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DECOMPOSITION THEOREMS FOR 3-CONVEX
SUBSETS OF THE PLANE

MARILYN BREEN

Let S be a 3-convex subset of the plane. If (c1S~S)&
int (c1 S) or if (c1.S ~ 8) S bdry (c1S), then S is expressible as
a union of four or fewer convex sets. Otherwise, S is a union
of six or fewer convex sets. In each case, the bound is best
possible.

1. Introduction. Let S be a subset of R? Then S is said to
be 3-convex iff for every three distinct points in S, at least one of the
segments determined by these points lies in S. Valentine [2] has
proved that for S a closed, 3-convex subset of the plane, S is express-
ible as a union of three or fewer closed convex sets. We are
interested in obtaining a similar decomposition without requiring the
set S to be closed. The following definitions and results obtained by
Valentine will be useful.

For SS R a point z in S is a point of local convexity of S iff
there is some neighborhood U of x such that, if y, 2SN U, then
[y, 2] 8S. If Sfails to be locally convex at some point ¢ in S, then
q is called a point of local nonconvexity (Inc point) of S.

Let S be a closed, connected, 3-convex subset of the plane, and
let @ denote the closure of the set of isolated Ine points of S. Valentine
has proved that for S not convex, then card @ = 1, @ lies in the
convex kernel of S, and Q S bdry (conv Q). An edge of bdry (conv Q)
is a closed segment (or ray) in bdry (conv Q) whose endpoints are in
Q. We define a leaf of S in the following manner: In case card @ = 3,
let L be the line determined by an edge of bdry (conv Q), L,, L, the
corresponding open halfspaces. Then L supports conv @, and we may
assume conv @ &cl(L,). We define W =cl (L, N S) to be a leaf of S.
For 2 = card @ = 1, constructions used by Valentine may be employed
to decompose S into two closed convex sets, and we define each of
these convex sets to be a leaf of S.

By Valentine’s results, every point of S is either in conv @ or in
some leaf W of S (or both), and every leaf W is convex. Moreover,
Valentine obtains his decomposition of S by showing that for any
collection {s;} of disjoint edges of bdry (conv Q), with {W,} the corre-
sponding collection of leaves, conv @ U (U W,) is closed and convex.

Finally, we will use the following familiar definitions: For z, y
in S, we say = see y via S iff the corresponding segment [z, y] lies
in S. A subset T of S is visually independent via S iff for every
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2,y in T, x does not see y via S.
Throughout the paper, S will denote a 3-convex subset of the
plane, @ the closure of the set of isolated lnc points of cl S.

2. Preliminary lemmas. The following sequence of lemmas will
be useful in obtaining the desired representation theorems. We begin
with an easy result.

LEmMMA 1. Cl S 7s 3-convex.

Proof. Let x,y, z be distinct points in el S and select disjoint
sequences (x,), (%.), (z) in S converging to =z, y, z respectively. For
each 7, one of the corresponding segments is in S, and for one pair,
say # and y, infinitely many of the segments [z, y,] lie in S. Since
these segments converge to [z, y], [%, ] lies in cl S.

The remaining lemmas are technical in nature. Lemmas 2, 3,
and 4 reveal various pleasant features of int(cl S) ~ S, while 5 and
6 are concerned with Inc points of cl S.

LEMMA 2. If peint(clS) ~ ker(clS) = @&, then pe S.

Proof. Since p ¢ ker (cl S), there is some point % in ¢l S for which
[#, p] ZclS. Moreover, x may be chosen in S (for if p saw every
member of S via ¢l S, then p would see every member of cl S via ¢l S
and p would lie in ker (¢l S)).

There is a convex neighborhood N of p, no point of which sees
x via el S, with NZint (¢l S). For any s, ¢ distinct points in NN S,
necessarily [s, {] =S by the 3-convexity of S, so NN S is convex.
Since NZint(el S), p is interior to some triangle conv {w, y, 2}
with vertices belonging to NN S. Then since NN S is convex,
conv{w, y,2} =S, and pe S. In fact, peint S.

COROLLARY. If peecl S~ S, then etther pechdry(clS) or pe
ker (c1 S) (or both).

LEMMA 3. Let T 5 @ be the set of points p of ¢l S ~ S for which
pebdry (cl S). Then every connected component of T is either an
1solated point of ¢l S ~ S or an interval. Moreover, there can be at
most one isolated point, and all components of T lie on o common
line.

Proof. If T is a singleton point, the result is immediate, so assume
that T contains at least two distinct points z, y. Let L(x, y) denote
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the line determined by these points. It is clear that not both x and
y can be isolated in ¢l S ~ S, for otherwise, since z, y €int (cl S), it
would be easy to select three points of S on L(z, ¥) visually independent
via S.

Again using the 3-convexity of S, L(x, y) N S has at most two
components, and L(x, y) N TS ker (cl S) has at most three components.
By an earlier argument, at most one component of L(x, y) N T is an
isolated point, and clearly each component is either an isolated point
or an interval.

To complete the proof, it suffices to show that TS L(z, y). Let
teint(cl S) ~ L(xz, y) to show t¢ T. Since L(x, y) N T contains at
most one isolated point, L(xz, y) N T contains at least one interval
(r,s)=int (cl S), and we may choose some point % in S for which
(u, t) cuts (r,s). Then select a convex neighborhood N of ¢, N&
int (c1 S), so that for every ¢ in N, (u, @) cuts (r, s). By techniques
similar to those used in the proof of Lemma 2, NN S is convex and
teS. Hence t¢ T and TE L(x, y).

LEMMA 4. If cl S~ S contains an interval (r, s) disjoint from
bdry (cl S), then every Inc point of cl S lies on L(r, s).

Proof. Assume that for some lnc point ¢ of ¢l S, ¢ ¢ L(r, s). As
in the proof of Lemma 3, choose a point % and a neighborhood N of
t so that w sees no point of NN S via S. Since ¢ is an Inc point of
cl S, N contains points v, w in S which are visually independent via
S. Hence u, v, w are visually independent via S, a contradiction, and
t must lie on L(r, s).

LEMMA 5. If pisin ker(clS) and q, r are in Q, then q¢(p, 1)
(where p, g, r are distinct points).

Proof. Assume, on the contrary, that the points are collinear,
with p < ¢ < r. Let L denote the line containing p, q, r, L, L, the
corresponding open halfspaces. Since peker(clS) and clS is not
convex, there must be some point z of ¢l S not on L, say in L,. Our
hypothesis implies that cl S is connected, so by [2], Corollary 1,
reker(cl S), and the triangle conv {p, z, r} has its boundary in cl S.
It is easy to see that the closed, 3-convex set ¢l S is simply connected,
so conv {p, 2, r} S eclS. Thus since ¢ is an Inc point for cl S, there
must be some point y of ¢l S in L, conv {p, y, r} Scl S, and g cannot
be an Inc point for ¢l S, clearly impossible. Our assumption is false,
and q¢ (p, 7).

COROLLARY. No three members of Q are collinear.
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LEMMA 6. If peconv@, qeQ, q# p, and W,, W, are leaves of
cl S containing q, then W, W, are in opposite closed halfspaces
determined by L(p, q).

Proof. Clearly the hypothesis implies that cl S is connected and
that card @ = 2. If card @ = 2, the result is an immediate consequence
of an argument used by Valentine (Case 2, Theorem 3 of [2]), so we
may assume that card @ = 8. Let r lie on the edge of bdry (conv Q)
which defines W,, » %= q. If re L(p, q) = L, then by the definition
of W, it is obvious that W, is in one of the closed halfspaces deter-
mined by L, say ¢l L,. Otherwise, without loss of generality, assume
that # is in the open halfspace L,. Clearly p and W, are separated
by L(r,q). Now if any point « of W, lay in L,, then ¢ would lie
interior to the triangle conv {p, x, r} S ¢l S, and ¢ could not be an Inc
point for cl S, a contradiction. Hence W, lies in ¢l L, in either case.

Since W, U conv @ is convex (by Valentine’s results) and ¢ is an
Inc point for cl S, W, necessarily contains points in L, and W,&
¢l L,, finishing the proof.

3. Decomposition theorems. With the preliminary lemmas be-
hind us, we begin to investigate conditions under which S may be
represented as a union of four or fewer convex sets, dealing primarily
with the case for (c1 S ~ S)<int (cl S).

The first theorem, allowing us to restrict attention to the case
for ¢l S = cl (int S), will be helpful later.

THEOREM 1. If ¢l S=cl(intS), then S is a union of two or
fewer convex sets.

Proof. Without loss of generality, assume S is connected, for
otherwise the result is trivial. Let x€ S~ cl(int S) # @, and let N
be a convex neighborhood of x disjoint from int S. Since S is con-
nected, x is not an isolated point of S, and it is clear that NN S
contains at least one segment.

We examine the maximal segments of NN S (i.e., the segments
which are not proper subsets of segments in NN S). It is easy to
show that NN S has at most two maximal segments, for otherwise,
the 3-convexity of S together with the simple connectedness of ¢l S
would yield an open region in ¢l SN N. Since by Lemma 3 the points
of int (¢l S8) ~ S are collinear, this would imply that N N S has interior
points, clearly impossible by our choice of N.

In case NN S has exactly two maximal segments, an argument
similar to the one above may be used to show that any point of S
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lies on one of the corresponding lines, and S is a union of two segments
(possibly infinite). If NN S has just one segment, let K, denote a
maximal convex subset of S containing it, and let K, = conv (S ~ K)).
Again using the facts that N contains no interior points of ¢l S and
cl S is simply connected, it is not hard to show that K,< S, and
S = K, U K,, completing the proof.

Theorems 2 and 3 show that a decomposition is possible when
(c1S~S8)<int(cl S). There are two cases to consider, depending on
the cardinality of Q.

THEOREM 2. If(cl S~ S)N bdry (cl S) = @, and card @ = n for
n an odd integer, m > 1, them S is expressible as a wunion of four
or fewer convex sets.

Proof. Clearly the hypothesis implies that ¢l S = ¢l (int S). By
the Corollary to Lemma 2, ¢l S ~ SS ker (cl S), and by Lemma 3, every
component of cl S ~ S is either an isolated point or an interval. Since
card @ = 3 and (by the corollary to Lemma 5) no three members of
Q can be collinear, Lemma 4 implies that ¢l S ~ S cannot contain an
interval. Hence cl S ~ S consists of exactly one isolated point p in
ker (cl S).

Select g€ @ in the following manner: If peconv @, choose g€ @
so that the line L(p, q) contains no other member of Q. (Clearly this
is possible since card @ is odd and no three members of @ are collinear.)
If peconv@, let {¢;:1 <7 < n} denote the edges of conv@, {E£;:1 =<
1 =< n} the corresponding lines, with conv @ in the closed halfspace
cl(F,) for each ¢. Then pe E, for exactly one ¢, for otherwise,
if peE,NE,, then int conv ({p}Ue, Ue,) would contain an Inc
point of clS, clearly impossible since {p}U e, Ue,Sker(clS) and
conv ({p} Ue Uey)Secl S. Thus we may choose some ge@Q so that
pecl E;, for each edge ¢, containing q. Then (p, ¢) contains points
of conv Q. Since all points of L(p, ¢) N conv @ are on the open ray
at p emanating through ¢, Lemma 5 implies that L(p, q) contains no
other members of @ (and in fact p cannot lie on any line E)).

To review, in either case we have chosen ¢ in @ so that L(p, q)
contains no other member of Q@ and (p, q) contains points of conv Q.
Letting L, L, denote distinct open halfspaces determined by L =
L(p, q), define A =ecl(SNL,), B=cl(SN L,). If W, W, are leaves
of ¢l S containing ¢, then by Lemma 6, W, and W, are in opposite
closed halfspaces determined by L, say W,=ecl L,, W,Scl L,.

Let R,, R, denote opposite closed rays at p, R, U R, = L, labeled
so that ge R,. Each of B,NS, B,N S is an interval by the 3-con-
vexity of S. Points of R, N S necessarily lie in A N B, for otherwise
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R, would contain an Inc point of clS, clearly impossible. If there
are any points of B, N S not in A N B, without loss of generality we
may assume such points lie in W, and hence in A ~ B. Then
R,NSE A.

By Case 4 in Theorems 2 and 3 of [2], ¢l (S ~ W,) is a union of two
closed convex sets C,, C,, selected as in Valentine’s proof. Since A =
cllel(S~W,)N L], A is the union of the two closed convex sets
A, A,, where A, =¢cl(C;N L), 2 =1,2. Moreover, (R, NS)U (p, q]
lies in one of these sets, say A,, and R, ~ (p, q] is either in A, or
in A,.

Using an identical argument for B and cl (S ~ W,), we may write
B as a union of two closed convex sets B, B, with (B, N S) U (p, ¢] in
B, and R, ~ (p, q] disjoint from B.

At last, define sets Al, A}, B!, B; in the following manner: If
(R.N8) ~ (p, gl S A, let

A;EA1~R2’ A;EA2~R19
Bl=B ~R, B,=B,~R,.

And if (B.,NS)~ (p,qlS A4, let

A;EAINRL’ A;EAz"’Rzy
Bi=B ~R,, B;=B,~R,.

We assert that these are convex subsets of S whose union is S:
Clearly each is a convex subset of S, and S ~ L is contained in their
union. For (R,NS)~ (p,qlEA4,, R,NSESA,U B, RRNS&A]. For
(R.NS)~(p,ql= A, R,NSS A}, R,N S B,. Hence in either case
SN L is contained in the union of these sets, and S = A]U A4;U B{U B;,
completing the proof of the theorem.

THEOREM 3. If (1S~ S)Nbdry(clS)= @ andcard@ =n = 0,
where n (possibly infinite) is not an odd integer greater than one,
then S 1s expressible as a union of four or fewer convex sets.

Proof. If S is not connected, the result is trivial. Otherwise,
by Theorem 3 of Valentine [2], ¢l S may be expressed as a union of
two or fewer closed convex sets A, B. Using Lemma 3, let L be a
line containing ¢l S~ S, L, L, the corresponding open halfspaces.
Since S is 3-convex and A is convex, SN A is 3-convex, and hence
(SN 4) N L has at most two components, say C,, C,. Let R, R, denote
opposite rays on L with C, S R,, C,S R..

Define

A =(ANnSnecL)~R,,
A,=(ANSNelL)~R,.
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Then A,, 4, are convex subsets of S whose union is AN S.
Similarly define convex sets B, B, whose union is BN S. Clearly
S=A,UA,U B, U B,, the desired result.

COROLLARY. If (1S~ S)Nnbdry(clS)= &, then S is expres-
sible as a union of four or fewer convex sets. The number four is
best possible.

That the number four in the corollary is best possible is evident
from Example 1.

ExamMpLE 1. Let S be the set in Figure 1, with pe S. Then S
is not expressible as a union of fewer than four convex sets.

FiGure 1

The preceding theorems allow us to obtain the following decom-
position for open sets.

THEOREM 4. If S is open, then S is expressible as a union of
four or fewer convex sets. The result is best posstble.

Proof. Let T = SUhbdry(clS). Applying arguments identical
to those used in the proofs of Theorems 2 and 3, T is expressible as
a union of four or fewer convex sets A,, 1 <7 <4. Define B, =
A;NS, 1<i=<4. We assert that each B, is convex. The proof
follows:

By Valentine’s results, cl S is expressible as a union of three or
fewer closed convex sets C;, 1 < j < 3, each consisting of an appro-
priate selection of leaves of cl S, together with conv Q. Examining
the proofs of Theorems 2 and 8, it is clear that each A, may be
considered as a subset of some C; set. Thus we may assume B, &
A,=C, for an appropriate C,.

Let z,ye B, and let pe(x, y) to show peB,. If z (or y) is
interior to some leaf W, then W< C,, y sees a neighborhood of z via
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C,, and p is interior to ¢l S. Since pc 4, and p¢ bdry (cl S), pisin
A, N S=B,. A similar argument holds if z (or y) is interior to conv Q.
Since neither x nor y is in bdry (¢l S), the only other possibility to
consider is the case in which =z, y € bdry (conv Q) ~ @ S ker (cl S).
Then zcint(cl S), yeker(clS), y sees some neighborhood of » via
cl S, and peint(cl S). Again pc 4, N S = B, and B, is indeed convex.
Thus S is the union of the convex sets B;, 1 < ¢ < 4, and the theorem
is proved.

To see that the number four is best possible, let S denote the
set in Example 1 with its boundary deleted. Then S is an open 3-
convex set not expressible as a union of fewer than four convex sets.

4. The general case. It remains to investigate the case for S
an arbitrary 3-convex subset of the plane. A decomposition of S into
six convex sets may be obtained from our previous results, together
with Theorems 5 and 6, which deal with the case for (cI S~ S)S
bdry (cl S).

The following result by Lawrence, Hare, and Kenelly [1, Theorem
2] will be useful:

Lawrence, Hare, Kenelly Theorem. Let T be a subset of a linear
space such that each finite subset F'< T has a k-partition, {F}, ---, F}.},
where conv F, & T, 1 <41 =<k. Then T is a union of k convex sets.

THEOREM 5. If ¢l S is convexr and (c1 S ~ S)S bdry (cl S), then
S ts a union of three or fewer convex sets. The bound of three 1s
best possible.

Proof. Consider the collection of all intervals in bdry (cl S) having
endpoints in S and some relatively interior point not in S. Each
interval determines a line L, and by the 3-convexity of S, LN S
has exactly two components. Let & denote the collection of all
such lines. By the Lawrence, Hare, Kenelly Theorem, without loss
of generality we may assume that & is finite. Hence the set
U{LNS: L in .} has finitely many components, and we may order
these components in a clockwise direction along hbdry (cl S). If ¢,
denotes the ¢th component in our ordering, let

A '={c: 1 o0dd, i < n},
B' = {c;: © even, 1 < n},
C' = {e,} .

Define
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A=S~({BUC),
B=S~(AUC),
C=S~(4'UB).

We assert that A, B, C are convex sets whose union is S. The proof
follows:

For =,y in A, if [z, y] contains any point of int(clS), then
(x,y)Sint(cl S)& 4, and [z, y]= A. Otherwise, [z, y] lies in the
boundary of the convex set ¢l S. If the corresponding line L(z, y)
is not in .27, the result is clear, so suppose L(x, y)€ =~°. Thenz, y
must lie in the same ¢, set for some 7 odd, 7 < », again giving the
desired result. Hence A is convex. Similarly, B, C are convex. It
is easy to see that AU BUC = S and the proof is complete.

The surprising fact that three is best possible is illustrated by

Example 2.

ExAmMPLE 2. Let S denote the set in Figure 2, where dotted lines
represent segments not in S. Then S is not expressible as a union
of fewer than three convex sets.

)
S

Figure 2

THEOREM 6. If (¢l S~ S)S bdry (cl S), then S is a union of four
or fewer convex sets. The number four is best possible.

Proof. We assume that S is connected and ¢l S = cl(int S), for
otherwise S is a union of two convex sets. Furthermore, by the
Lawrence, Hare, Kenelly Theorem, we may assume that ¢l S has
finitely many leaves, and hence card @ = n is finite. Notice also that
since cl S is simply connnected and (cl1 S ~ S) < bdry (cl S), S is simply
connected.

For the moment, suppose 3 < n. Order the points of @ in a
clockwise direction along bdry (conv @), letting W, denote the leaf of
cl S determined by Inc points ¢;, ¢;., (wheren +1 =1). By Valentine’s
results in [2], for any pair of disjoint leaves W, W; of cl S, the set
R=conv@QUW,UW; is a closed convex set. (In case there are no
disjoint leaves, n =38, W; = @, and R = convQ U W, is closed and
convex.) Consider the collection of intervals in bdry R having end-
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points z, ¥ in S and some relatively interior point p not in S. Either
such an interval is contained in one leaf, or x€ W, U conv @, ye W; U
conv . We examine the latter case. It is clear that for an appro-
priate labeling, j =% + 2, so to simplify notation, say ¢ =1, 7 =3,
and L(z, y) supports W,. Clearly not both z, y can lie in conv @, for
then peint S&S. However, we assert that either x or ¥ must lie in
conv @ and that W, N S is convex. The proof follows:

Assume that x is not an Inc point and that z < » £ ¢, < ¢;, where
Q,, Qs are the Inc points in W, N W,, W, N W, respectively. Then ¢, =< y.
For w in W,N S, w cannot see x via S, so necessarily w sees y via S,
by the 3-convexity of S. This implies that y < ¢; (for otherwise
q; could not be an Ine point for cl S). Moreover, since no two points
of W, N S seex via S, the 3-convexity of S together with the convexity
of W, imply that W,N S is convex.

Here we digress briefly for future reference. The set L(x, y) N S
has two components, and by the above argument, one must lie in the
interval [g,, g;], the other in W, ~ Q (by our labeling). For general
W._, W,.. (disjoint if and only if n > 3), we let T; denote the con-
nected set of all the somewhat troublesome points y in [g;, ¢;..] N S
having the above property. That is, there exist points x in exactly
one of (W,_, N S) ~Q, (W,;,,N S) ~ @ for which [z, y] £ZS (» +1 = 1).

Continuing the argument, delete W, and consider the 3-convex
set (S~ W)U (SN L(x, y)). Renumber the Inc points and leaves for
this set so that the old W, and W, are contained in the new leaf U,.
Since we are assuming card @ is finite, repeating the procedure finitely
many times yields a 3-convex set S, having the following property:
For V,, V; disjoint leaves of ¢l S,, z in V,NS,, v in V;N S, then
[z, Y] € S,. In addition, without loss of generality we may assume
that for each leaf V, of clS,, V;N S, is not convex, for otherwise,
V; may be deleted by the above procedure.

To avoid confusion, let @, denote the set of Inc points of cl S,
=0, cardQ, = m < n. For 3 <m, let V, denote the leaf deter-
mined by Inc points p,, p,+, in @, (where p,., = p). For m = 2, let
V., V. denote the leaves of ¢l S, as defined in the introduction to this
paper. If 0<m <1, let V,=V,=c¢clS,.

For each 7, consider the collection of intervals in bdry V; having
endpoints in V, N S, and some relatively interior point not in S,.
Each interval determines a line L, and for m =1, LNV,N S, has
exactly two components, each in bdry V,. In case m =1, an obvious
adjustment may be made (by deleting any ray of L which contains
interior points of ¢l S;) to yield the same result. For each 7, let &7
denote the collection of all such lines. Again using the Lawrence,
Hare, Kenelly Theorem, we may assume that each &7 is finite. The
set U{LNV,.NS;: L in <4} has finitely many components, and we
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may order them in a clockwise direction along bdry V,. Let ¢;; denote
the jth such component for V;, and let &, denote the collection of
all the c¢;; sets corresponding to V,. Clearly each ¢,; is either a point,
an interval, or the union of two noncollinear intervals. Moreover,
for m = 2, no components for V,, V,,, may have common points. (Such
a point would necessarily be p,., and if s,e V;N S, 8i€ VNS,
with some interior point of each of [s;, .1.], [Pir1, Siv:] DOt in S,, then
i, Dis1y Sir1 Would be visually independent via S,, clearly impossible.)

For each V,, select every c,;. That is, select the members of
&, having second subscript even. No two components selected corre-
spond to the same line, and for m % 0, we have chosen one component
corresponding to each line in .&%. If m = 0, without loss of generality
we may assume %, is ordered in a clockwise direction from some
point in @NelS,# @. In case no component has been chosen for
some line L in &, then L must contain points of both the first and
last members of &3, and by a previous argument, one of these com-
ponents must lie in conv Q.

For m+1, since V, is convex, it is easy to show that conv {c,.;: 1=7}
is a subset of S, (and this is certainly true even if cl S, is convex).
We will prove that B, = conv {¢,;: 1 <7 < m, 1 < j} is in S, and hence
in S. If cl S, is convex (or empty) the result is immediate, so assume
cl S, has at least one Inc point. For convenience, in case cl S, has
only one Inc point, call it p,, and let V, = V, follow p, in our clock-
wise ordering.

Recall that V;N S, is not convex for any 7, so no &, is empty.
Let ¢, denote the last member of & selected, x the last point of cle,
(relative to our ordering). If x # p,, let L = L(z, p,). Otherwise, by
the 3-convexity of S,, ¢, = {p,}, and in this case let L denote the
corresponding member of 3. Let L, L, be the open halfspaces
determined by L, with Q,Zecl L,. Since p, is an Inc point of S, and
S, is 3-convex, it is clear that at most one member of %3, namely c,,
may contain points in L,. We assert that ¢, sees ¢, via S,. The
proof follows:

Incase Le &, LNV,N S, has two components, each in bdry V,,
and one of these must be {p,}. Then by the 3-convexity of S, ¢, S L,
and ¢, sees ¢, via S,. Otherwise, ¢, ~ {x} & L,. If x ¢S, then since
epx&cl Ly, it is clear that ¢, sees ¢, via S,. If x€.S,and p,€ S,, then
again the result is clear. If xe S, and p,¢ S, then ¢, L, and ¢,
sees ¢, via S,, finishing the argument.

In case V,, V, are the only leaves for cl S,, V, # V,, then repeating
the argument for the last member of &, and ¢,, and using the fact
that S, is simply connected, we have B,= S,&S. (If V, =1V, the
result is immediate.) Otherwise, 8 < m and an inductive argument
may be used to show that B, is in S.
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Using Valentine’s results, write cl S as a union of three or fewer
convex sets A4;, j =1, 2, 3, where for » odd

A =U{W;: ¢ odd, ¢ <n}Uconve®,
A, =U{W;: 7 even, 1 <n}Uconv@,
A, =W, Uconv @,

and for »n even

A, =U{W;: 7 o0dd, © £ n}Uconv@®,
A, =U{W,: i even, 1 < n}Uconv®,
Ag: @ .

Define B; = SN[A4; ~((bdry S)N By)], 1=1,2, 3.

Recall the T, sets defined previously, T: S [q,, ¢...]JEW,, L £ 1 =< n.
To simplify notation, let L, = L(q;, ¢;1,), and define sets F}, G, in the
following manner: For ¢ even, let F, = T, if points from both com-
ponents of L, N S are in B,, F, = ¢ otherwise. Similarly for 7 odd,
let F, = T, if points from both components of L, N Sarein B, F, = @
otherwise. Fort=1,1=mn — 1, let G, = T, if points from both com-
ponents of L, N S are in B,, G, = @ otherwise. By previous remarks,
at least one of G,, F', is empty, and at least one of G,_, F,_, is empty.

Define

D, =B, ~U{F,: 7 even},
D,=B,~ U({F.: 1 odd},
D, = B; ~ U {Gu Gn—1} .

Finally, letting P={F,NFal=i<j=xU{GNF:i=1n—1,
1 =<j = n}, define D, = conv (B, U P). We assert that the sets D,
0 < j <38, are convex sets whose union is S. The proof follows:
Suppose that one of the sets D,, D, D, say D, is not convex to
obtain a contradiction. Choose z, ¥ in D, for which [z, y] ZD,. It
is clear that [z, y] S bdry (cl D,) = bdry A,. Furthermore, x, y cannot
both belong to W ~ @ for any leaf W of clS, for otherwise they
would belong to the same leaf of ¢l S, and one of z, ¥ would lie in
(bdry S) N B, and hence not in D, a contradiction. Employing a
previous argument, the set L(x, y) N S has two components, each
having points in B,, and one of these components is the set [q;, ¢...] N
S =T, for some ¢ even (n + 1=1). Let R, denote the other com-
ponent of L(x,y)NS. If R,NB,# @&, then R, T, would lie on the
boundary of a leaf of ¢l S, R,&B, T. =B, and [z, y]l&ST,& D, a
contradiction. Thus R,N B, = @ and R, < D,. However, this implies
that one of z, ¥ must lie in F, and not in D,, again a contradiction.
Our assumption is false and D, is convex. Similarly D,, D, are convex,
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and clearly each is a subset of S.

It remains to show that the convex set D, lies in S. Examining
the set P, if F; N F; + @ for some 7= J (or if G, N F; # @), then
F, =T, F; =T, for an appropriate labeling j = 7+1, and F;NF,,., =
{9.+,0 € S. We will show that for each z in By, [¢;;, 2] &S. The proof
follows:

We have seen that W, N S, W,,, N S are both convex, so for every
2z in one of these sets, [¢;., 2] S. Moreover, we assert that the
components of L(q;, ¢;..) N S, L(q;.,, ¢;4,) N S not in conv @, call them
R, R,.,, are disjoint from B, If R,N B, # @, then by an earlier
argument, R,&B, T.NB, =@, T.<D,ND,ND, and F,= @, a
contradiction. Hence for z in B, ~ (W, UW,,,), (¢, ?) Sint S, and
[@:+1, 21 = S whenever z€ B,, the desired result.

Certainly for gq,, q;, ¢, in PSS, conv {g,, ¢;, ¢,} = S.

By Carathéodory’s theorem in the plane, to prove that D, =
conv (B, U P) is in S, it is sufficient to show that the convex hull of
any three points of B,U P is in S, and from the remarks above,
clearly we need only show conv {qg,, ¢;, 2} = S for ¢,, ¢; in P, z in B,.
However, since S is simply connected and bdry (conv {g, q;, 2}) & S,
conv {q;, ¢;, 2} &S and D,= S, the desired result.

Finally, by inspection, each F, = ¢ fails to belong to at most one
of the sets D, D, D,. Points in intersecting F, sets are in D, so
U{D;:0<j=<3}=S and the argument for 3 < card @ is complete.

To finish the proof, we must examine the cases for 0 < card @ < 2.
If card@Q = 2 orif card @ = 1 and S ~ Q is connected, then let W, W,
denote the corresponding leaves of ¢l S, and use a simplified version
of the previous proof to define B, B,, B,. If one of B, B,, say B,
is not convex, then letting T= W, N W,N S, W,N S = B, is convex,
TS B,, and B,, B, ~ T, B, are the desired convex sets.

In case card @ = 1 and S ~ @ is not connected, then for W, W,
the corresponding leaves of ¢l S, each of W, NS, W,Nn S is convex.
For card @ = 0, the result follows from Theorem 5, and the proof
of Theorem 6 is complete.

The number four in Theorem 6 is best possible, as the following

example illustrates.
>
/ \
/ \
< D>

FIGURE 3
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ExaMpPLE 3. Let S denote the set in Figure 8, where dotted
segments are in bdry (c1 S) ~ S. Then S is a union of no fewer than
four convex sets.

At last, using Theorem 6, we have a decomposition theorem for S
an arbitrary 3-convex subset of the plane.

THEOREM 7. The set S is a union of six or fewer convex sets.
The result is best possible.

Proof. By earlier comments, we may assume that S is connected,
cl S =cl(int S), and Q is finite. Furthermore, we assume int (cl S) ~
S +# @, for otherwise the result is an immediate consequence of
Theorem 6. Let T = SU bdry (cl S), and let L be the line containing
el T ~ T described in Theorem 2 or Theorem 3 (whichever is appro-
priate). Clearly L may be chosen to contain an lnc point g of cl S.
If L, L, are the corresponding open halfspaces, then each of T, =
cd(TnL)=cl(SNL), T,=cl(Tn L) =¢el(SN L,) is 3-convex.

Define S, = T;NS,t=1,2,. We assert that each S, is 3-convex:
Forz,y,zin S, = T,N S, assume [z, y] lies in the 3-convex set S to
show [z, y]S S.. If xz or y is in L,, then certainly (z, ) &S L, N S& T},
and [z, y]< S,. If z, y are on L, then since no Inc points of the closed
set T, are on L, , y lie in the same leaf of T}, and [z, y]S T. N S = 8S,.
Thus S, is 3-convex. Similarly S, is 8-convex. Moreover, (¢l S;~ S,)S
bdry (cl S), 2 =1, 2.

Using Theorem 6, we will show that each S, is a union of three
convex sets: By the proofs of Theorems 2 and 3, ¢l S, = T\ is a union
of two convex sets A, 4, and each A, may be considered a subset
of an appropriate C; set, 1 <j <38, where the C; sets are those
described in Valentine’s paper with el S= C, UC, U C,. In case T, has
one leaf or an even number of leaves, then clearly the proof of Theorem
6 may be used to write S, as a union of three convex sets. If T,
has n leaves for n odd, » > 1, let V be the leaf of 7, bounded by L,
geQ@NLZEA N A, Order the Inc points of T, in a clockwise direc-
tion so that V is determined by q., q,, and let U,, U,,, denote the
closed subsets of V bounded by L(q,, @), L(q, ¢.) respectively. Treating
v, ---,U,U,,, as leaves of T,, U, determined by Inc points ¢;, ¢;;i,
1 £ 14 < n, the proof of Theorem 6 may be applied to write S, as a
union of three convex sets. (Of course, in defining B,, points of V
in S, belong to the same leaf of S,.)

By a parallel argument S, is a union of three convex sets, and
S=8,US,; is a union of six or fewer convex sets, finishing the proof
of the theorem.

Our final example shows that the bound of six in Theorem 7 is
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best possible.

ExAMPLE 4. Let S be the set in Figure 4, with dotted segments
in bdry (c1 S) ~ S and peint(cl S) ~ S. Then S cannot be expressed
as a union of fewer than six convex sets.

FI1GURE 4
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