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GENERALIZED LERCH ZETA FUNCTION

B. R. JOHNSON

The purpose of this paper is to establish certain proper-
ties of the generalized Lerch zeta function θ(z, v, α, b) =
ΣΞ=o (n + α)"v2;C7l+α)δ. The main result yields another infinite
series representation for θ. A generalization of Hardy's rela-
tion follows as an immediate corollary,,

!• Introduction, The function Φ(z, v, a) defined by the power
series

(1) Φ(z, v, a) = Σ fa + «)""«" >

for I 2 I < 1, 0 < α ^ l and arbitrary v, is called Lerch's zeta func-
tion. For z — 1, this function becomes Hurwitz' zeta function

(2) 0(1, v, α) = ζ(y, α) = Σ fa + a)~\ Re v > 1 and 0 < a ^ 1.

Lerch's function has been extensively investigated in [1], [2], [3],
[5, v. 1, p. 27], [7], [8], and [12]. One important result

(3) Φ(z, v, a) - Γ(l - v)z-(log I/*)*"1 + ^"β Σ £(*> ~ Λ
o

Σ ( Λ )
r=o r!

for I log z i < 27Γ, 0 < α ^ 1, i; Φ 1, 2, 8, , which transforms Lerch's
series into another series, is derived in Erdelyi [5, v. 1, p. 29] by
using Lerch's transformation formula and Hurwitz' series for the
Hurwitz zeta function. Hardy's relation (see Hardy [7] and Mellin
[10]) follows immediately from (3):

(4) lim {Φ(z, v, a) - Γ(l - v) (log l/s)*"1*-} = ζ(y, a) .
z-*l

The purpose of this paper is to establish certain properties of
the function θ(z, v, a, b) where

(5) θ(z, v, a, h) = Σ fa + a)-"zln+a)b, for | z \ < 1, 0 < a ^ 1, 0 < b .

It is appropriate to call θ the generalized Lerch zeta function because

θ(z, v, a, 1) - zaΦ(z, v, a) .

Using an approach which is more direct than the above mentioned
derivation of equation (3), we will establish
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Θ(Z, V, a, b)

6 ) = 6 - 1 r ( l ^ ) ( l o g 1/zy^'o + Σ ζ(v - br, a)
r!

where y =£ 1, 1 + 6, 1 + 2&, , 0 < α, 6 ^ 1 . Formula (6) is valid
for unrestricted z if 0 < b < 1, and for | l o g z | < 2π if & = 1. In
the latter case equation (6) becomes equation (3). Furthermore,
from (6) we immediately obtain the following generalization of
Hardy's relation:

( 7) Km \θ(z, v, a, b) - b^r(±^-) (log l/z)^ή = ζ(v, a) ,

for 0 < 6 ^ 1.

2. Derivation of formula (6). Consider the function

f(x) = χ-ve-**b , Re β > 0, b > 0.

The Mellin transform of f(x) with respect to the parameter s is

g(s) = b-W-)fbr( s ~ v ) , R e s > R e v, R e β > 0, b > 0 .

For Mellin transform theory see [4, v. 1, Ch. 2], [10], [11], and [13,
p. 46]; for tables see [6, v. 1, p. 303]. Writing f(x) in its Mellin
inversion integral form with x — n + a, we obtain by summing on
n and interchanging the order of summation and integration

( 8) ±(n + αre-><"+»>> =

where σ0 > max {1, Re v). The left hand side of (8) is θ(e~β, v, a, b).
To evaluate the right hand side integral we will use the residue
theorem.

If we denote

(9) h(8) = β-'*K{

then h(s) has a first order pole at s = 1 with residue β~ι'hΓ([l — v/b])f

and an infinite set of first order poles at s = v — br with residues

ί^Lbβ^'K(v - br, a), r - 0, 1, 2, . . . .

Consider the contour integral

(10) f h(s)ds ,
Jc
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where the path of integration C is indicated in Figure 1 below, such
that the half-circle C of radius d separates the poles s = v — Nb
and 8 = v — (JV + l)ί>. Then h(s) is one-valued and analytic inside
and on C except at the points 8 = 1, s = v — rb (r = 0, 1, 2, , N).

s-plane

v - (N + lWv-Nb

FIG. 1

Now we let N tend to infinity through positive integers.
To investigate the contributions along individual segments of

the contour C we will need the following well-known properties of
the gamma function and Hurwitz' zeta function, which can be found
in Erdelyi [5] and/or Whittaker and Watson [14]:

(11) Γ(s) = (2π/s)ll2e-sesloss(l + θ(—Y) as | s \ > oo, | arg s \ < π .

(12)

(13)

(14)

(15)

I arg s\ < π .

I Γ(σ + iί) I = 0(| t l -wv'i'"1) as | ί | —

with σ fixed (σ, t real) .

ζ(s, α) = 2(2π)s-1Γ(l - s) Σ ^ s~1 s i n (2τr»α

R e s < 0 , 0 < α 5 Ξ l .

) ,

it,a) = o(\t\) as | ί with 0 ^ σ fixed (σ, t real) .

It is clear that the contributions to the integral (10) along the
horizontal lines of length σ0 (see Figure 1) vanish as d —• oo because
of (13) and (15). To find the contribution along the half-circle C,
it is sufficient to investigate the behavior of h(s) on the quarter-
circle of radius d for π/2 < arg s = φ < TΓ, since the modulus of h(s)
on the quarter-circle for — π < φ < — π/2 is the same by Schwarz's
reflection principle. From (11), (12), and (14) we obtain
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ιf/\OJ ^' i j ^

( 1 6 ) X β 'S 'S i n ' ( Γ / 2 9 / δ ) ^ l s | c ° s p ( δ 1 O δ ( l s l / δ ) l o g l s | ) }

a s I s I > oo in — < ψ <π, s = \s \eί? .
Δ

In formula (16) we have assumed β to be real and positive. The
analytic continuation to complex β will be obtained later. The fol-
lowing three cases are possible:

( i ) b > 1: Then (16) is dominated by the last exponential func-
tion and h(s) tends to infinity when d-+ oo. Thus, the contribution
over the semi-circle tends to infinity as d —> co and formula (8) is
not applicable, although the series in (8) converges for Re β > 0.

(ii) 6 = 1: It is clear from (16) that the integral over the
semi-circle C" vanishes as d—> oo, provided β < 2τr.

(iii) 0 < 6 < 1: The integral over the semi-circle C vanishes
as d-+ oo, regardless of β.
Hence, in cases (ii) and (iii) we obtain by (8) and the residue theorem

(17) θ(e~fi, v, a, b) - λΓ(±^-)β^'b = ± i n ^ l ζ(y - br, α)/T .

The r./^.s. series in (17) is a Taylor series around the origin and
is therefore an analytic function of β in its circle of convergence,
while the l.h.s. expression is valid only when Re β > 0 and v arbitr-
ary; or Re β = 0, Im β Φ 0, and Re v > 0; or β = 0 and Re v > 1.
Therefore, (17) represents the analytic continuation with respect to
β of the l.h.s. of (17) valid for Re β > 0 into the r.fe.s. which is
valid for unrestricted β when 0 < 6 < 1, or for | β \ < 2π when 6 =
1. If b > 1, (17) is not valid.

Formula (6) is obtained from (17) by setting

z = e~β , /3 = log 1/2 .
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