact subset of a domain 2 cC.
Then there exists a Jordan domain 2, such that Kc 2,ceclQ,c Q.

Sketch of proof. Since 2 is connected, there exists a connected
compact set K, such that Kc K,c 2. Thus we may assume that K
is connected. With 7 picked so small that [K + D(0, V'2r)]c Q let L
be the union of those squares of a grid of squares with edge length
r which intersect K. If ac L is a vertex of precisely two squares of
L select the positive number s, < 7/2 to be so small that D(a, s,) = 2.
Let L, denote the union of all the D(a, s,)’s. Then straightforward
arguments show that 2, = int (I, U L,) is the desired Jordan domain.

Now let 2 and K be as described in Theorem 2.1. Lemma 3.1
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provides a Jordan domain 2, such that Kc 2, cel2,c Q. According
to Theorem 2 page 237 of [2] there is a bh-embedding ~ of £, into
D such that (1) the outer boundary of A(2,) is 0D and (2) 9[h(2,)]
has finitely many components and each is a circle. Each of the
circles bounding A(2,) can be “approximated” arbitrarily closely by
a rational circle which lies in #(2,). We require that the approxi-
mation to the unit circle be centered at 0. Since Z(K) is a compact
subset of &(2,), when the approximations are close enough, the
approximating circles will bound a domain which contains A(K).
This region, by its definition, is one of the E;’s, say E,. Then

MK) C E\, C ¢ (B) < h(£2,)
and so applying A~! will establish Theorem 2.1.

To prove Corollary 2.2 we let B, = ¢,(B) where ¢, is the bh-
embedding of B such that Kc B,celB,c 2. For 7>1 we let G,
be the component of [K + D(0, 1/(¢ — 1))] N B,_, which contains K,
and we set B, = ¢;(B) where e, is the bh-embedding of B, given by
Theorem 2.1, such that K< B, cecl B, CG,.

To prove Corollary 2.3 we pick a € 2 and for large n we can let
G, be the component of {z:dist(z, C\Q) > 1/n and |z| < n} which
contains a. Since ¢l G, is a compact subset of G,,, there exists
a bh-embedding e¢,: B— G,,, such that B, = ¢,(B)DclG,. That 2 =
UG, (and hence 2 = | B,) follows from the arc connectedness of
Q. These B,’s are the required domains (except for re-indexing).

4. Some applications to holomorphic extension problems. Let
Kc C be compact and let f: K— C. It is easy to extend f to a
holomorphic function F defined on a domain containing K (caution:
domains are connected) if there exist: (1) a domain 2, (2) a biholo-
morphic function ¢ on 2 such that K ce(?), and (3) a holomorphic
extension G of g = foe|,—yx, to all of 2. Indeed F = Goe™' is the
required extension. Conversely if f has such an extension F the
existence of 2, ¢, and G is trivial. For let the domain 2 be the
domain of F, set e¢(z) =2, and take G = F. Thus we have an
equivalent formulation of the problem of holomorphically extending
a function f: K— C to a domain containing K. Theorem 4.2 shows
that another equivalent formulation is obtained when in the discus-
sion above the variable domain Q is replaced by the fixed domain B.
We first show that for a more restricted class of sets K this exten-
sion question is very naturally formulated with D in the role of 2.

THEOREM 4.1. Let K c C be compact and let f: K— C. Suppose
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that K and C\K are connected. Then there exists a holomorphic
extension F of f to a domain containing K if and only if there exist
(a) a bh-embedding e of D such that K Ce(D) and (b) a holomorphic
extension G of g = foe |~k to all of D.

Proof. Since the “if” part of this theorem is treated in the
discussion above we confine our remarks to the “only if” part.
Assume that the extension F exists, and let 2> K be its domain.
It suffices to find a bh-mapping e of D such that Kce(D)c 2. This
is trivial if K is a singleton: so we assume K is not a singleton.
Then the Riemann Mapping theorem shows that é\K is bh-equivalent
to D (it is simply connected because K is connected). Let A: C\K—D
be the Riemann mapping. Since ~A~*(D(0, 7)) is simply connected for
0 <r<1 we know that V, = C\h-(D(0, 7)) is nonempty, open, and
simply connected for 0 < < 1. Thus each V, with 0 <r <1 is
bh-equivalent to D. Since A(C\Q) is a compact subset of D it lies in
D(0, s) for some s < 1, and the Riemann mapping ¢ of D onto V, is
the required map.

If in Theorem 4.1 D is replaced by B the assumption that K
and C\K are connected may be dropped.

THEOREM 4.2. Let K C be compact and let f: K— C. There
exists a holomorphic extension F of f to a domain containing K if
and only if there exist (a) a bh-mapping e of B such that K C e(B)
and (b) a holomorphic extension G of g = foe |~ x, to all of B.

Proof. As in the proof of Theorem 4.1 the “if” part has already
been settled and we begin the “only if” part by letting 2> K be
the domain of F. An application of Theorem 2.1 gives a bh-embed-
ding ¢ of B such that K ce¢(B) c 2. This is the required mapping.

REMARK. Comparing Theorems 4.1 and 4.2 tempts one to con-
jecture the existence of a sequence of domains D=2, 9,, -+, 2,.=B
such that CA'\.Q,, has » components and for which Theorem 4.1 will
remain true when it is modified by: (1) Replacing its second sen-
tence with “Suppose K is connected and C\K has » components”, and
(2) Replacing D with Q,. The discussion in the introduction shows
that this conjecture fails, since for n = 2, Q, must be bh-equivalent
to A(r, s) for some 7, s with 0 <r <s =< « and so £, cannot be
embedded between A(l, t) (the domain of f) and A(l — ¢, ¢ + ¢) (the
domain of the extension F') unless t < s/r < (¢t + ¢)/(1 + ¢).
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