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THEOREMS OF KOROVKIN TYPE FOR L,-SPACES

S. J. BERNAU

Suppose (X, 2, p) is a measure space, 1 < p < o, p*2,
and that (7,) is a net of linear contractions on (real or
complex) L,(X, 2, ). Let M ={xeL, T,x—x} (M is the
convergence set for (T,)). It is obvious that M is a closed
subspace of L,; indeed this would be true for an arbitrary
normed space. In this paper we shall show that M is the
range of a contractive projection on L, and hence is itself
isometrically isomorphic to an L,space. If Sc L, (X, %, p)
we can define the shadow, S(S) of S to be the set of all «
in L, such that T,x — x for every net of linear contractions
(T,) such that T,y »>y for all y€S. We shall also give 2
complete description of S7(S) (for p # 1, 2, ).

Our results are new for finite p not equal to 1 or 2. In the
case p = 2 the assertions about M are trivial and .&7(S) is the closed
subspace spanned by S. The case p =1 was first considered by
Wulbert [9] for Lebesgue measure on [0, 1]. He showed that if S =
{1, », "} then .&~(S) = L,[0, 1]. (Actually he considered sequences
of contractions and required only 7,1 —1 and 7,/ weakly convergent
to f for f =2 and f = 2%) Wulbert’s results were inspired by and
generalized the classical theorem of Korovkin [7] which contains the
result that if S = {i, », 2*} then the shadow of S in C[0, 1] is C[0, 1].
In [8] Lorentz considered separable L, spaces on finite measure spaces.
He showed that for sequences of contractions such that 7,1 —1 the
convergence set is a closed sublattice of L,. A corollary of this,
which he noted, is that for L0, 1], <A(S) = L, if S= {1, z}. This
last result and some further discussion of L,(X, %, f1), with #(X) =1
is also contained in [1].

The methods we use are suggested by the methods used in [3]
in discussing contractive projections. Iam very grateful to Professors
Lorentz and Berens for discussions of this material and for supplying
me with preprints of [1], [2], [8]. My first introduction to this circle
of ideas was a colloquium lecture by Professor Lorentz in which some
of the results from [2] and [8] were presented.

2. The convergence set. We shall fix notation as in the first
paragraph of the introduction. It does not seem to matter whether
our measure space is taken over a o-ring, o-algebra or d-ring. For
definiteness we shall assume that Y is a o-ring and measurability is
as defined by Halmos [5]. We shall let ¢ be the conjugate index
to p, defined by 1/p + 1/g = 1. Since p % 1, 2, -, the same is true
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for ¢ and L,(X, %, ¢) is the topological dual of L,(X, %, ¢t) with the
usual identifications. We shall consider the complex case; i.e., L,
(and L,) are (equivalence classes of) complex valued functions. The
real case is a little easier, but the methods are the same. If T is
a bounded linear operator on L,, the conjugate operator T* is defined
on L, by the identity

[o-(rnpap = | (T0) - yap e Ly, ye L) -

DEFINITION. The conjugate convergence set M* for the net of
contractions (T,) is defined by M* = {ye L, T}y — y}.

LEMMA 2.1. (Compare [3, Lemma 2.2].) Let x¢€ L,, then x€ M
iof and only if |x|""sgnZTe M*.

Proof. Suppose xe€ M and write v = |2 |*'sgnZ. Then ||u]||, =
[|z]|ze and (T7u) is a bounded net in L,. Let w be a weak-* limit
point of this net. We have

Sx-(w — Tru)dy = Sx-wd;z — S(Tﬁ)-%d#—» Sm-wd/x — Sa:-ud;z
— gm(w —wydp.
Taking a subnet such that TFu — w (weak — x), we conclude that
o wan = o udn= 1o = o1l

Since the T are contractions, || T7ull, = ||u]|, = ||#]|2* and hence
Jwl]l, = ||x|[5". Holders’ inequality now gives

el = gw-wdﬂé el lwlle = el 127" = [l -

This gives equality throughout so [6, § 13.5] we have
w=|x|"'sgnT =u.

Thus v is the unique weak-* limit point of the net (T7u).

Since every subnet of (77u) has a convergent subnet (by weak-*
compactness of the unit ball in L,), we see that Tfu is weak-*
convergent to . Hence

ully = liminf || Tyull, < limsup || Tyull, = [[% [l

because the T are contractions; and we also have ||« || = lim || Tu||.
Because L, is uniformly convex [4; 6, § 15.17] it follows that T u —u
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in the norm of L, which gives |z |""'sgnZ e M* as required.
The same argument applied to L, shows that if

u=|x|"'sgnieM*, x=|u|""sgnueM** =M,

so we are done.

We now apply differentiation arguments like those in [3, Lemma
2.3]. Recall that if 2, w are complex, X\ is real and r(\) = [z + Mw |
then, if z + »w %= 0, h is differentiable at A with

h'(\) = Re [wsgn (z + 2ww)] .

LEmMMA 2.2. (Compare [3, Lemma 2.3(i)].) If =, ye M, then
|z |sgnye M.

Proof. Assume first that p > 2 and define, for Le R, and
0«1,

zi=AMle+ P sgn(x + Ay) — |27t sgn 7]
=3"(e + 2y =2 P)@ + )] + 2P .

Now, make a fixed choice of functions from the equivalence classes
determined by x, y and observe that, except for the null-set where
2 or y is infinite, our differentiation result quoted above shows that
as A —0,

zi—(p —2)|@["-Relysgnz]-T + |27y

at all points where # == 0. Also, since p > 2, z,— 0(A — 0) at points
where # = 0. Let 2z, denote this (almost everywhere) pointwise limit
of z; as A — 0.

At points where 2| y| < |z|, the mean value theorem gives a
6, 0 < 6 <1 such that

zi=( —2) |z + Oy ["Re[ysgn (@ + Ol + M) + 2777 .
Since [2]/2 < |x + O\y| < 2|x]|, we have

] = (0 — 227" & [ ly]- 2 ]2 + e[ ]y]
=@ -2+ D]zl lyleL,.

At points where |z| < 2| y|, we have

2] 2703w P+ [ 20 )
= (3 +27) [y AP
<@+ 27 |yprel, .
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Thus the pointwise convergence of z, to
zo=(p—2)|z["ZRe(ysgni) + [z|"*Y

is dominated by an element of L, The dominated convergence
theorem then shows that || z; — z,]| — 0. Now, by Lemma 2.1, z,¢ M*
and M* is closed. Hence z, ¢ M*,

Apply this result to # and —iy to see that

zZ,=m—2)|2x"TRe(—tysgnZ) + 1|z g M*.
Thus z, — iz,€ M* and

Z— 2, =(p —2)|2|"T[ReysgnZ — ¢ ImysgnZ]
+2]a ] = plol7 .

Use Lemma 2.1 again to conclude that
He g " sgn ([ y) = |a "™ |y " sgnye M.

Let k,= |2 " |y sgny. Observe that for each =,
bwoy = ||k, |7 sgnk, The argument we have just provided
shows inductively that k,eM for all n. Since 0<qg—1<1,
k,—|x]|sgny, pr-almost everywhere, and clearly

[k, =max (x|, |[yDeL,.

By dominated convergence again, ||k, — || sgny]l, =0 and hence,
[¢|egnye M as required.

If 1<p<2 then by Lemma 2.1,  =|@|”'sgnZ and y, =
[y "sgny are in M*. Since ¢ > 2, our proof above shows that
|z lsgny, = o sgnye M*. Apply Lemma 2.1 again to get
[z]sgny = ||a[" sgny|" " sgn (x| sgny)ec M.

For our next result we need some terminology from [3]. A
subspace N of L,(X, X, p) is a wector sublattice if for each xze N,
(Re 2)* € N; this means that N is closed under taking real (or imagi-
nary) parts and that the set of real functions in N is a real subspace
and a sublattice of L,. For a nonempty subset K of L,, the polar
K- ={@eLy,|a|Aly| =0yeK). Aband in L,is a subset K such
that K = K** (a band is necessarily a solid vector sublattice). If K
is a band in L, there is a natural direct sum decomposition L, =
K& K* and the associated projections are positive and contractive.
We write Jx for the band projection on K. If K = y** (the only case
we need) we write J, for the band projection and note that J, is
multiplication by the characteristic function of the set on which y
is nonzero.
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LEMMA 2.3. If ye M and J, is the associated band projection,
then J,McC M.

Proof. Let xe M, then Jo = ||z]|sgny|sgna and this element
is in M by two applications of Lemma 2.2.

LEMMA 2.4. If », ye M, then (Re (zsgny))* sgnyec M.

Proof. Suppose reR,A#0, then by Lemma 2.2, v,=
Mi(ly + 2] — |yl)sgnye M. Since v, =0 at points where y =0
we see that as A — 0, v, converges pointwise (¢-almost everywhere)
to (Re (xsgn %)) sgny. Since

[l =My + 2l =yl =My + 2 -yl =],

dominated convergence shows that ||v, — (Re (xsgn¥))sgnyl,—0;
so that (Re (xsgny))sgnyec M. Another application of Lemma 2.2
gives |Re (v sgn %) |sgnye M and our results follows.

THEOREM 2.5. The convergence set M is the range of ¢ contrac-
tive projection on L.

Proof. For ye M, Lemma 2.4 shows that the map U, L,— L,
defined by U,z = xsgn ¥, is norm decreasing, linear, and maps M onto
a closed vector sublattice of L,. Such a map was called a unitary
maultiplication operator in [3]. Choose, by Zorn’s lemma, a maximal
subset ¥ of M such that |y, | A |y, =0 if y,y,€ Y and y, # vy, (a
maximal pairwise disjoint subset of M). If feL, the set
{te X: f(¢t) = 0} is o-finite so the set {ye Y: U,f = 0} is countable.
Thus we can define the direct sum U of the unitary multiplications
UweY) by Uf=3>,.r Uf, and the defining sum has at most
countably many nonzero terms and is convergent in L, norm. Clearly
UM is a closed vector sublattice of L,. We show that U is iso-
metric on M.

Suppose ze M, » = 0. Let v, .-+, y,--- be an enumeration of
the countable set of ye Y such that |y| A |z]=0. Let y, =
27|y 7Y, Then y,e M and, by Lemma 2.3, J,w<c M. Hence
v—J,oeM and | —J,2| Ayl =0yecY). By maximalily of ¥
»=J,x. Hence

v =23 Jw and [[o]" = B[ JelP = S| Uz ll” = [ U]

It now follows by Thecrem 4.1 of [3] that M is the range of a
contractive projection on L, and, which is an equivalent condition,
that M is isometrically isomorphic to some L,(X, 2, t4)-
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3. The shadow of subset S. In a certain sense characteri-
zation of shadows is trivial. Call a subspace M of L, an exchange
subspace if |x|sgnye M for any @, ye M. Clearly an intersection
of (closed) exchange subspaces is again a (closed) exchange subspace.
Hence for a subset S of L, we can determine the closed exchange
subspace of L, generated by S as the intersection of all closed
exchange subspaces of L, which contains S.

THEOREM 3.1. If Sc L, then the shadow, .<AS), of S is the
closed exchange subspace of L, generated by S.

Proof. Lemma 2.2 shows that .»7(S) is a closed exchange
subspace of L, which contains S. If M denotes the closed exchange
subspace of L, generated by S a careful check of the proofs of
Lemmas 2.3 and 2.4 and Theorem 2.5 show that these are valid for
any closed exchange subspace of L,. Hence M is the range of a
contractive projection, say P, on L,. Define a sequence (7,) of linear
contractions of L, by T, = P(n =1,2---). Then M is the conver-
gence set for (T,) and hence, .</(S) < M. This proves our theorem.

As a corollary of the proof of Theorem 3.1 we digress to state
the following result.

THEOREM 38.2. Suppose 1< p < oo, p# 2, a subspace M of
L(X, X, 1) is the range of a contractive projection if and only if M
1s @ closed exchange subspace of L(X, Y, ).

Proof. If M is a closed exchange subspace of L, then just as in
Theorem 3.1, Theorem 2.5 is valid for M. (This is equally true for
»p=1and p = 2 as can easily be checked.) By [3, Theorem 4.1] it
follows that M is the range of a contractive projection on L,. The
converse result is the statement of [3, Lemma 2.3(i)] if p = 1 and
an easy consequence of [3, Lemma 3.3] if p = 1.

Returning to shadows we note that Theorem 3.1 is difficult to
apply in practice. The following alternstive seems a little more
useful.

Let <7 be the smallest sub o-ring of XY such that the functions
Ju/y are <Z-measurable for all », ye S. (To be precise here, we
consider all choices of functions x, ¥ in equivalence classes in S. The
ratios are zero, by definition, wherever the denominators are zero.)
Choose, by Zorn’s lemma, a subset .27 of <& x S which is maximal
with respect to the properties: (i) if (4, y)e %, then AC{te
Xoy(t) + 0} (i) if (A4, w)e. o, pA >0; (i) if (4, v), (4, y.) are
distinct elements of .27] then p(A4, N A,) = 0. Define a2 measure :» on
Z by
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MB) = 3 | lylap. (Be).
(4d,y)e= ANB

Also define a map V: Lo(X, &2, \)— Li(X, &, 1) by Vf = anerS Yla

(fe L(X, <% \)). We note that the sets in <# all have o-finite

p-measure; that the sum defining Vf has, therefore, only countably

many nonzero terms and is convergent in the norm of L,(X, X, y).

Furthermore, V is an isometry of L,(X, & \).

THEOREM 3.3. The shadow .&°(S) = VL(X, &, \).

Proof. Let U be a direct sum of unitary multiplications such
that U is an isometry of .S7(S) and U.5”(S) is a closed vector sub-
lattice of L(X, %, ). For fe L, write T(f) = {te X: f(t) = 0}, (we
allow the ambiguity of sets of measure zero here); and let <&, =
{T(f): fe”(S)). I claim that <& is a sub o-ring of 2.

For this, observe that T'(f) = T(Uf) so we may assume that
A(S) is a closed vector sublattice of L,. Now T(f)=T(f]|)=
T(Re fDU T(Im f|) and | f|e .5°(S). Hence

U T = 1(S 2 1507 1 Fa ) e s

so <% is closed under countable union. If f, ge S7(S), J,|g]| =
lim, . |g|~n|fle S(S) so T(9) ~ T(f) = T(1g| —J;lg])e s This
proves our claim about <Z;.

If »,yesS, {te X: ReJ2ly > a >0} = T((Re (J,x — ay))’) € .
Hence, every J,2/y (», y e S) is <Fs-measurable and <7; O .

Suppose Be <% then B= T(f;) for some f,e S7(S). If MB)< co,
then Vs = Disver Y- Azna- Since B is o-finite we can enumerate
the countable set of pairs (4, y) in 2% such that (BN A) + 0 as
(4,,y,) and choose f,e.S(S) such that T(f,) = A,NB. Then
Vis = Sim-1Js,¥a Since the A, are disjoint and

STt =S Jwarap
n=1 An,NB

= > M4, N B)
=\B
<L oo,

the series for Vy, converges in L,(X, %, ¢t). Since each y,€ S and
each f,e . 97(S), each J,y,ec.S”(S) and Vyye 7(S). Extending
linearly to simple functions in L,(X, <Z ) and then taking closure
we conclude that VL, (X, & ¢) < <2(S).

If zeS and (A4, y)e .2 then y.u/y is <F-measurable and
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S | Xa2/y |PdN = SAlmi”dy < oo

Hence z =3, ,cr xu2/ye L(X, B \) and z = Vze VL(X, <Z \).
This shows that VL,(X, <z \)DS.

Iff,9e L(X, <&, \), then | f|sgnge L, (X, Z, \)and |Vf]|sgn Vg=
V( flsgng). Thus VL,(X, <& \) is a closed exchange subspace of
L,(X, 2, 1) which contains S. By Theorem 8.1 it follows that
A(S) = VL(X, <%, \) as required.

For applications of this result we recall that a subset S of a
Banach space E is a Korovkin set for contractions if S7(S) = E.

In our closing results, ¢ is Lebesgue measure and 3 the o-ring
of Lebesgue measurable subsets of R, or R" as appropriate. Also,
remember that 1 < p < oo, p = 2.

THEOREM 3.4. If —1/p <a < B then {t* t?} is a Korovkin set
fO’/’ L?’([Or 1]’ 2’ #)'

Proof. In the construction preceding Theorem 3.3, we see that
<% is the o-ring of Borel subsets of [0, 1]. Take 2 = {([0, 1], %)}
and observe that Vis an isometry of L,([0, 1], 2, ) and L,([0, 1], <Z, \).

Observe that we could also use {cost, sint} on [0, 7/2] or on
[0, @] or, of course, many other doubleton sets on many other finite
intervals.

THEOREM 3.5. Let X = [0, 1" C R” and let S contain the constant
Junction 1 and the n coordinate projections, then S is a Korovkin set
fOT Liﬂ(X’ 27 !")'

One last result for a case when f is not finite will now suffice.

THEOREM 3.6. Let S = {e™t, ¢7*’}, then S is a Korovkin set for
L,([0, =], £, 19).
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